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Abstract
Purpose We analysed quantitative biomarkers derived from both baseline whole-body imaging and blood serum to identify
prognostic markers in patients treated within the lutetium-177 prostate-specific membrane antigen (LuPSMA) phase 2 trial.
Methods PET image analysis was carried out using whole-body segmentation quantifying molecular tumour volume (SUV > 3
threshold for PSMA, SUV > liver+2sd for fluorodeoxyglucose (FDG) including SUVmax and SUVmean. For baseline bone
scans, EXINI bone scan index (BSI) was used to calculate the percentage of involved bone. Baseline alkaline phosphatase (ALP),
lactate dehydrogenase (LDH), prostate specific antigen (PSA) and PSA doubling time were also used in this analysis. We used
univariate cox regression analysis and log-rank comparison with optimised cut-offs to find suitable biomarkers prognostic of
overall survival from time of enrolment.
Results This analysis identified FDG-positive tumour volume (FDGvol; HR 2.6; 95% CI, 1.4–4.8), mean intensity of PSMA-
avid tumour uptake (PSMAmean; HR 0.89; 95% CI, 0.8–0.98), bone scan index (BSI; HR 2.3; 95% CI, 1.2–4.4), ALP (HR 1.1;
95% CI, 1–1.2) and LDH (HR 1.2; 95% CI, 1–1.5) as biomarkers prognostic of overall survival.
Conclusions In addition to established biomarkers, both FDG and PSMA PET/CT parameters have prognostic significance for
survival in men undergoing LuPSMA therapy.
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Introduction

The lutetium 177 prostate-specific membrane antigen
(LuPSMA) trial (ANZCTR, No. 12615000912583), a pro-
spective, single-centre, non-randomised Phase II trial demon-
strated a PSA response rate greater than 50% in 64% and low
toxicity in men receiving 177Lu-PSMA-617 (LuPSMA) for
metastatic castrate-resistant prostate cancer (mCRPC) [1, 2].
These results are consistent with several retrospective studies
[3, 4]. For screening, patients underwent both 2-deoxy-
2-[18F]fluoro-D-glucose PET/CT (FDG-PET) and 68Ga-
PSMA-11 PET/CT (PSMA-PET). The baseline PET scans
characterised individual patient phenotype and was used for
patient selection. In an earlier report, we documented the poor
outcome of the patients that were deemed ineligible on the
basis of low PSMA expression or sites of PSMA-negative
FDG-positive disease [5]. In contrast, little is known about
the prognostic value of baseline imaging in patients undergo-
ing LuPSMA therapy and this is of relevance given the
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heterogeneous outcomes in mCRPC. Previous studies have
shown that higher levels of serum alkaline phosphatase
(ALP), rising serum lactate dehydrogenase (LDH), second
line chemotherapy and presence of visceral metastases were
associated with poor survival [4, 6]. Here, we aim to evaluate
the prognostic value of baseline imaging or blood biomarkers
in patients enrolled in the LuPSMA trial.

Methods

Patients

We analysed baseline data of 50 patients with mCRPC who had
mostly progressed after chemotherapy and novel androgen ther-
apies. They received up to four cycles of LuPSMA on trial; 15
patients received further retreatment with LuPSMAupon disease
progression after prior response (see Supplementary Table 1 for
baseline characteristics and Supplementary Fig. 1 for study
schema). Methodology and patient outcomes have been detailed
previously [1, 2]. Forty-three of the 50 patients had died at the
time of analysis. With median follow-up of 31.4 months, median
overall survival was 13.3 months (95% CI 10.5–18.7); no pa-
tients were lost to follow-up.

Imaging and serum biomarkers

All patients underwent baseline PSMA-PET, FDG-PET and
planar 99mTc-bone scan imaging. Quantitative bone scan in-
dex (BSI) was determined using EXINI software (Lundt,
Sweden) by a single experienced physician. On PSMA-PET
and FDG-PET, we determined SUVmax, SUVmean and total
molecular volume (TMV) of disease following semi-

automated tumour segmentation (MIM Software, Ohio,
USA). Tumour was delineated based on SUV > 3 for
PSMA-PET and SUV > SUVmean-liver +2 standard devia-
tions (PERCIST definition) for FDG-PET. The whole-body
threshold tool was used to define all activity above these limits
and normal organ uptake was then erased using the 3D brush
tool. Contouring was performed by two experienced nuclear
medicine physicians (MH, SPT). Baseline serum biomarkers
for analysis included lactate dehydrogenase (LDH), alkaline
phosphatase (ALP), prostate specific antigen (PSA) and PSA
doubling time (PSADT).

Statistical analysis

Univariate cox regression for continuous variables was applied
to assess prognostic value for overall survival (OS). A p value
≤ 0.05 was regarded as significant.We further determined a cut-
off value for all significant parameters from regression analysis
using a cut-off finder. Survival data for the resulting subgroups
is presented using Kaplan-Meier-curves and log-rank-compar-
ison. R-statistics was used for statistical analysis.

