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Abstract
Purpose In selective internal radiation therapy (SIRT), an accurate total liver segmentation is required for activity prescription
and absorbed dose calculation. Our goal was to investigate the feasibility of using automatic liver segmentation based on a
convolutional neural network (CNN) for CT imaging in SIRT, and the ability of CNN to reduce inter-observer variability of the
segmentation.
Methods A multi-scale CNN was modified for liver segmentation for SIRT patients. The CNN model was trained with 139
datasets from three liver segmentation challenges and 12 SIRT patient datasets from our hospital. Validation was performed on 13
SIRT datasets and 12 challenge datasets. The model was tested on 40 SIRT datasets. One expert manually delineated the livers
and adjusted the liver segmentations from CNN for 40 test SIRT datasets. Another expert performed the same tasks for 20
datasets randomly selected from the 40 SIRT datasets. The CNN segmentations were compared with the manual and adjusted
segmentations from the experts. The difference between the manual segmentations was compared with the difference between the
adjusted segmentations to investigate the inter-observer variability. Segmentation difference was evaluated through dice simi-
larity coefficient (DSC), volume ratio (RV), mean surface distance (MSD), and Hausdorff distance (HD).
Results The CNN segmentation achieved a median DSC of 0.94 with the manual segmentation and of 0.98 with the manually
corrected CNN segmentation, respectively. The DSC between the adjusted segmentations is 0.98, which is 0.04 higher than the
DSC between the manual segmentations.
Conclusion The CNNmodel achieved good liver segmentations on CT images of good image quality, with relatively normal liver
shapes and low tumor burden. 87.5% of the 40 CNN segmentations only needed slight adjustments for clinical use. However, the
trained model failed on SIRT data with low dose or contrast, lesions with large density difference from their surroundings, and
abnormal liver position and shape. The abovementioned scenarios were not adequately represented in the training data. Despite
this limitation, the current CNN is already a useful clinical tool which improves inter-observer agreement and therefore contrib-
utes to the standardization of the dosimetry. A further improvement is expected when the CNN will be trained with more data
from SIRT patients.
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Introduction

Selective internal radionuclide therapy (SIRT) or
radioembolization aims at treating surgically non-resectable
primary or metastatic liver tumors. In SIRT, yttrium-90 (90Y)
microspheres are injected into the hepatic artery [1], which is
the predominant vessel for blood supply to liver tumors [2].
By selecting the appropriate branch of the hepatic artery, the
radioactivity can be selectively administered to the targeted
tumors, which results in high-dose tumoral irradiation, while
keeping the dose to the healthy liver below the tolerance level
[3–5]. In the pre-treatment study, macro-aggregated albumin
particles labeled with technetium-99m (99mTc-MAA) are
injected and whole-body planar imaging and SPECT/CT are
performed within the hour after injection [6] to estimate the
lung shunt fraction and predict the intra-hepatic distribution of
90Y microspheres inside the liver. Following the injection of
90Y microspheres, a post-treatment study is performed to ob-
tain 90Y-PET images (PET/MR or PET/CT). The actual distri-
bution of 90Y microspheres can be determined by these im-
ages [7, 8] to verify the treatment.

In both pre- and post-treatment studies, the absorbed dose
to the tumor(s) and the normal liver parenchyma is estimated
or measured to predict or verify the treatment’s result on the
tumor and on the healthy liver [9]. Several approaches are
being used for this purpose, including mono-compartment
[10] and multi-compartment [11] methods and voxel-based
approaches [10]. For all these methods, accurate contours of
the liver and tumors are required for dosimetric analysis.
Therefore, good liver and tumor delineation plays an impor-
tant role in these dosimetric activity prescription methods
[12].

