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Combined brain and spinal FDG PET allows differentiation
between ALS and ALS mimics

Donatienne Van Weehaeghe1,2
& Martijn Devrome1

& Georg Schramm1
& Joke De Vocht3 & Wies Deckers2 &

Kristof Baete1,2
& Philip Van Damme3,4

& Michel Koole1
& Koen Van Laere1,2

Received: 31 December 2019 /Accepted: 20 March 2020
# Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Purpose Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder with on average a 1-year delay
between symptom onset and diagnosis. Studies have demonstrated the value of [18F]-FDG PET as a sensitive diagnostic
biomarker, but the discriminatory potential to differentiate ALS from patients with symptoms mimicking ALS has not been
investigated. We investigated the combination of brain and spine [18F]-FDG PET-CT for differential diagnosis between ALS and
ALS mimics in a real-life clinical diagnostic setting.
Methods Patients with a suspected diagnosis of ALS (n = 98; 64.8 ± 11 years; 61M) underwent brain and spine [18F]-FDG PET-
CT scans. In 62 patients, ALS diagnosis was confirmed (67.8 ± 10 years; 35 M) after longitudinal follow-up (average 18.1 ±
8.4 months). In 23 patients, another disease was diagnosed (ALS mimics, 60.9 ± 12.9 years; 17 M) and 13 had a variant motor
neuron disease, primary lateral sclerosis (PLS; n = 4; 53.6 ± 2.5 years; 2 M) and progressive muscular atrophy (PMA; n = 9; 58.4
± 7.3 years; 7 M). Spine metabolism was determined after manual and automated segmentation. VOI- and voxel-based compar-
isons were performed. Moreover, a support vector machine (SVM) approach was applied to investigate the discriminative power
of regional brain metabolism, spine metabolism and the combination of both.
Results Brain metabolism was very similar between ALS mimics and ALS, whereas cervical and thoracic spine metabolism was
significantly different (in standardised uptake values; cervical: ALS 2.1 ± 0.5, ALS mimics 1.9 ± 0.4; thoracic: ALS 1.8 ± 0.3,
ALS mimics 1.5 ± 0.3). As both brain and spine metabolisms were very similar between ALS mimics and PLS/PMA, groups
were pooled for accuracy analyses. Mean discrimination accuracy was 65.4%, 80.0% and 81.5%, using only brain metabolism,
using spine metabolism and using both, respectively.
Conclusion The combination of brain and spine FDG PET-CT with SVM classification is useful as discriminative biomarker
between ALS and ALS mimics in a real-life clinical setting.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating adult-
onset neurodegenerative disorder with both upper (UMN)
and lower motor neuron (LMN) involvement. ALS diagnosis
is based on a combination of clinical and electrophysiological
parameters [1]; however, diagnostic timelines remain long (on
average 1 year) before a final consensus diagnosis is reached
[2]. Therefore, early diagnostic biomarkers are important to
facilitate therapeutic trial enrolment in early disease stages and
to limit the emotional burden accompanied by the diagnostic
uncertainty.

Several [18F]-FDG brain PET studies have demonstrat-
ed [18F]-FDG brain PET allows discrimination between
ALS patients and healthy volunteers with an accuracy
higher than 90% [3–5]. Until now, [18F]-FDG studies in-
vestigating the essential discriminatory accuracy between
ALS patients and ALS mimics are lacking. ALS mimics
are a very heterogeneous group of conditions which re-
semble the presentation and clinical symptoms and signs
of early ALS. They include various disorders such as in-
clusion body myositis, polyradiculopathy, paraneoplastic
neuropathy, spinal stenosis, primary progressive multiple
sclerosis, functional disorders and cramp fasciculation
syndrome. As diagnosis is mainly based on clinical pa-
rameters, differential diagnosis from these mimics can be
very challenging early in disease.

Current neuroimaging studies have focused on brain
(UMN) involvement, as spine (LMN) imaging analysis
is more challenging [6]. A limited number of PET and
MR studies which included spine data showed promising
results for improved staging and disease characterisation.
Spinal cord atrophy and diffusion tensor imaging metrics
correlated with disease progression, respiratory dysfunc-
tion and severity; spinal N-acetyl-aspartate/choline and N-
acetyl-aspartate/creatinine measured by spectroscopy cor-
related with functional vital capacity; and spinal glucose
hypermetabolism above the fifth decile resulted in a worse
prognosis [7–11]. To allow clinical use of spinal cord
data, an automated spinal cord segmentation is needed
[7].

