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Abstract
Purpose Lymphovascular invasion (LVI) impairs surgical outcomes in lung adenocarcinoma (LAC) patients. Preoperative
prediction of LVI is challenging by using traditional clinical and imaging parameters. The purpose of this study was to investigate
the value of the radiomics nomogram integrating clinical factors, CT features, and maximum standardized uptake value
(SUVmax) to predict LVI and outcome in LAC and to evaluate the additional value of the SUVmax to the PET/CT-based
radiomics nomogram.
Methods A total of 272 LAC patients (87 LVI-present LACs and 185 LVI-absent LACs) with PET/CT scans were retrospec-
tively enrolled, and 160 patients with SUVmax ≥ 2.5 of themwere used for PET radiomics analysis. Clinical data and CT features
were analyzed to select independent LVI predictors. The performance of the independent LVI predictors and SUVmax was
evaluated. Two-dimensional (2D) and three-dimensional (3D) CT radiomics signatures (RSs) and PET-RSwere constructed with
the least absolute shrinkage and selection operator algorithm and radiomics scores (Rad-scores) were calculated. The radiomics
nomograms, incorporating Rad-score and independent clinical and CT factors, with SUVmax (RNWS) or without SUVmax
(RNWOS) were built. The performance of the models was assessed with respect to calibration, discrimination, and clinical
usefulness. All the clinical, PET/CT, pathologic, therapeutic, and radiomics parameters were assessed to identify independent
predictors of progression-free survival (PFS).
Results CT morphology was the independent LVI predictor. SUVmax provided better discrimination capability compared with
CT morphology in the training set (P < 0.001) and test set (P = 0.042). A total of 1409 CT and PET radiomics features were
extracted and reduced to 8, 8, and 10 features to build the 2D CT-RS, 3D CT-RS, and the PET-RS, respectively. There was no
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significant difference in AUC between the 2D-RS and 3D-RS (P > 0.05), and 2D CT-RS showed a relatively higher AUC than
3D CT-RS. The CT-RS, the CT-RNWOS, and the CT-RNWS showed good discrimination in the training set (AUC [area under
the curve], 0.799, 0.796, and 0.851, respectively) and the test set (AUC, 0.818, 0.822, and 0.838, respectively). There was
significant difference in AUC between the CT-RNWS and CT-RNWOS (P = 0.044) in the training set. Decision curve analysis
(DCA) demonstrated the CT-RNWS outperformed the CT-RS and the CT-RNWOS in terms of clinical usefulness. Furthermore,
DCA showed the PETCT-RNWS provided the highest net benefit compared with the PET-RNWS and CT-RNWS. PFS was
significantly different between the pathologic and RNWS-predicted LVI-present and LVI-absent patients (P < 0.001).
Carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), pathologic LVI, histo-
logic subtype, and SUVmax were independent predictors of PFS in the 244 CT-RNWS-predicted cohort; and CA125, NSE,
pathologic LVI, and SUVmax were the independent predictors of PFS in the 141 PETCT-RNWS-predicted cohort.
Conclusions The radiomics nomogram, incorporating Rad-score, clinical and PET/CT parameters, shows favorable predictive
efficacy for LVI status in LAC. Pathologic LVI and SUVmax are associated with LAC prognosis.

Keywords Lung adenocarcinoma . Lymphovascular invasion . Outcome . PET/CT . Radiomics

Introduction

Lung cancer is one of the leading causes of cancer-related mor-
tality worldwide [1–3]. Non-small cell lung cancer (NSCLC)
accounts for approximately 80% of lung cancers, while lung
adenocarcinoma (LAC) is the major histological subtype of
NSCLC [3, 4]. Surgical resection is considered the standard
treatment for localized NSCLC. However, the survival rate re-
mains unsatisfactory due to tumor recurrence after surgery. Even
for stage I or II NSCLC, the 5-year survival was between 30 and
60%, and at least 30% stage I NSCLC patients experience tumor
recurrence after complete resection [2]. Identification of prognos-
tic biomarkers is therefore essential to stratify patientswith higher
risks for clinical decision of adjuvant therapy [3, 5].

Lymphovascular invasion (LVI), defined as the infiltration
of neoplastic cells within arterial, venous, or lymphatic lu-
mens, has been proven to induce the first step of local recur-
rence and distant diffusion of the tumor. LVI has been recog-
nized as an unfavorable prognostic factor in NSCLC patients
[1–12]. Some scholars suggested cataloging LVI status into
the forthcoming tumor-node-metastasis staging of lung cancer
[1, 3, 5, 13]. Preoperative prediction of LVI is still challenging
because LVI is a histologic status that can only be postopera-
tively diagnosed with a surgical specimen.