Manual liver segmentation is tedious and time-consuming
and suffers from inter-observer variability [13]. This segmen-
tation variability may increase the variability of the absorbed
dose computed by dosimetric methods. In recent years, CNNs
have been increasingly used in the medical field for
segmenting different organs, such as the liver or kidney [14,
15]. Many grand challenges for automatic liver segmentation,
organized by the scientific and technical communities, made
available CTor MRI datasets with reference liver delineations
on the internet. The participants trained their algorithms on the
training datasets and tested them on the test datasets. The test
results were evaluated through several metrics and the final
ranking of the algorithms was published. The Liver Tumor
Segmentation Challenge (LiTS) held in 2017 involves the
tasks of liver and tumor segmentation on CT data. The best
algorithm, trained on 131 datasets and tested on 70, achieved a
dice similarity coefficient (DSC) of 0.96 [16]. Most algo-
rithms adopted U-net-derived architectures and used 2D or
so-called 2.5D images due to the long training time and high
resource requirements [16]. Chelbus et al. implemented three
orthogonal 2D U-net-like CNN models trained with axial,

coronal, and sagittal image patches from the MR data of
SIRT patients [13]. They reported good liver segmentation
results with a mean DSC of 0.95. According to their experi-
mental results, manual correction of the CNN segmentation
resulted in a much lower inter-observer variability than taht of
manual routine segmentations [13].

The aim of our study is to develop an automatic method of
liver segmentation on CTs for SIRT patients, including both
contrast-enhanced CTs and non-contrast-enhanced CTs, the
latter obtained during PET/CT. This method should be gener-
ic, robust, and applicable to CT images with various contrast
and irregular liver shapes. For this purpose, we modified a 3D
CNN structure named DeepMedic [17] for the task of liver
segmentation. Our hypotheses were that the liver segmenta-
tions from the CNN can be good enough for clinical applica-
tion with limited adjustments and will reduce the inter-
observer variability of liver segmentation for CT. SIRT pa-
tients usually underwent a variety of preceding treatments
(e.g., liver resection, chemotherapy, tumor ablation) and have
abnormal liver shapes and high disease burden. Therefore,
applying the CNN model to liver segmentation of CTs for
these patients is more challenging than for those data from
public challenges. Besides, automatic liver segmentation
using the CNN has the potential of speeding up the segmen-
tation process by minimizing manual interaction from the
medical doctors and technologists and standardizing the clin-
ical workflow. Its practical value remains to be investigated in
a more clinical context.

Material and methods

Data

In our study, most training datasets were from several interna-
tional challenges of liver and tumor segmentation for CT,
including SLIVER07 challenge (20 datasets), Liver Tumor
Segmentation (LiTS17) challenge (131 datasets), and
Medical Segmentation Decathlon (MSD) challenge (131
datasets). In the LiTS17 challenge, 20 datasets were discarded
due to errors in their image headers. The image in-plane res-
olution of the challenge datasets ranged from 0.56 to 1.0 mm
and the slice thickness ranged from 0.7 to 5.0 mm. During the
process of our research, 65 CT datasets from the SIRT patients
with liver delineation were collected in our hospital. Their
image in-plane resolution ranged from 0.65 to 1.37 mm and
their slice thickness ranged from 1.0 to 5.0 mm.

When carrying out the experiments, the datasets from the
MSD challenge were found to be identical to those from the
LiTS17 challenge, which as far as we could see is not clearly
indicated on the respective websites. As a result, 91 of these
datasets from the two challenges had twice the weight of the
other ones during training. Since the same network trained
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with uniform weights did not perform better (the difference
was within the variation caused by the random CNN initiali-
zation), we continued using the original model.

The number of the training, validation, and test data is
shown in Table 1. The characteristics of the 38 SIRT patients
from whom the 40 test SIRT datasets come and the 25 SIRT
patients for training and validation are presented in Table 2.
The challenge datasets for training and validation are anony-
mous and publicly available. Their patient characteristics are
not available.

Two clinical experts manually segmented the livers in CT
images from the test set. In addition, they also performed
manual corrections to the segmentations produced by the
CNN. All SIRT datasets for this research were evaluated at
the KU Leuven after approval by the Ethics Committee
Research of UZ/KU Leuven.