Altogether, these results illustrate that a combined ap-
proach using brain and spine metabolism together may pro-
vide novel insights and strengthen the biomarker potential of
[18F]-FDG PET.

The aim of this study was twofold. Firstly, we wanted to
validate an automated image analysis pipeline in line with the
approach of Marini et al. [7]. Secondly, we investigated the
potential of combining brain and spinal cord [18F]-FDG PET
data to improve differential diagnosis between ALS and ALS
mimics in a real-life clinical setting and examined whether
UMN and LMN involvement characterised by cerebellar
and spinal hypermetabolism are interrelated.

Materials and methods

Patient characteristics

Patients with a suspected diagnosis of ALS (n = 98; mean age
± SD, 64.8 ± 11 years; 61 M) were recruited from the tertiary
neuromuscular clinic at the University Hospital Leuven
(Belgium) between November 2016 and May 2018
(Tables 1 and 2). In 62 patients, the diagnosis of ALS was
confirmed (mean age ± SD, 67.8 ± 10 years; 35 M) after lon-
gitudinal follow-up until death or end of September 2019 (av-
erage 18.1 ± 8.4 months). Thirty-six patients were diagnosed
with another disease, including motor neuron disease variants
primary lateral sclerosis (PLS; n = 4; 53.6 ± 2.5 years; 2 M) or
progressive muscular atrophy (PMA; n = 9; 58.4 ± 7.3 years;
7 M), and other disorders mimicking ALS (ALS mimics, n =
23; 60.9 ± 12.9 years; 17 M). Tables 1, 2 and 3 summarise the
demographic and disease characteristics of the different
groups. The month in which initial symptoms of muscle
weakness or dysarthria/dysphagia occurred was used to define
disease onset.

All patients were neurologically and electro-diagnostically
investigated by an experienced specialist in neuromuscular
disorders (PVD) using the revised El Escorial and Awaji-
Shima criteria [11, 12]. The clinical stage was determined
using ALSFRS-R [13] and the metabolic stage was deter-
mined using the corresponding brain FDG scans [14].

This retrospective study was approved by the local
University Hospital Ethics Committee (UZ/KU Leuven); be-
cause of its retrospective nature, the need for written consent
was waived.

PET acquisition and reconstruction

At time of PET imaging, no signs of respiratory distress nor
nutritional abnormalities were apparent in any patient. All
subjects fasted a minimum of 6 h before [18F]-FDG PET ac-
quisition and had a mean glycaemia of 99 ± 16 mg/dL (range
69–156 mg/dL) before [18F]-FDG administration. [18F]-FDG
PETscans were acquired using a Siemens Biograph 16 HiRez
PET-CT camera (Siemens Healthcare, Erlangen, Germany).
151 ± 8 MBq [18F]-FDG was injected intravenously in a dim-
ly lit, quiet roomwith ears and eyes open. Thirty minutes after
the [18F]-FDG injection, a low-dose CT of the brain, cervical
and thoracic spine was acquired, followed by a static PETscan
of 15 min of the brain and a static PET scan of 2 min/bed
position of the cervical and thoracic spines (on average 3
bed positions). A vacuum pillow immobilised the subjects’
head during acquisition to limit motion artefacts. On the
HiRez PET-CTcamera, [18F]-FDG images were reconstructed
using iterative ordered-subset expectation maximisation
(OSEM). PET data were corrected for dead time, scatter, ran-
doms, decay and CT-based attenuation correction. For the
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brain scan, 2 iterations and 24 subsets were used with 2 mm
post-smoothing (full width at half maximum (FWHM) 8, vox-
el size 2.1 × 2.1 × 3.0 mm), while for the scan of the spinal
cord, 5 iterations and 8 subsets were used with 6 mmGaussian
post-smoothing (FWHM 9, voxel size 2.9 × 2.9 × 3.0 mm).
Standardised uptake values (SUV) were calculated by normal-
ising the measured activity to the injected activity and total
body weight.