CT, F-18 fluorodeoxyglucose (FDG) positron emission to-
mography (PET)/CT and MRI have become important tools
for tumor detection, diagnosis, staging, clinical decision-mak-
ing, follow-up, and prediction of prognosis in patients with
lung cancer. However, few imaging parameters have been
used in predicting LVI of lung cancer. Noda et al. [14] showed
that the maximum standardized uptake value (SUVmax) of
LAC was a potential imaging biomarker for predicting tumor
LVI. Tsuchiya et al. [15] found that ADC histogram analyses
on the basis of the entire tumor volume were able to stratify
LVI in NSCLC. However, these imaging parameters for pre-
diction of LVI in lung cancer have not been widely recognized
and still need further validation.

Recently, radiomics, which extracts and analyzes quantita-
tive features from images, has been proven to be a favorable
biomarker to identify additional characteristics of the tumor
heterogeneity and microenvironment that is invisible to hu-
man eyes [16–19]. Radiomics has had success in detection
of tumor [20, 21], prediction of histology and mutations
[22–25], prediction of prognosis [26–29], and assessment of
treatment effect [30] of lung cancer. However, there was no
previous study focused on the value of metabolic parameters
and PET/CT-based radiomics in preoperative prediction of
LVI in LAC.

The purpose of this study was to investigate whether the
radiomics nomograms integrating clinical factors, CT fea-
tures, and metabolic parameters could be used to predict
LVI and outcome of patients with LAC. In addition, the in-
cremental value of the SUVmax to the PET/CT-based
radiomics nomogram was evaluated.

Methods

Patients

Ethical approval was obtained for this retrospective study, and
the need of written informed consent was waived.

We searched the medical records of two hospitals (The
Affiliated Hospital of Qingdao University and the Qingdao
Central Hospital) to derive the surgically confirmed LAC
from October 2011 to January 2018. A total of 272 LACs
(113 males and 159 females; median age, 62 years; age range,
27–83 years) were enrolled according to the following inclu-
sion criteria: (1) patients with a pathologically confirmed LAC
with a definite LVI status on surgically resected specimens;
LVI was identified as the presence of neoplastic cells within
arterial, venous, or lymphatic channels during routine histo-
logic evaluation with hematoxylin and eosin (H&E) stains,
D2-40, and CD31 stains; (2) patients underwent PET/CT scan
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less than 15 days before surgery; (3) PET/CT images were
satisfactory for analysis; (4) patients with complete clinical
data; (5) the maximum diameter of tumor > 10 mm. The ex-
clusion criteria were as follows: (1) patients received anti-
tumor therapy before surgery; (2) patients suffering from other
pulmonary diseases that might affect image analysis; (3) pa-
tients with other malignancies; (4) cystic lung cancer.
According to the TRIPOD statement [31], 140 patients from
The Affiliated Hospital of Qingdao University constituted the
training set, whereas 132 patients from the Qingdao Central
Hospital constituted the test set.

Clinical information were obtained by searching medical
records, including age, gender, smoking history, and serum
levels of four tumor markers which were routinely measured
within 2 weeks before surgery: carcinoembryonic antigen
(CEA), carbohydrate antigen 125 (CA125), neuron-specific
enolase (NSE), and cytokeratin 19 fragments (CYFRA21-1).

A pathologist (J. W) with 8 years’ experience in lung dis-
eases interpreted the pathology including LVI status, the stage,
and the histologic subtype. The NSCLC pathologic TNM stag-
ing was performed based on the guidelines from the American
Joint Committee on Cancer (AJCC) “Cancer Staging Manual,
eighth edition”. In “2015 WHO Classification of Lung
Tumour,” the histologic subtypes of LACs are identified ac-
cording to the morphological patterns of the tumors. The
LACs with the lepidic, acinar, or papillary growth patterns are
regarded as low-risk subtypes, while the tumors displaying
micropapillary (> 5% increments), solid (> 5% increments), in-
vasive mucinous, colloid, fetal, enteric, minimally invasive, or
preinvasive growth patterns are more invasive and are consid-
ered to be high-risk subtypes. The epidermal growth factor
receptor (EGFR) gene status, the surgical approach, and the
treatment after surgery were also recorded.