CNN development

The CNNmodel used in the paper is a modified version of the
dual pathway, 11-layer deep, three-dimensional structure
(named DeepMedic) designed for the task of brain lesion seg-
mentation [17]. The network adopts a hybrid scheme between
the common patch-wise training (the CNN model only pre-
dicts the central voxel of the input image patch) and the so-
called dense training on the full image (the network outputs
the prediction for all voxels in the input image) [18]. If the
input of CNN is the whole 3D image, the dense training set-
ting is mainly constrained by the limited GPU memory. In the
patch-wise setting, the same voxels in the overlapping patches
are repeatedly involved in the convolutional computations for
the prediction of different central voxels, which is inefficient
in making full use of the computational power and memory of
GPU. The DeepMedic structure overcomes these problems by
using image segments with a size larger than the receptive
field as the CNN input. This scheme enables the network to
output the prediction for multiple voxels in the image segment
in one forward pass.

Furthermore, the DeepMedic network introduces the multi-
scale processing technique by using parallel convolutional
pathways at different resolutions. The contextual information
inside the CNN’s receptive field plays an important role in the
CNN inference. The more spatial context is incorporated in

the inference process, the more comprehensive understanding
of the detected object the network can obtain. However, more
incorporated contextual informationmeans increasing compu-
tation and memory demands if the images with the normal
resolution are used. The DeepMedic structure employs a clev-
er way to incorporate both the local and global contexts by
adding a low-resolution pathway operating on down-sampled
images. In this way, the receptive field of the low-resolution
pathway is enlarged greatly at the cost of resolution. But this
cost can be compensated by combining the low- and high-
resolution pathways, since the local information is preserved
in the high-resolution pathway.

Architecture In the modified CNN structure, a third path-
way with lower resolution than the second is added (see
Fig. 1). Considering that the liver is much larger than a
brain lesion, this third pathway is introduced to help the
CNN learn the context information from the whole ab-
dominal region, which is essential for reducing errors.
The down-sample rates of the three pathways are 1, 5,
and 15, respectively. The kernel size used by the
convolutional layers in the three pathways is 3 × 3 × 3.
To give more weight on the context information from
the second and the third pathways, the number of features
is increased in the deeper layers. The outputs of the sec-
ond and third pathways are up-sampled by 5 and 15, re-
spectively. Then, the outputs of the three pathways are
treated as three features which are combined by the next
two layers with a 1 × 1 × 1 convolutional kernel. Through
one classification layer, the CNN outputs the probability
map, where each voxel represents its probability of be-
longing to the liver.

Training The CNN model was trained on 3D image segments
randomly sampled from the 3D image with a batch size of 16.
The model used binary cross entropy as the loss function with
the stochastic gradient descent optimizer. The initial learning
rate is 0.007 and decreased every 32 epochs. The model qual-
ity was evaluated every 8 epochs on the full segmentation of
the validation set using the DSC. The training process took
26.75 h using a GPU of NVIDIA P100 with 16 Gb DRAM.
The time for the CNN prediction of 40 test SIRT datasets

Table 1 Number of the training, validation, and test datasets

Training Validation Test Total

LiTS17/MSD 121 10 0 131

SLIVER07 18 2 0 20

SIRT data 12 13 40 65

Total 151 25 40 216

Table 2 Characteristics of the SIRT patients for training, validation, and
test

Characteristics Training Validation Test

No. of SIRT patients 12 13 38

Age (years), median (range) 58 (32, 72) 61 (42, 70) 67 (25, 87)

Sex (female/male) 5/7 3/10 13/25

Weight (kg), median (range) 76 (61, 119) 82 (58, 125) 74 (46, 129)
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ranged from 11 to 55 s using the GPU. When using a CPU of
Intel Xeon E5-2699, the time for the CNN prediction of 40 test
SIRT datasets was between 3 and 13 min.