[18F]-FDG brain PET analysis

Volume of interest (VOI)–based analysis of the FDG brain
PET data was performed with PMOD PNEURO tool (version
3.4; PMOD Inc. Zürich, Germany) using the Hammers
N30R83maximum probability atlas. Individual VOI activities
of the reconstructed individual cortical, brainstem and cere-
bellar VOIs (in total 30 VOIs) were normalised to average
brain activity to obtain relative metabolic activity. Left and
right brain VOIs were merged and analysed together.

Voxel-based analysis was performed using statistical para-
metric mapping (SPM12; Wellcome Trust Centre for
Neuroimaging, London, UK). All scans were spatially nor-
malised to Montreal Neurological Institute space using the
PMOD FUSION tool (version 3.4; PMOD Inc. Zürich,
Switzerland) followed by isotropic Gaussian smoothing with

a FWHM of 8 mm in a 2 × 2 × 2 mm matrix. Data were nor-
malised to the average grey matter activity of each image
using proportional scaling. Voxel-based group comparison
was done using single-way ANOVA using a pheight, uncorr <
0.001 and pcluster, FWE-corr < 0.05. The following comparisons
were made: ALS vs all ALS mimics plus PLS/PMA, ALS vs
mimics without PLS/PMA.

To discriminate between the groups, a support vector ma-
chine (SVM) classifier [15] with linear kernel was trained and
tested using tenfold cross-validation (CV), with the full brain
[18F]-FDG PET data as input. Pre-processing of the data prior
to training the SVM classifier included masking, using a full
brain mask (Hammers atlas N30R83), demeaning (subject-
specific) and unfolding the three-dimensional data as a 1 ×N
vector, where N is the total amount of voxels. The tenfold CV
is applied ten times randomly, and prediction accuracy results
are reported with mean and standard deviation with respect to
these ten randomisations.

Registration, segmentation and quantification
of spinal cord metabolism

The cervical and thoracic spines were first manually delineat-
ed in a transversal plane using the low-dose CT in the PMOD
FUSION tool (version 3.4; PMOD Inc. Zürich, Germany). As

Table 1 Demographics of amyotrophic lateral sclerosis (ALS) patients, ALSmimics, primarymuscular atrophy (PMA) patients and progressive lateral
sclerosis (PLS) patients. Mean ± standard deviation. M male, F female, FVC functional vital capacity

ALS PMA PLS ALS mimics

Age 67.8 ± 9.5 58.4 ± 7.3 53.6 ± 2.5 60.9 ± 12.9

Gender (M/F) 35/27 7/2 2/2 17/6

ALSFRS-R 38.3 ± 6.2 (n = 60) 42.4 ± 3.4 (n = 8) 41.8 ± 2.2 (n = 4) n/a

FVC 88.1 ± 25.1 (n = 57) 106.1 ± 17.7 (n = 8) 101.0 ± 10.2 (n = 3) n/a

Bulbar/spinal 26/38 1/8 1/3 n/a

Frontotemporal dementia 6 0 0 n/a

Metabolic stage 29/6/7/11 n/a n/a n/a

Time between onset and PET (months) 14.2 ± 15.5 10.6 ± 3.5 29.1 ± 12.2 n/a

Table 2 Demographics of ALS, ALS mimics, PMA and PLS patients used for segmentation

ALS PMA PLS ALS mimics

Age 67.8 ± 9.1 55.7 ± 6.7 54.3 ± 2.5 60.8 ± 11.9

Gender (M/F) 25/23 5/1 2/1 14/3

ALSFRS-R 38.5 ± 5.6 (n = 47) 43.0 ± 4.2 (n = 5) 42.0 ± 2.5 (n = 3) n/a

FVC 89.5 ± 25.1 (n = 44) 106.8 ± 22.3 (n = 5) 101.5 ± 12.5 (n = 3) n/a

Bulbar/spinal 17/31 1/5 1/2 n/a

Frontotemporal dementia 4 0 0 n/a

Metabolic stage 23/5/5/6 n/a n/a n/a

Time between onset and PET (months) 14.4 ± 13.8 10.5 ± 2.7 35.7 ± 5.1 n/a
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the spine data was acquired at a later time compared with the
brain images, a time-correction factor to the beginning of the
scan was applied [16].