PET/CT image acquisition

Patients were instructed to fast for 6 h prior to F-18 FDG-PET/
CT acquisition. Blood glucose levels measured before scanning
were lower than 11.0 mmol/l in all patients. All patients
underwent PET/CT scanning using a Discovery VCT 64
PET/CT system (GE Healthcare, Milwaukee, USA). A 3.7–
5.5 MBq/kg dose of FDG was administered intravenously,
and 60 min later, whole-body CT, covering the vertex to the
pelvis, was acquired using the following parameters: detector
coverage, 40 mm; coverage speed, 29.46 mm/s; gantry rotation
time, 0.7 s; tube voltage, 120 kVp; tube current, 110 mA; pitch,
0.516:1; field of view, 70 cm; matrix, 512 × 512; and slice
thickness, 3.75 mm. After CT scan, the emission scan was
followed by a 1.5–2 min transmission scan per bed position.
Images of seven to nine bed positions (70 cm of axial field of
view) were acquired. PET images were reconstructed using a 3-
dimensional (3D) ordered subset expectation maximization al-
gorithm with 20 subsets and 2 iterations). Patients held their

breath for scanning in the supine position. Axial thin-slice chest
images were reconstructed with a slice thickness of 1.25 mm
and interval of 1.25 mm with a lung algorithm.

PET/CT features analysis

The PET/CT images were analyzed by two radiologists (read-
er 1, P.N and reader 2, G. Y with 5 and 8 years’ experience in
the interpretation of PET/CT images, respectively). Blinded to
the clinical and pathologic information, the two readers ana-
lyzed the following CT features by consensus: the maximum
diameter of the tumor on the axial thin-slice CT image; pe-
ripheral location (yes or no, “peripheral location” was defined
as subsegmental location of the tumor); lobulation (present or
not, “lobulation” was defined as irregular undulation of the
nodule margin), spiculation (present or not, “spiculation” was
regarded as the presence of 2 mm or thicker strands extending
from the nodule margin into the lung parenchyma without
reaching the pleural surface), bubble lucency (present or not,
“bubble lucency”was defined as small spots of round or ovoid
air attenuation within a nodule), air bronchogram (present or
not, “air bronchogram” was defined as an air-filled bronchi
within a nodule), vessel convergence (present or not, “vessel
convergence” was defined as multiple blood vessels gathered
toward a nodule), pleural indentation (present or not, “pleural
indentation” was referred to a linear or triangular strand orig-
inating from the nodule surface and reaching the pleural sur-
face), and CT morphology of the nodule (the CT morphology
of the nodule was classified into pure ground-glass nodule
[pGGN], mixed ground-glass nodule [mGGN], and solid nod-
ule [sN]. A pGGN was defined as pure ground-glass opacity
on lung window images [level, − 600 HU; width, 1500 HU]
that had no soft-tissue attenuation within the lesion on medi-
astinal window images [level, 40 HU; width, 400 HU]. A
mGGN was defined as a nodule with the mixture of ground-
glass opacity and soft-tissue attenuation. A sN was defined as
a nodule with pure soft-tissue attenuation). In addition, the
SUVmax was measured by drawing a region-of-interest
(ROI) encompassing the entire lesion on the axial PET image.

Analysis of the clinical information, CT features,
and SUVmax

Univariate analysis was used to compare the differences of the
clinical information and CT features between LVI-present and
LVI-absent groups, and a multiple logistic regression analysis
was used to identify the independent predictors significantly
associated with LVI. Odds ratios (OR) as estimates of relative
risk with 95% confidence intervals (CI) were obtained for
each predictor. The diagnostic performance of the indepen-
dent predictors and the SUVmax for predicting LVI was
assessed by using the receiver operator characteristic (ROC)
curve (AUC) and Delong test.
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Tumor segmentation and radiomics feature
extraction

Two-dimensional (2D) ROIs were manually segmented in the
largest cross-sectional area using an ITK-SNAP software
(Version 3.8.0, www.itksnap.org). Contouring was drawn

slightly within the borders of the tumor on 1.25 mm thickness
CT images, but avoiding covering the adjacent blood vessels,
bronchus, chest wall, or mediastinum structures.

Three-dimensional (3D) semi-automatic segmentation of
the tumor was performed using a Grow-from-Seeds tool for
CT images, and a PET-Tumor-Segmentation tool for PET
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Fig. 1 Construction of radiomics signatures (RSs). a, b CT ROI
segmentation. c, d PET ROI segmentation. e, f, g Two-dimensional
(2D) CT, three-dimensional (3D) CT, and PET features selection using
the least absolute shrinkage and selection operator (LASSO)

regularization. h, i, j The selected 8 2D CT features, 8 3D CT features,
10 PET features and their coefficients. k, l, m The 2D CT radiomics
scores (Rad-scores), 3D CT Rad-scores, and PET Rad-scores for each
patient in the training and test sets
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images implemented in the 3D-Slicer software (Version
4.11.0, www.slicer.org). Observers labeled foreground and
background pixels in each view, and the algorithm
automatically generates the ROI by using these pixel sets.
Then a manual editing of the generated contours was
performed to remove the adjacent blood vessels, bronchus,
chest wall, or mediastinum from the ROI. CT and PET ROI
segmentations are presented in Fig. 1a–d.