Data preprocessing The 3D CT images were cropped so that
they included the whole abdominal region in each transaxial
slice. In an earlier version of the network, we used images
containing only the liver. However, we found that, when the
images were enlarged such as to contain the entire abdomen in
every transaxial slice, the liver segmentation performance of
the CNN increased substantially. The cropped images were
resampled to 1.4-mm isotropic voxel size so that the CNN
could learn about the size of the liver and the surrounding
organs. After that, the resampled images were median filtered
and normalized by a linear mapping of the Hounsfield units
(HU) of the CT images between − 200 and 200 to the range of
− 0.2 to 0.2.

Data augmentation The voxel intensities in the lower-contrast
CT images from SIRT patients are often lower than those in
the contrast-enhanced CT images from the challenges. To en-
sure the robustness of the CNN model to variations in the
amount of contrast enhancement, a random intensity shift
was applied to modify (and usually decrease) the intensity of
the training images. This was done by adding a single random
value, drawn from a Gaussian distribution with a mean of
– 40 HU and a standard deviation of 40 HU, to all the voxel
values of a particular training image. Additionally, a random
flipping with probability of 0.5 along the x- and y-axis and
random elastic deformations were applied.

Data postprocessing The output of the CNN model was a
probability map. It was transformed into a binarymask of liver
with the threshold of 0.5. To verify our threshold choice, a
simple experiment was done to find an optimal threshold

which maximizes the DSCs of the training datasets. After that,
the optimal threshold of 0.32 was applied to the validation
datasets. The median DSCs of the challenge datasets for val-
idation were around 0.97 for both thresholds and the median
DSC of the SIRT datasets for validation using the threshold of
0.32 was 0.6% higher than that using the threshold of 0.5.
Because the improvement using the optimal threshold is small
and the network output is supposed to be a probability map,
we prefer to use a threshold of 0.5, which is the natural choice
because it selects the voxels which are more likely to belong to
the liver than not. The binary mask was eroded to disconnect
the regions with weak connection. Then, the largest connected
region in the binary mask was selected while other small
islands were not included in the liver volume of interest. The
largest connected region was dilated back to its original size
and then was taken as the final result of liver segmentation.

Experiments

Comparison between the CNN segmentation, manual seg-
mentation, and adjusted segmentation To evaluate the liver
segmentation quality of our CNN model, an experienced ra-
diographer (WC) was asked to delineate the liver segmenta-
tion for 40 test datasets from SIRT patients in our hospital,
with his choice of appropriate software available to them in
the clinic at the time. These segmentations were performed
semi-automatically using Siemens Syngo MMWP Volume
software (Siemens Healthcare, Erlangen, Germany). After
that, the CNN segmentation and the manual segmentation
were compared with each other through several metrics. To
analyze the errors of the CNN segmentation and its possibility
of being used in clinical application, the expert was also asked
to adjust the liver segmentation from CNN for all 40 test SIRT
datasets. The adjustment was done usingMIM software (MIM
Software Inc., Cleveland, OH). When the expert did the

Fig. 1 Overview of the modified DeepMedic structure. The model
consists of three pathways (10 convolutional layers in each pathway)
followed by a common pathway with two fully connected layers and
one classification layer. The input image has the voxel size of 1.4 ×

1.4 × 1.4 mm3. The input image segments of three pathways are
randomly sampled from the images downsampled by 1, 5, and 15
during the training process. The output segment has the size of 15 ×
15 × 15
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adjustment, he was asked to score the CNN segmentation
from 1 to 5 with a minimum interval of 0.5. The criteria used
by the first expert for scoring are listed in Table 3. By com-
paring the CNN segmentation and adjusted segmentation, the
areas where the errors of CNN segmentation often occur can
be found, which is helpful for the further improvement of the
CNN model and the selection of training datasets.

Inter-observer variability To evaluate the influence of the
CNN segmentation on the inter-observer variability of liver
segmentation, a nuclear medicine physician (CMD) with over
10-year experience in SIRT also provided manual liver seg-
mentations and manual adjustments to the segmentations from
the CNN. To shorten the processing time and reduce the ex-
pert’s workload, 20 datasets were randomly selected from 40
test SIRT datasets for de novo segmentation and adjustment.
For both tasks, MIM software was used. Out of 40 test SIRT
datasets, there were 2 SIRT datasets where the CNN model
had a very poor liver segmentation (several large parts of the
liver were missing). These two segmentations were excluded
intentionally when picking out the 20 datasets. After that, the
difference between the 20 manual segmentations from two
experts was compared with the difference between their ad-
justed segmentations through several metrics. The criteria
used by the second expert for scoring the CNN segmentation
are similar to the criteria used by the first expert but more
detailed for each single score (see Table 3).