To overcome the laborious task of manually segmenting
the spinal cord in the future, a deep learning convolutional
neural network (CNN) based on the UNet architecture [17]
was implemented. The network took the 2DCT image slices
as input and assigned a class label (out of two classes, spine
and background) to each voxel, yielding the segmented
spine as output. The CNN was trained using 75% of patient
data (n = 11,400, randomly sampled), whereas 25% of the
data was used for testing (n = 3800). Patients of whom data
were used for training the CNN were excluded from con-
tributing to the test dataset. The 2D images were selected in
the transverse plane and were automatically cropped to an
image dimension of 256 × 256 to balance the spine/
background class information. The CNN architecture is il-
lustrated in Fig. 1. After every convolutional operation, im-
ages were padded such that the spatial output dimension
stays the same as the input; therefore, cropping was not
necessary when feature channels were concatenated.
Between consecutive convolution operations, a dropout of
10% was applied [18]. The CNN model was trained using
the ADAM optimiser for a maximum of 50 epochs compris-
ing early dropout (5 consecutive epochs without improve-
ment), a batch size of 16, binary cross-entropy as loss func-
tion and a learning rate of 0.001. To build and train the CNN
architecture, Keras (version 2.3.1, keras.io) and TensorFlow
(version 1.15.0, www.tensorflow.org) were used. The
accuracy of the predicted spinal cord segmentation was
quantified by the Dice similarity coefficient (DSC) between
the automatic and manual segmentations. DSC measures
the spatial overlap between two segmentations A and B
and is defined as DSC(A, B) = 2(A∩ B)/(A + B), where ∩ is
the intersection and + is the sum of both. The DSC value
ranges from 0, indicating no spatial overlap, to 1, expressing
complete overlap.

In order to calculate and compare the metabolic profile
along the spine across subjects, spinal cord PET-CT data were
spatially aligned with a reference image, which is illustrated in
Fig. 2. The first step comprised the straightening of the spinal
cord (CT image) using the segmented spine; then, this
straightening transformation was applied onto the PET data.
Straightening of the spinal cord was performed using the
Spinal Cord Toolbox (SCT, version 4.0.2, Montreal,
Canada) [19], by solving analytically the straightening equa-
tions for each image voxel to compute the forward and inverse
deformation fields for straightening [20]. Subsequently, the
straightened CT data was non-linearly registered to a reference
image using Advanced Normalisation Tools (ANTs; [21]) by
applying an initial rigid transformation followed by an affine
and non-linear transformation using symmetric image normal-
isation (SyN; [22]) as diffeomorphic image registration.

Once the PET-CT data were straightened and registered to a
common reference space, the mean [18F]-FDG PET uptake (ab-
solute SUVvalues) in the plane perpendicular to the spinal axis is
calculated, followed by one-dimensional spatial smoothening
along the spine with different Gaussian kernels. Subsequently,
these spinal cord metabolic profiles, containing spatial informa-
tion, were used as input for a SVM classifier to differentiate
between the groups. Training and testing were performed using
tenfold CV, applying ten random selections of CV scheme.

To combine spinal and brain metabolic information for differ-
entiation between both groups, two independent SVM classifiers
were trained and tested using a tenfold CV for both the brain and
spine [18F]-FDG PET data. The SVM prediction scores, i.e. the
distances to the dividing hyperplanes, of the test data obtained for
each classifier, were standardised (Z-values) and combined in a
tenfold CVof two-dimensional input data for training and testing
a second classification step using a linear SVM.

General statistics

General statistics were performed in SPSS (version 26.0;
Armonk, USA). Normality was tested using the Shapiro-
Wilk test. Kruskal-Wallis tests were performed to compare
ALS patients with ALS mimics plus or minus the PLS/PMA
group. Additionally, a Spearman correlation coefficient was
calculated between cervical and thoracic spines and the cere-
bellum. Significance was thresholded at p < 0.05.

Results

Metabolic differences in brain between ALS, ALS
mimics and PLS/PMA

VOI-based analysis showed a significantly decreased metabo-
lism (< 5%) in the superior frontal (p = 0.01), midfrontal (p =
0.02) and precentral (p = 0.01) cortex, and significantly