Features were extracted by using a Radcloud platform
(Huiying Medical Technology Co., Ltd., http://radcloud.cn)
[32, 33]. A total of 1409 radiomics features were extracted
from the ROIs. The quantization method of the radiomics
calculation was “fixed bin width” with the bin width of 25.
The instructions of the radiomics features are shown in
Supplementary Methods. The radiomics features are divided
into four groups: (1) intensity statistics features, which con-
sists of 19 features that quantitatively delineate the distribution
of voxel intensities within the ROI through commonly used
and basic metrics; (2) shape features, including 2D and 3D
features, are used to reflect the shape and size of the ROI; (3)
texture features, composed of 59 features calculated by gray
level co-occurrence matrix (GLCM), gray level run length
matrix (GLRLM), and gray level size zone matrix (GLSZM)
, quantify the heterogeneity differences of ROI; and (4) filter
and wavelet features, which include the intensity and texture
features derived from filter transformation and wavelet trans-
formation of the original image, obtained by applying filters
such exponential, logarithm, square, square root, and wavelet
using eight frequency band combinations (low-high-low
[LHL], low-high-high [LHH], high-low-low [HLL], low-
low-high [LLH], high-low-high [HLH], high-high-high
[HHH], high-high-low [HHL], and low-low-low [LLL]).

Inter- and intra-class correlation coefficients (ICCs) were
calculated for evaluation of the inter-reader reliability and
intra-reader reproducibility of feature extraction. Reader 1 and
reader 2 drew the ROIs of 40 cases (20 LVI-present LACs and
20 LVI-absent LACs) of CT images and PET images randomly
selected from the whole cohort. Reader 1 repeated the segmen-
tations 2 weeks later. An ICC greater than 0.75 indicated good
agreement of feature extraction. The ROI segmentation for the
remaining cases was performed by reader 1.

Construction of the radiomics signatures

In order to prevent overfitting of the signature, dimension re-
duction of the features was conducted before signature con-
struction following three steps. First, to avoid subjective differ-
ences in segmenting the ROIs, the radiomics features with both
inter- and intra-reader ICCs > 0.75 were retained. Second, the
significantly different features between LVI-present and LVI-
absent were chosen by using one-way analysis of variance
(ANOVA). Finally, the least absolute shrinkage and selection
operator algorithm (LASSO) was performed to select the

optimal radiomics features. The radiomics signature (RS) was
developed by combining the selected features, and a radiomics
score (Rad-score) was calculated for each patient.

Construction of radiomics nomograms
and performance assessment of different models

The radiomics nomogram without SUVmax (RNWOS) was
developed by incorporating the independent LVI predictors as
well as the Rad-score. The radiomics nomogram with
SUVmax (RNWS) was developed by combining the indepen-
dent LVI predictors, the Rad-score, and the SUVmax.

The Hosmer-Lemeshow test was used to evaluate the
goodness-of-fit of the nomograms. The diagnostic perfor-
mance of the RS, the RNWOS, and the RNWS for prediction
of LVI in LAC was assessed with respect to AUC, sensitivity,
specificity, and accuracy in the training and test sets. The
internal validation of the models was assessed by using a
bootstrap sampling method. The AUC between each two of
the three models was evaluated by using the Delong test. To
estimate the clinical utility of the nomograms, a decision curve
analysis (DCA) was performed by calculating the net benefits
for a range of threshold probabilities in the whole cohort.

Follow-up and survival analysis

Patients were postoperatively followed up with CT every 6–
12 months for the first 2 years and then annually. The end
point of this study was progression-free survival (PFS), which
was defined as the interval between surgery and radiographic
detection of progression (relapse), last negative follow-up, or
death without evidence of progression. Patients were censored
in case of emigration, or on July 31, 2019, whichever came
first.

Survival curves were plotted according to the Kaplan-
Meier method and compared using the log-rank test. All the
prognosis-associated factors (including basic information, se-
rum tumor markers, pathologic LVI status, stage, histologic
subtype, surgical approach, treatment after surgery, and
EGFR gene status), CT features, SUVmax, and RNWS-
predicted LVI status were assessed by univariate analysis
based on the Kaplan-Meier method. Variables which had sta-
tistical significance in the univariate analysis were considered
for the multivariate Cox forward stepwise regression model to
identify independent predictors of progression.