Analysis of manual adjustment The adjusted segmentations
from the two experts were compared with the CNN segmen-
tations for the 20 test SIRT datasets through visual inspection
to look into the regions most frequently corrected by the
experts.

Evaluation metrics

In our experiment, the difference between segmentations was
measured through several metrics calculated in 3D, including
dice similarity coefficient (DSC), volume ratio (RV), mean
surface distance (MSD), and Hausdorff distance (HD).

Dice similarity coefficientDSC is used to measure the volume-
based similarity between two segmentations [19]. The more
overlap the two segmentations have, the larger DSC is. The
value of DSC is always between 0 and 1.

Volume ratio RV computes the ratio of the liver volumes from
two segmentations, defined as RV(seg1, seg2) = V1/V2, where
V1 and V2 are the volumes of two segmentations.

Mean surface distance and Hausdorff distance MSD and HD
are designed to measure the surface-based difference between
two segmentations [20]. MSD computes the average distance
between the two segmentation surfaces, whereas HD com-
putes the largest distance between them.

Table 3 Criteria for scoring the
liver segmentation from CNN
(experts 1 and 2)

Criteria (expert 1) Criteria (expert 2)

1, 1.5 The CNN segmentation is very bad. A very large
amount of adjustment is needed. It is better to
segment the liver manually from scratch.

Major corrections are needed. Starting from the
CNN segmentation is counterproductive and
perceived more time consuming than manual
segmentation.

2 Major corrections are needed. Using the CNN
seems to result in no benefit.

2.5 Major corrections are needed. The CNN
segmentation seems to have minor benefit.

3, 3.5 The CNN segmentation needs limited adjustment
and can be used for the clinical application after
adjustment.

The CNN segmentation requires moderate
corrections, but is deemed a good starting point.
Manual adjustment is perceived clearly faster
than manual segmentation.

4 The CNN segmentation needs slight or no
adjustment and is ready for the clinical use.

Minor corrections (more than details or glitches)
are required, which has limited impact on the
volume and consumes substantially less time
than manual segmentation.

4.5 Minor glitches are changed, which has no expected
impact.

5 No corrections are made. The CNN segmentation
is ready for clinical use.
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Results

Comparison between the CNN segmentation, manual
segmentation, and adjusted segmentation

The median DSC, RV, MSD, and HD between the CNN seg-
mentation and manual segmentation were 0.94, 0.93, 2.1 mm,
and 29.2 mm (see Fig. 2). The median DSC, RV, MSD, and
HD between the CNN segmentation and adjusted segmenta-
tion were 0.98, 0.98, 1.0 mm, and 30.1 mm (see Fig. 2). The
median DSC, RV, MSD, and HD between the manual seg-
mentation and adjusted segmentation were 0.95, 1.04,
1.7 mm, and 23.5 mm (see Fig. 2). From the results of DSC
and RV, it is evident that the liver volume from the adjusted
segmentation agrees more with the liver volume from the
CNN than that from the manual segmentation. According to
Fig. 2c, the liver surfaces from most adjusted segmentations
are more similar to the liver surfaces from the CNN than those
from the manual segmentations. The Hausdorff distance be-
tween the CNN segmentation and adjusted segmentation is
slightly larger than that between the manual segmentation
and adjusted segmentation in Fig. 2d. This is explainable be-
cause the CNN model has some errors in its liver

segmentations, due to the inclusion of other tissues or to the
exclusion of some parts of the liver.