Table 3 Definite diagnosis of amyotrophic lateral sclerosis (ALS)
mimics

Diagnosis ALS mimics n

Paraneoplastic paresis 1

Craniocerebral trauma 1

Neuropathy 9

Radiculopathy 1

Myopathy 3

Cervical stenosis 2

Uncertain 3

Primary progressive multiple sclerosis 1

Functional weakness 1

Benign cramp fasciculation syndrome 1
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increased metabolism (< 5%) in the cerebellum (p = 0.02) in
ALS compared with ALS mimics plus PLS/PMA. Comparing
ALS versus ALS mimics minus PLS/PMA, both the superior
frontal gyrus (p = 0.03) and precentral gyrus (p < 0.05)
remained significant. However, these regions were not signifi-
cant after multiple comparison correction. No significant differ-
ences were observed between ALS mimics and the PLS/PMA
group. Voxel-based analysis showed no significant results be-
tween ALS patients, ALS mimics and the PLS/PMA group. As
brain metabolism was very similar between ALS mimics and
PLS/PMA patients, groups were pooled to increase number of
subjects in the non-ALS group for training purposes.

If a full brain mask (all VOIs of Hammers atlas N30R83,
except for the ventricles) is applied, training the SVM classi-
fier using ten random tenfold CV schemes resulted in a clas-
sifying accuracy of 60.6 ± 2.3% and 59.2 ± 3.7% for ALS
versus ALS mimics with PLS/PMA, respectively. An im-
provement in prediction accuracy of 66.5 ± 4.3% for ALS
and 64.6 ± 5.1% for ALS mimics with PLS/PMAwas found
in case a selective brain mask is used comprising only regions
that showed significant VOI-based metabolic differences
(without multiple comparison correction) between ALS and
ALS mimics, i.e. cerebellum, and superior frontal, midfrontal
and precentral gyri.

Fig. 1 Convolutional neural network based on the UNet architecture and
consists of a contracting path (left side) and expanding path (right side).
The leftmost input yields the 256 × 256 map sampled from the CT image,
and the rightmost output the CNN’s binary spine segmentation prediction.
Boxes represent feature maps, where each map’s dimension is indicated
on its lower left, and the number of channels (feature maps) is indicated
above. Operations are represented by arrows; i.e. a blue arrow indicates a

convolution operation with 3 × 3 kernel followed by a rectified linear unit
(ReLU) activation function [35], a red arrow represents a down-sampling
operation using max-pooling with 2 × 2 pool size, a green arrow consists
of a 2 × 2 up-sampling operation applying inverse-convolution, a grey
arrow means concatenating the feature maps, and an orange arrow repre-
sents a convolution operation with 1 × 1 kernel followed by the sigmoid
activation function

Fig. 2 Registration of spinal cord PET-CT data to a reference image. The
first step consists of straightening the spinal cord CT image by using the
segmented spine, and subsequently applying the straightening transfor-
mation to the PET image. Thereafter, the straightened CT image is non-

linearly registered to a reference image using Advanced Normalisation
Tools (ANTs), and the non-linear registration transformation is applied to
the PET image
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The corresponding discriminate weight vectors repre-
sented in the three-dimensional image space are illustrated
in Fig. 3. Since a positive class label was a priori assigned
to the ALS group and a negative class label to the ALS
mimics with PLS/PMA patients, red regions (positive
values) in the discriminate brain pattern illustrated in
Fig. 3 represent a relative higher glucose metabolic uptake
for ALS with respect to ALS mimics with PLS/PMA,
while blue regions (negative values) correspond to a rel-
ative lower glucose metabolic uptake for ALS compared
with ALS mimics with PLS/PMA.

Automatic segmentation of the spinal cord

After 18 epochs, the early stopping criterium was reached, i.e.
5 consecutive epochs without improvement in loss function.
The average DSC calculated for the test data of the optimal
CNN was equal to 0.82.5.

Metabolic differences in spinal cord between ALS, ALS
mimics and PLS/PMA

No significant differences in spinal cord metabolism were
observed between ALS mimics and PLS/PMA patients.
We observed a significantly higher metabolism of 18%
in the thoracic spinal cord (p < 0.001) and a trend to
higher metabolism of 10% in the cervical spinal cord

(p = 0.07), in ALS compared with ALS mimics. If we
pooled the ALS mimics with the PLS/PMA group, we
obtained similar findings, namely a significant higher me-
tabolism in the thoracic spinal cord (p < 0.001) and in the
cervical spinal cord (p = 0.04). Similarly, spinal cord me-
tabolism was very similar between ALS mimics and PLS/
PMA patients so they were pooled to compare against
ALS patients for training purposes.