Statistics

Univariate analysis (including chi-square test or Mann-
Whitney U test, where appropriate) and one-way ANOVA
were performed by using SPSS software (Version 25.0,
IBM). ICC, LASSO regression analysis, ROC analysis, cali-
bration plots, Hosmer-Lemeshow test, Delong test, DCA, and
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survival analysis were performed with R statistical software
(Version 3.3.3, https://www.r-project.org). A two-sided P < 0.
05 was considered statistically significant.

Results

Clinical information and PET/CT features
of the patients

The clinical factors, CT features, and SUVmax of the patients
in the training and test sets are shown in Table 1. Mixed
ground-glass nodule (P = 0.017) was proven as independent
LVI predictors using the multiple logistic regression analysis
(Supplementary Table S1). Tumors with mixed ground-glass
morphology (OR, 0.266; 95% CI 0.090–0.790) were likely to
be LVI-absent LACs. The AUCs of CT morphology and
SUVmax in prediction of LVI were 0.635 and 0.818, respec-
tively, in the training set; and 0.727 and 0.800, respectively, in
the test set. SUVmax provided better discrimination capability
compared with CT morphology in the training set (P < 0.001)
and test set (P = 0.042).

Construction of the 2D and 3D CT-RSs and PET-RS

Of the 1409 radiomics features extracted from 2D/3D ROIs of
CT images and 3D ROIs of PET images, 1274 2D CT fea-
tures, 971 3D CT features, and 1297 PET features had a good
inter- and intra-observer agreement, with ICCs > 0.75. A total
of 641 2D CT features, 477 3D CT features, and 32 PET
features showing significant differences between LVI-
present and LVI-absent patients (P = 0.000–0.050) were en-
rolled into the LASSO regressionmodel (Fig. 1e–g), and 8 2D
features, 8 3D CT features, and 10 PET features were finally
selected (Fig. 1h–j). The formulas of the three Rad-scores are
shown in Supplementary Results.

Low tumor SUVmax brings a great challenge for the PET
radiomics analysis as tumor ROIs on PET images are difficult
to delineate. Therefore, we enrolled 160 cases (82 cases in the
training set; 78 cases in the test set) with SUVmax ≥ 2.5 to
perform PET radiomics analysis.

The Rad-scores showed statistically significant difference be-
tween LVI-present and LVI-absent groups in the training and test
sets (P < 0.001). The three RSs are shown in Fig. 1k–m.

The AUCs of 2D CT-RS and 3D CT-RS were 0.799 (95%
CI 0.723–0.862) and 0.765 (95%CI 0.686–0.832), respective-
ly, in the training set; and 0.818 (95% CI 0.741–0.880) and
0.772 (95% CI 0.691–0.840), respectively, in the test set.
There was no significant difference in AUC between the two
RSs (P = 0.301 and 0.102, in the training and test sets). 2D
CT-RS showed a relatively higher AUC than 3D CT-RS did
in both the training and test sets; therefore, 2D CT-RS was
selected for further construction of nomogram. Ta
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Construction of the RNWOS and the RNWS
and performance of different models

The CT morphology and 2D RS were incorporated into the
CT-RNWOS construction. The CT-RNWS was constructed
by integrating the CT morphology, 2D RS and SUVmax. The
Hosmer-Lemeshow tests showed good calibration of the CT-
RNWOS (P = 0.800) and of the CT-RNWS (P = 0.733). The
diagnostic performance of the three CT models is presented in
Table 2. There were no significant differences in AUC be-
tween each two of the following models (the CT-RS vs the
CT-RNWOS, P = 0.448 and 0.102; the CT-RS vs the CT-
RNWS, P = 0.055 and 0.096, respectively, in the training set
and the test set). There was significant difference in AUC
between the CT-RNWS and CT-RNWOS (P = 0.044) in the
training set; and there was no significant difference in AUC
between the two models (P = 0.182) in the test set. The CT-
RNWOS and CT-RNWS are shown in Fig. 2a, b.

The DCA (Fig. 2c) showed that the CT-RNWS had the
highest overall net benefit than the CT-RNWOS and the CT-
RS in predicting LVI across the majority of the range of rea-
sonable threshold probabilities.

Combing CT morphology and PET-RS, with or without
SUVmax, the PET-RNWS and the PET-RNWOS were con-
structed. The diagnostic performance of these models is
shown in Table 3. PETCT-RNWSwas developed by combing
PET-RS, CT-RS, CT morphology, and SUVmax. The PET-
RNWS and PETCT-RNWS are shown in Fig. 3a, b. There
were no significant differences in AUC between each two of
the following models (the PET-RS vs the PET-RNWOS, P =
0.670 and 0.292; the PET-RS vs the PET-RNWS, P = 0.764
and 0.387; the PET-RNWS vs the PET-RNWOS, P = 0.580
and 0.544; the PET-RS vs the CT-RS, P = 0.942 and 0.528;
the PET-RNWOS vs the CT-RNWOS, P = 0.960 and 0.383;
the PET-RNWS vs the CT-RNWS, P = 0.578 and 0.965; the
PETCT-RNWS vs the PET-RNWS, P = 0.060 and 0.754; the
PETCT-RNWS vs the CT-RNWS, P = 0.204 and 0.620, re-
spectively, in the training set and the test set).