The scores assigned to the 40 CNN segmentations are pre-
sented in Table 4. According to the scores given by the first
expert, 40% (16/40) of liver segmentations from the CNN are
very good and can be used for clinical application with slight
or no adjustment from the expert. The CNN segmentations of
47.5% (19/40) SIRT datasets require limited adjustment and
are then ready for clinical use. There are 12.5% (5/40) poor
liver segmentations from the CNN which should not be ap-
plied in clinical use. The scores from the expert verify that
87.5% (35/40) of liver segmentations from CNN are good
enough for clinical use with some additional adjustment.
Some examples of the liver segmentations from CNN with
different scores are presented in Fig. 3.

When looking into the reasons why the CNN model pro-
duced poor segmentations on some datasets, we identified the
following scenarios which were present in the SIRT datasets
but very infrequent in the training datasets: low contrast or low
dose, lesions with large density difference from their sur-
roundings, extreme liver position and shape. Some examples
of these cases are presented in Fig. 3. In Fig. 3b, one round
lesion with low density is seen in the second image and part of

Fig. 2 Comparison between the CNN segmentation (CNN), manual segmentation (manual), and adjusted segmentation (adjusted CNN) for 40 test SIRT
datasets using (top left) dice similarity coefficient, (top right) volume ratio, (bottom left) mean surface distance, and (bottom right) Hausdorff distance
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the left lobe is located in the extreme left lateral position with-
in the abdomen. The CT shown in Fig. 3c has very low dose
and low contrast.

Inter-observer variability

The median DSC, RV, MSD, and HD between the 20 man-
ual segmentations were 0.94, 1.08, 2.0 mm, and 25.0 mm
(see Fig. 4). The median DSC, RV, MSD, and HD between
the 20 adjusted segmentations were 0.98, 1.01, 0.6 mm,
and 21.0 mm (see Fig. 4). According to the results of

DSC and RV, the volume difference between the adjusted
segmentations was much smaller than that between the
manual segmentations. Similarly, the mean surface dis-
tance between the two adjusted liver contours was reduced
to a large extent compared with the manual contours from
the two experts. The relative decrease of HD was not as
large as that of the other three metrics after adjustment. It is
mainly because a large discrepancy of delineation between
two experts exists in the regions of vessels or ligaments,
where the delineation criteria are not clearly defined. This
discrepancy cannot be eliminated using the CNN segmen-
tation as a baseline.

Besides, the scores of the 20 test SIRT datasets from the
two experts are presented in Fig. 5. The score difference re-
mains within 0.5 for 16 patients. However, a large score dif-
ference of over 0.5 exists for the other 4 patients, although the
two experts used similar scoring criteria. It is caused by the
subjectivity existing in the criteria and in the judgment from
the experts.

Fig. 3 Examples of the CNN segmentation (magenta) compared with the
manual segmentation (yellow) and adjusted segmentation (cyan) from the
first expert. In the following, “CNN,” “manual,” and “adjust” represent
the CNN segmentation, the manual segmentation, and the adjusted seg-
mentation, respectively. a Case where the CNN segmentation was scored
4.5: the DSCs (CNN vs manual, CNN vs adjust, manual vs adjust) were

0.92, 0.99, and 0.92. b Case where the CNN segmentation was scored 3:
the DSCs (CNN vs manual, CNN vs adjust, manual vs adjust) were 0.91,
0.95, and 0.93. c Case where the CNN segmentation was scored 1: the
DSCs (CNN vs manual, CNN vs adjust, manual vs adjust) were 0.84,
0.89, and 0.92

Table 4 The scores given by the first expert to the liver segmentations
from CNN for 40 test SIRT datasets

Score 1 1.5 2 2.5 3 3.5 4 4.5

No. of datasets 2 0 1 2 7 12 14 2
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Analysis of manual adjustment

The frequency of every corrected region for each expert was
recorded for the 20 test SIRT datasets (see Fig. 6). From the
figure, it is evident that the inferior vena cava (IVC) is the
region corrected by both experts most frequently. In the train-
ing datasets, a part of IVC adjacent to the liver was included in

the liver delineation in some datasets while not in the other
datasets. As a result, the CNN segmentation appears random
and irregular in the IVC region. For the portal vein, expert 1
tended to include it in the liver delineation, while expert 2