The spatial normalisation of the individual spinal cord
data to the spine template could not be done in an auto-
mated way for 24 out of 98 subjects due to a relatively
low CT resolution. Misregistration was obvious by visual
assessment of the results. Therefore, we only included 74
subjects with a good, fully automated normalisation to
template space to create the spinal metabolic profiles.
There were no differences in patient characteristics be-
tween the different subgroups of these 74 subjects versus
those characteristics of all 98 subjects (Tables 1 and 2).
The corresponding mean spinal metabolism and standard
deviation across the ALS and ALS mimics with PLS/
PMA are illustrated in Fig. 4. Using these spinal metabol-
ic profiles as input for the SVM classifier, a prediction
accuracy of 80.6 ± 2.7% and 79.7 ± 4.1% was obtained
for ALS and ALS mimics with PLS/PMA, respectively.
Varying the FWHM of the smoothing kernel along the
spinal axis (range from 0 to 1 cm) did not influence the
accuracy of the classification results.

Fig. 3 Discriminating weight
vectors obtained by training the
support vector machine (SVM)
classifier differentiating between
amyotrophic lateral sclerosis
(ALS) and ALS mimics with
PLS/PMA, for full brain mask
(upper figure) and for a selective
brain mask (lower figure) com-
prising the regions that showed
significant volume of interest
(VOI)–based metabolic differ-
ences, i.e. cerebellum, and supe-
rior frontal, midfrontal and
precentral gyri. The length of the
weight vector is normalised to
one, implying arbitrary units
(a.u.) are used for the colour bar
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Combined analysis of spinal cord and brain
metabolism

We did not observe any significant correlations between cer-
ebellar and spine subsection/whole metabolism.

The combination of standardised (Z-values) SVM predic-
tion scores for both brain and spine data is illustrated in Fig. 5.
Figure 5 also demonstrates PLS/PMA patients have very sim-
ilar brain and spinal metabolism compared with ALS mimics.
Training a classifier (SVM, tenfold CV) in this two-
dimensional space resulted in a prediction accuracy of 82.2
± 1.6% for ALS and 79.7 ± 1.6% for ALS mimics with PLS/
PMA.

Discussion

This is the first study to explore differences in brain and spinal
metabolism between ALS and ALS mimics and investigate
the possibility for differential diagnosis. We observed a re-
markably similar pattern of brain glucose metabolism between
ALS patients, ALS mimics and PLS/PMA patients, demon-
strated by the low prediction accuracy, the very small VOI-
based differences which were not statistically significant after
multiple comparison correction and the lack of cluster-wise
significant differences on a voxel level. This is concordant
with previous studies which investigated brain metabolism
in PLS, PMA and an ALS mimic, namely Kennedy disease
[4, 5, 23]. One possible hypothesis is the brain-muscle
crosstalk: physical activity contributes to cognitive function
and metabolic control [24], and vice versa mental imagination
of strong muscle contractions may reduce muscle-disuse

weakness [25]. In line with this hypothesis, previous studies
demonstrated a relative glucose increase in the frontal,
temporoparietal, occipital, premotor and cerebellar cortex af-
ter physical activity [26, 27] and likewise, Watson et al. ob-
served that lack of exercise reduces neurogenesis [28].
Therefore, we may hypothesise that muscle disuse/loss, pres-
ent in ALSmimics and PLS/PMApatients, causes widespread
brain hypometabolism.

On the other hand, ALS patients have a significantly higher
spinal cord glucose metabolism compared with ALS mimics
with and without PLS/PMA, with a mean discriminative ac-
curacy of 80% including PLS/PMA patients. These findings
are in line with the higher spinal cord metabolism in ALS
patients compared with healthy volunteers as observed by
Marini et al. [7, 29]. Interestingly, although the spinal cord
metabolism is very heterogeneous across subjects (illustrated
by the high standard deviation, see Fig. 4), the average ALS
spinal cord metabolic profile is roughly only shifted upwards
(higher SUV) compared with ALS mimics with an almost
identical spatial gradient along the spine.