The DCA (Fig. 3c) showed that the three RNWSs (includ-
ing PETCT-RNWS, PET-RNWS, and CT-RNWS) had

higher overall net benefit than SUVmax and non-radiomics
model (incorporated with SUVmax and CT morphology) in
predict ing LVI. Furthermore, the PETCT-RNWS
outperformed the PET-RNWS and CT-RNWS in clinical
usefulness.

Survival prediction

The pathologic and therapeutic factors associated with prog-
nosis are shown in Table 4. As of July 31, 2019, 244 of 272
patients and 141 of 160 patients had completed the PFS fol-
low-up, respectively, in the CT-RNWS-predicted cohort and
the PETCT-RNWS-predicted cohort. The overall progression
rate was 20.49% (50/244). The median PFS of the patients
was 23 months (range, 1–86 months), particularly 19 months
(range, 1–63 months) for the pathologic LVI-present patients
and 24 months (range, 2–86 months) for the pathologic LVI-
absent patients (log-rank test, P < 0.001).

In the 244 CT-RNWS-predicted cohort, the median PFS
was 23 months (range, 1–86 months) for the CT-RNWS-
predicted LVI-present patients, and the median PFS was
23 months (range, 1–81 months) for the CT-RNWS-
predicted LVI-absent patients (log-rank test, P < 0.001).
Survival curves according to pathologic and CT-RNWS-
predicted LVI status are shown in Fig. 4a, b. In the 141
PETCT-RNWS-predicted cohort, the median PFS was
24 months (range, 2–86 months) for the PETCT-RNWS-
predicted LVI-present patients, and the median PFS was
20.5 months (range, 1–68 months) for the PETCT-RNWS-
predicted LVI-absent patients (log-rank test, P < 0.001).
Survival curves according to pathologic and PETCT-
RNWS-predicted LVI status are shown in Fig. 5a, b.

The predictors of PFS by means of univariate analysis are
shown in Supplementary Table S2. In the 244 CT-RNWS-
predicted cohort, the multivariate Cox regression analysis
(Fig. 4c) showed that CA125, CEA, NSE, pathologic LVI,
histologic subtype, and SUVmax were independent predictors
of PFS. In the 141 PETCT-RNWS-predicted cohort, CA125,
NSE, pathologic LVI, and SUVmax were found to be inde-
pendent predictors of PFS (Fig. 5c).
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Fig. 2 The CT radiomics nomogram without SUVmax (RNWOS, a) and CT radiomics nomogram with SUVmax (RNWS, b). Decision curve analysis
(c) for CT radiomics signature (RS), CT-RNWOS, and CT-RNWS
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Discussion

The purpose of the present study was to investigate the value
of a computer-assisted method derived from massive clinical
and PET/CT data to preoperatively predict histologic LVI and
clinical outcome in LAC patients. We found that the
radiomics nomogram integrating Rad-score, SUVmax, clini-
cal factors, and CT features had favorable predictive value for
LVI in LAC. The RNWS achieved relatively higher AUCs
than the RNWOS did, indicating the additional value of met-
abolic parameters to the RNWOS in the prediction of LVI. In
addition, the pathologic LVI status and SUVmax were inde-
pendently associated with PFS, indicating SUVmax can be
used as a potential biomarker to assist clinical decision-
making in LAC patients.

LVI has been shown to induce the first step of tumor re-
currence or diffusion, and is proven to independently affect
prognosis in patients with lung cancer. From a clinical point of
view, it is crucial to preoperatively predict LVI in LAC pa-
tients in order to select the proper treatment strategy. Contrary
to macrolymphovascular invasion, which can be identified
with imaging, LVI is a histologic status that can only be

diagnosed with specimens after surgery, leading the preoper-
ative prediction a great challenge with traditional clinical ex-
aminations and imaging techniques. In the present study, the
traditional clinical factors (including age, gender, smoking
history, and four serum tumor markers) and nine CT features
(the maximum diameter, peripheral location, lobulation, spic-
ulation, bubble lucency, air bronchogram, vessel conver-
gence, pleural indentation, and CT morphology) were ana-
lyzed and only CT morphology was found as significantly
independent variable for prediction of LVI. The CT morphol-
ogy, as an independent LVI predictor, achieved a relatively
lower AUC of 0.635 and 0.727, respectively, in the training
set and test set, indicating the factor derived from traditional
clinical data and CT features made a limited contribution to
LVI prediction in LAC patients.