Fig. 4 Comparison of the agreement between the twomanual expert delineations and between the twomanually adjusted segmentations using 4 metrics:
(top left) dice similarity coefficient, (top right) volume ratio, (bottom left) mean surface distance, and (bottom right) Hausdorff distance

Fig. 6 The frequency of each region corrected by every expert for the 20
test SIRT datasets. PV, portal vein; IVC, inferior vena cava

Fig. 5 The scores of the 20 test SIRT datasets given by experts 1 and 2.
The patients are sorted in an ascending order according to the scores given
by expert 1
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agreed more with the CNN segmentation to exclude the portal
vein from the liver segmentation. Besides, CNN segmentation
errors in some regions required additional adjustment from the
experts. For example, the left tip of the liver is the third most
frequently adjusted region since shape abnormality often oc-
curs in this region. The lesions with large density difference
from their surroundings are the fourth most frequently
corrected regions. The regions between the liver and the sur-
rounding organs (e.g., heart, stomach, duodenum, colon) are
frequently corrected due to CNN segmentation errors caused
by their small density difference in low-contrast CTs.

Time used for manual segmentation and adjustment

The time spent on manual segmentation and adjustment of the
CNN segmentation for expert 1 (40 test SIRT datasets) and
expert 2 (20 test SIRT datasets) is presented in Fig. 7. For
expert 1, the time for manual segmentation is always within
5 min, which is shorter than the time for adjustment. The time
for adjustment ranges from 3.17 to 32.75min with a median of
9.18 min. Expert 2 spent much less time on adjustment than
on manual segmentation. The time for manual segmentation
ranges from 22.32 to 64.82 min with a median of 28.53 min
and the time for adjustment ranges from 2.15 to 20.45 min
with a median of 6.72 min.

Discussion

Ourmodified CNNmodel mainly trained on public datasets of
liver cancer achieved good results on the SIRT CT images
with good image quality, relatively normal liver shapes, and
low disease burden. The CNN segmentation achieved a me-
dian DSC of 0.94 with the manual segmentation and of 0.98
with the adjusted segmentation, respectively. Only 2 out of the
40 test SIRT datasets had a RVoutside the range from 0.9 to

1.1 between the CNN segmentation and adjusted segmenta-
tion. It indicates that the difference of injected activity caused
by CNN segmentation errors is within 10% for 95% of the 40
test SIRT datasets when using the mono-compartment meth-
od. 87.5% (35/40) of automatic liver segmentations from
CNN are eligible for clinical use with limited adjustment from
the expert in the judgment of 2 experienced liver delineators.
This implies a promising future for applying deep learning to
the traditional liver segmentation task in the clinical routine of
SIRT.

However, the current CNN model may fail in the fol-
lowing cases: poor image quality (low-dose or low-
contrast CT), lesions with large density difference from
their surroundings, and extreme liver position and shape.
Each of the above cases has many different variations. A
small density difference can occur among most organs in
the abdomen or between the liver and a neighboring or-
gan. The lesions in the liver may appear homogeneous
and round with very low density, large and diffuse, or
with high vascularity. The liver can be extremely large
or compressed in the sagittal plane and the left lobe may
occur in the very left position of the abdomen. These
variations and their combinations make them difficult to
be defined and quantified. Through visual inspection, it
was found that the above three cases and their variations
occurred in the training datasets (mainly the challenge
datasets) with low frequency. Besides, the DSCs of the
challenge datasets for validation and the SIRT datasets
for validation are 0.97 and 0.94 respectively when com-
paring the CNN segmentation with the manual segmenta-
tion from the radiographer. This further proves that some
discrepancy exists between the SIRT datasets and the
challenge datasets.