Hypermetabolism has been observed both in the spinal
cord and cerebellum in ALS which may suggest a similar
disease progression [4, 5, 7, 29, 30]. In this study, no signifi-
cant correlation was observed between both hypermetabolic
regions, concordant with the clinical findings of Marini et al.
[30]. The current hypothesis about the onset of ALS disease is
that it starts in the motor cortex and spinal cord and from there
migrates to other cortical brain regions. In support of the latter,
Brettschneider et al. reported pathological spine involvement
and motor cortex involvement from an early stage in ALS
[31]. The lack of correlation might reflect an independent
disease progression and therefore may suggest the necessity
of a dual therapeutic strategy. In agreement with this, mean
prediction accuracy increased to 82% by combining both
brain and spinal metabolic information. Therefore, even
though not discriminative on its own, our study demonstrated
that adding brain metabolic information to spinal metabolism
resulted in a slightly higher predictive power to differentiate
between ALS and ALS mimics. We agree that a prediction
accuracy of 82% is lower than the discrimination accuracy of
90% of neurofilaments; nevertheless, it might certainly con-
tribute to approach a prediction accuracy of 100% early in
disease [32].

This study took place in a real-life clinical work-up of
patients with suspected ALS of which 2/3 received a de-
finitive diagnosis of ALS. Early final diagnosis is of crit-
ical importance to enrol patients in therapeutic trials be-
fore widespread irreversible neuronal damage occurs. As
[18F]-FDG PET-CT scans are part of standard clinical
practice in our centre, no additional scans were needed
to perform [18F]-FDG PET-CT scans of the spine. Spinal
metabolism can be investigated using a 6–8-min addition-
al spine scan as part of a routine [18F]-FDG PET-CT brain

Fig. 4 Mean and standard deviation (STD) of the spinal metabolism
across amyotrophic lateral sclerosis (ALS) in red and ALS mimics with
PLS/PMA in blue. Spinal metabolism is quantified by calculating the
mean [18F]-FDG PETactivity (standard uptake value (SUV)) in the plane
perpendicular to the spine, after straightening and registration of the PET-
CT data
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scan protocol. Van der Burgh et al. demonstrated atrophy
of the spine is present in all groups of the motor neuron
disease spectrum, including PLS/PMA patients [33].
Thus, although cervical atrophy is a common feature of
all groups in the motor neuron disease spectrum, our
study confirms that a discriminant metabolic pattern is
present. Future studies are necessary to confirm this find-
ing as we could only include 4 PMA and 9 PLS patients
in our cohort.

Software, such as the SCT [19], is freely available to segment,
register and analyse spinal cord data based on anatomical MR
imaging; however, no standard approach is available to quantify
the spinal cord based on CT data. Recently, Marini et al. pro-
posed an automated approach based on the Hough transform
which is able to adequately delineate the spinal cord [7]. As an
alternative, we proposed a deep learning approach which took
advantage of the extensive set of available manual segmentations
for training and testing and does not require any pre-processing
in terms of denoising or edge detection except for automatic
cropping. For this purpose, we have implemented a
convolutional neural network based on the UNet architecture to
automatically segment the spinal cord using the CT imaging data
as input. The high DSC of 0.84 based on an independent test
dataset proved that our trained CNN can be applied successfully
to new unseen data for very fast automatic spinal cord segmen-
tation without the need of manual delineations, which are very
time-consuming. These small differences in spine segmentation
between prediction and manual segmentation (ground truth) did
not result in differences in quantification of spinal cord, since
averaging and smoothing operations were performed on the
[18F]-FDG PET activity within the segmented spine.

Limitations

Some limitations have to be mentioned. Firstly, no control
group was available to compare our results for brain and spine
data. However, our results are in line with previous findings
describing spinal hypermetabolism in ALS compared with
healthy volunteers [7, 29]. Secondly, we acknowledge that
the average follow-up was only 1.5 year and that PLS/PMA
patients may still convert to ALS until 10 years after symptom
onset. Nevertheless, PLS/PMA patients represented only 13
subjects of the ALS mimics with PLS/PMA group. Therefore,
it is unlikely this will alter our findings. Finally, spinal tem-
plate normalisation was only feasible in 74 out of 98 subjects
due to a relatively low CT resolution and signal to noise ratio
for the low-intensity whole body CT (30 mAs). Optimising
the integrated current for the CT may overcome this problem.

Conclusion

The combination of brain and spine FDG PET-CT yielded an
accuracy of 82% as discriminative biomarker between ALS and
ALS mimics in a real-life clinical setting. Moreover, we have im-
plemented a convolutional neural network based on the UNet ar-
chitecture to automatically segment the spinal cord using the CT
imaging data as input, facilitating future spinal cordPET-CTstudies.
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nal metabolic data
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