F-18 FDG PET/CT is a widely used imaging modality for
characterization and staging of lung cancers. Metabolic pa-
rameters have been proven as potential imaging biomarkers
for predicting tumor LVI [14, 34]. Hyun SH et al. [34] ana-
lyzed PET/CT images and clinical factors of 158 patients with
hepatocellular carcinoma (HCC), and found the tumor-to-
normal-liver standardized uptake value ratio (TLR) of the
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Fig. 3 The PET radiomics nomogram with SUVmax (RNWS, a). PETCT-RNWS (b). Decision curve analysis (c) for SUVmax, non-radiomics model,
CT-RNWS, PET-RNWS, and PETCT-RNWS

Table 4 The pathologic and therapeutic factors

Factors Pathology LVI+ (n = 87) Pathology LVI− (n = 185)

Stage

I 25 134

II 20 18

III 37 26

IV 5 7

Histological subtype (Low risk/High risk) 18/69 121/64

EGFR mutation (±ND) 29/25/33 88/48/49

Surgical approach (Lobectomy/Sublobectomy) 80/7 169/16

Treatment after surgery

Chemotherapy 31 32

Targeted therapy 4 16

Chemotherapy and targeted therapy 11 8

No treatment 41 129

LVI, (lymphovascular invasion); EGFR, (epidermal growth factor receptor); ND, (not detected)
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tumor, serum alpha-fetoprotein (AFP) level, and tumor size
were significantly associated with the presence of microvas-
cular invasion (MVI). A combined model integrating the three
independent predictors achieved an AUC of 0.756 for predic-
tion of MVI in HCC patients. Partly in agreement with previ-
ous findings of Noda et al. [14] and Hyun SH et al. [34], we
found that SUVmax could be used as a favorable LVI predic-
tor, achieving a relatively higher AUC (0.818 and 0.800, re-
spectively, in the training set and the test set) than the inde-
pendent predictor derived from traditional clinical and CT
factors in predicting LVI in LAC patients.

Recently, radiomics has been proven to be an effective
imaging modality to identify histological and biological char-
acteristics of tumors beyond visual assessment on CT, PET/
CT, and MRI images. Previous studies have shown that
radiomics had favorable diagnostic efficacy in preoperative
prediction of MVI or LVI in various malignancies. Xu et al.
[35] developed a CT radiomics model integrating large-scale
clinical factors and imaging findings to predict MVI in 495
HCC patients, achieving an AUC of 0.889 in the test set. Liu
et al. [36] showed that the MRI-based radiomics signature in

combination with MRI axillary lymph node status was effec-
tive in predicting LVI status of patients with invasive breast
cancer before surgery with an AUC of 0.763. Liu et al. [37]
found that CT texture parameters, including standard devia-
tion, minimum attenuation, and entropy, held great potential
in predicting MVI status of gastric cancers.

To the best of our knowledge, the present study is the first
one focused on metabolic parameters and PET/CT-based
radiomics in LVI prediction of lung cancer. Radiomics feature
extraction is a key procedure in the radiomics studies. There is
a trade-off while selecting 2D or 3D ROIs. In theory, whole
tumor analysis may appear more indicative of tumor hetero-
geneity than the largest cross-sectional area. However, wheth-
er 3D features are definitely superior to 2D features in the
practical application has not been verified. In this study, 8
2D features and 8 3D CT features were finally selected for
RS development. However, the promising 2D and 3D CT
features were fundamentally different. The possible reasons
are as follows. First, LASSO regression model was used for
dimension reduction and development of RS. Instead of a
single feature, a cluster of features with the optimal distinction

0

20

40

60

80

100

0 20 40 60 80 100
Time (months)Number at risk

Group: Pathologic LVI-
173 101 29 14 2 0

Group: Pathologic LVI+
71 34 8 2 0 0

Pathologic LVI-
Pathologic LVI+

0

20

40

60

80

100

0 20 40 60 80 100
Time (months)Number at risk

Group: CT-RNWS-predicted LVI-
187 106 32 14 1 0

Group: CT-RNWS-predicted LVI+
57 29 5 2 1 0

CT-RNWS-predicted LVI-
CT-RNWS-predicted LVI+

PFS

Overall

CA125 > 12.95 U/ml

CEA > 1.81 ng/ml

NSE > 13.71 U/ml

Pathologic LVI +

High−risk histologic subtype

SUVmax > 5

No.of patients

244

79

171

80

71

118

88

HR(95%CI)

2.356(1.152,4.819)