By using the CNN segmentation as a baseline for adjust-
ment, the inter-observer variability was reduced to a large
extent compared with starting the manual liver segmentation

Fig. 7 Time (hours/minutes/
seconds) spent on manual
segmentation and adjustment of
the CNN segmentation for expert
1 (40 test SIRT datasets) and
expert 2 (20 test SIRT datasets)
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from scratch. It can help reduce the random and subjective
errors in absorbed dose calculation introduced by inconsistent
liver volumes and contours from different observers. The ratio
of RVs outside the range from 0.9 to 1.1 is 0% (0/20) between
the adjusted segmentations from the two experts and 20%
(4/20) between their manual segmentations. This implies that
the adjusted segmentations keep the difference of injected
activity caused by the inter-observer variability of the liver
segmentation within 10% if the mono-compartment model is
used.

Currently, the corrections from the experts mainly happen
in the regions including the vessels (IVC, portal vein,
sushepatic vein) and in the regions where the CNN model
has a poor delineation. Since there are no criteria defining
the way of including or excluding these vessels for the liver
delineation, the experts make the decision based on their own
experience and background (e.g., radiographer vs nuclear
medicine physician). On CTwithout intravenous contrast en-
hancement, the IVC is difficult to discern from normal liver
tissue, contrary to contrast-enhanced CT. This further in-
creases the difficulty of liver delineation near the vessel re-
gions. Although the contour difference caused by these ves-
sels does not have an evident influence on dosimetry, it de-
creases the consistency of liver delineation. This can be solved
by proposing a criterion for vessels’ exclusion agreed upon by
the physicians.

It is remarkable that expert 1 needed more time for
adjusting a segmentation than for drawing one from
scratch, whereas the opposite was the case for expert 2.
For this experiment, we allowed the experts to use the
segmentation software of their choice. Expert 1 is a radi-
ographer who is doing clinical segmentations since many
years, and he did the manual segmentations with the soft-
ware which he uses also clinically: the Siemens Syngo
MMWP Volume software. However, he found that this
software is less suited for correcting existing segmenta-
tions and therefore used the MIM software for that, which
he had not used before. Expert 2 is a nuclear medicine
physician, who is not used to providing manual organ
segmentations. He chose the MIM software for both tasks.
Consequently, we attribute this discrepancy to the many
years of experience of expert 1 with the Siemens software.
We cannot claim that correcting a segmentation is always
faster than providing one from scratch, as these times
depend heavily on the software used for that task and
the talents of the operator for using that software efficient-
ly. However, we would argue that when the software is
optimized for the task, a skilled operator should be faster
at correcting a fairly good segmentation than at creating a
new one, since the former task is simpler in principle.

We will introduce our CNN-based correction tool into the
SIRTworkflow and possibly other clinical workflows involv-
ing liver segmentation. Once the experts get used to this tool,

shorter time may be spent on liver delineation with better
accuracy. As a result, it will become easier for the experts to
provide a large amount of liver contours eligible for training
the CNNmodel, further improving the CNN performance. As
assistance from the current CNN already improved the inter-
observer agreement, we believe this CNN-assisted liver seg-
mentation will contribute to improving and standardizing the
liver contours used in SIRT planning and help nuclear medi-
cine physicians to obtain more precise dose predictions and
better treatment verification.

In summary, we believe that the performance of our current
CNN makes it a useful tool for clinical SIRT image analysis.
In addition, further improvements are anticipated by including
more representative SIRTwork-up datasets for training, which
will reduce the discrepancy between the characteristics of the
training images and those of the typical SIRT images. Besides,
the potential of the CNN model to reduce the segmentation
time remains to be fully studied in the future. A CNN model
for MRI liver segmentation is planned to be developed in the
future. The reduction of inter-observer variability for MR is
also anticipated.

Conclusion

The CNN-based automatic liver segmentation achieved good
results for CT images from SIRT patients, who usually have
abnormal liver shapes and high tumor burden. 87.5% of the 40
CNN liver segmentations were considered eligible for clinical
use with limited adjustment from the expert. The inter-
observer variability of liver segmentation was reduced consid-
erably when the CNN segmentation was used as a baseline for
manual adjustments. As a result, the CNN-based automatic
liver segmentation is anticipated to become a valuable tool
for clinical routine in the near future.
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