4.734(1.099,20.381)

2.394(1.143,5.013)

2.398(1.168,4.923)

2.526(1.012,6.303)

3.032(1.189,7.730)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
The estimates

a b

c

Fig. 4 Progression-free survival (PFS) curves according to pathologic
LVI status (a) and CT-RNWS-predicted LVI status (b) in the 244 CT-
RNWS-predicted cohort. c Forest plot of independent predictors of PFS
with a multivariate Cox regressionmodel. LVI, lymphovascular invasion;

RNWS, radiomics nomogram with SUVmax; HR, hazard ratio; CI, con-
fidence interval; CA125, carbohydrate antigen 125; CEA,
carcinoembryonic antigen; NSE, neuron-specific enolase
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efficiency were finally selected to build the RS by using
LASSO regularization. Second, the same 2D and 3D features
may have different quantitative methods, for example, differ-
ent directions, pixel distance, or aggregation methods. Thus,
they may reflect different tumor heterogeneity. We compared
the performance of 2D and 3D CT radiomics and found there
was no significant difference in AUC between the 2D and 3D
radiomics models. As 2D CT-RS showed a relatively higher
AUC than 3D CT-RS did and was easy to achieve, it is rec-
ommended to choose 2D features in clinical practice. Our
results were consistent with Shen et al. [38] who found that
2D features performed slightly better than 3D features in pre-
diction of prognosis in NSCLC. The combined radiomics no-
mograms, incorporating Rad-score and independent clinical
and CT factors, with or without SUVmax were built, achieved
favorable efficacy in predicting LVI. We also evaluated the
performance of PET radiomics and found that there were no
significant differences in AUC between PET and CT
radiomics models, indicating that the PET- and CT-based
radiomics shared almost the same value in prediction of LVI
in LACs. Additionally, the nomogram with SUVmax
achieved a relatively higher AUC and higher clinical net ben-
efit than the nomogram without SUVmax did, indicating the
additional value of the metabolic parameter in the contribution
to LVI prediction in LAC patients.

Sufficient analysis of clinical and imaging information
facilitates correct diagnosis and management of lung can-
cer. Both PET/CT features and Rad-score are derived
from the primary images, but they represent two different
methods of image analysis. As macroscopic observations
of imaging features, traditional image interpretation is
subjective and prone to be influenced by the experience
of the radiologists. However, the reproducibility and sim-
plicity make it a basic tool to evaluate the characteristics
of LAC and predict its biological behaviors. On the other
hand, radiomics, a computer-assisted technique, although
limited by its complexity of calculation and lack of stan-
dardization, is now a noninvasive and quantifiable modal-
ity to reveal the microscopic features associated with tu-
mor heterogeneity. Therefore, integrating the two imaging
analytic methods as well as clinical factors within a com-
bined nomogram can allow for a better decision-making
for LAC patients.

Previous investigations have shown that radiomics
can be used for prediction of survival in patients with
lung cancer. Kirienko et al. [27] analyzed clinical pa-
rameters and PET/CT-based radiomics features of 295
NSCLC patients, and found that the radiomics signature,
combined clinical factors, PET and CT radiomics, had
been identified and validated for the prediction of
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disease-free survival in patients with NSCLC treated by
surgery with an AUC of 0.65. Wang et al. [28] found
an integrative nomogram incorporated CT radiomic,
clinical, and hematological features improved survival
prediction in locally advanced NSCLC patients. Being
different from the previous studies, we applied LVI as a
stratifying factor and investigated the survival prediction
value of the LVI-predicted radiomics nomogram. Partly
in agreement with the results of previous studies [3, 4,
6, 39], we found that CA125, NSE, pathologic LVI, and
SUVmax were independent risk factors of PFS, suggest-
ing their prognostic value for the long-term management
of LAC patients.

Several limitations of this study should be mentioned. As a
retrospective study performed at two institutes, patient selec-
tion and time-trend biases were inevitable. Therefore, pro-
spective multi-institutional studies are required to further val-
idate the result. Second, a fixed tube current was used in PET/
CT scans; therefore, the image noise changed across patients,
and the intrinsic noise varied across the ROIs. The current
modulation technique will be applied to acquire more reliable
CT images in our future study.

Conclusions

In conclusion, the radiomics nomogram, incorporating clinical
and PET/CT parameters, has favorable predictive efficacy for
LVI status in LAC patients. Pathologic LVI and SUVmax can
be used to predict outcome of LAC. As a noninvasive and
quantitative method, the radiomics nomogram may serve as
a potential biomarker to supplement the traditional clinical
and imaging modalities for personalized treatment in LAC
patients, although this still requires further validation before
widespread application in clinical practice.
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