Results

Analysis identified FDG-positive molecular tumour volume
(FDGvol; HR 2.6, 95% CI, 1.4–4.8), mean intensity of
PSMA tumour uptake (PSMAmean; HR 0.89, 95% CI, 0.8–
0.98), BSI (HR 2.3;95% CI, 1.2–4.4), ALP (HR 1.1;95% CI:
1–1.2) and LDH (HR 1.2;95% CI,: 1–1.5) as potential bio-
markers prognostic of overall survival (see Table 1 and Fig. 1).
The determined cut-off values were mostly within the second

Table 1 Cox regression of baseline biomarkers LuPSMA trial

Biomarker N Median Lower quartile Upper quartile HR interval HR (95% CI) Pcox regression Optimal cut-off

Imaging PSMAmax 50 50, 1 37, 6 70, 8 1 SUV 0.99 (0.99–1) 0.18

PSMAmean 50 8, 4 6, 9 10, 2 1 SUV 0.89 (0.8–0.98) 0.02 10.55

PSMAvol [ml] 50 1047, 8 485, 5 1934, 7 1 L 1.2 (0.96–1.6) 0.1

FDGmax 50 12, 6 8, 7 18, 2 1 SUV 1 (0.98–1) 0.7

FDGmean 50 4, 7 3, 8 5, 6 1 SUV 1 (1–1) 0.8

FDGvol [ml] 50 248, 2 46, 1 686, 8 1 L 2.6 (1.4–4.8) 0.002 207

BSI [%] 46 4, 1 1, 2 6, 7 10% 2.3 (1.2–4.4) 0.012 5.4

Serum LDH [U/L] 39 268, 0 222, 5 318, 5 100 U/L 1.2 (1–1.5) 0.011 240.5

ALP [U/L] 50 130, 5 86, 0 208, 0 100 U/L 1.1 (1–1.2) 0.035 126.5

PSA [μg/L] 50 189, 8 76, 6 896, 9 100 [μg/L] 1 (0.98–1) 0.5

PSADT [months] 50 2, 6 1, 8 3, 7 1 month 1 (1–1) 0.1

PSMAmax, maximum tumour uptake on PSMA-PET; PSMAmean, mean tumour uptake on PSMA-PET; PSMAvol, volume of disease [ml] on PSMA-
PET; FDGmax, maximum tumour uptake on FDG-PET; FDGmean, mean tumour uptake on FDG-PET; FDGvol, volume of disease [ml] on FDG-PET;
BSI, EXINI bone scan index [%]; LDH, lactate dehydrogenase [U/L]; ALP, alkaline phosphatase [U/L]; PSA, prostate specific antigen [μg/L]; PSADT,
prostate specific antigen doubling time [months]
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Fig. 1 Hazard ratios (95% CI) of imaging and serum biomarkers in
univariate regression. Figure 1 shows the hazard ratios and 95%
confidence intervals of patients within the LuPSMA stratified by
baseline predictors from imaging or serum bloods. PSMAmax, =
Maximum tumour uptake on PSMA-PET;, PSMAmean, = mean
tumour uptake on PSMA-PET;, PSMAvol, = volume of disease [ml] on

PSMA-PET;, FDGmax, = maximum tumour uptake on FDG-PET;,
FDGmean, = mean tumour uptake on FDG-PET;, FDGvol, = volume
of disease [ml] on FDG-PET;, BSI, = EXINI bone scan index [%];,
LDH, = lactate dehydrogenase [U/L];, ALP, = alkaline phosphatase
[U/L];, PSA, = prostate specific antigen [μg/L];, PSADT, = prostate
specific antigen doubling time [months]
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Fig. 2 Kaplan-Meier survival curves of patients within the LuPSMA stratified by significant baseline predictors from imaging or serum bloods identified
by Cox regression and their respective cut-offs
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and third quartile. Only PSMAmean displayed a cut-off value
in the fourth quartile, indicating longer survival for a select
group of patients with particularly high intensity of uptake in
all sites of disease in PSMA-PET scans. Interestingly, neither
the intensity of FDG tumour uptake (FDGmean) nor the vol-
ume of PSMA-positive molecular tumour volume (PSMAvol)
were prognostic. Prostate specific antigen levels and doubling
time were not prognostic. Figure 2 shows Kaplan-Meier-
curves for the subgroups divided by the proposed biomarkers
and their cut-off-values.

Discussion

In a theranostic setting, molecular imaging enables whole-
body characterisation of the prostate cancer phenotype. The
strength of FDG-PET as a biomarker in this setting is several-
fold. First, in conjunction with PSMA-PET, it identifies sites
of disease that are FDG-positive but PSMA image negative
and may not be amenable to targeting by LuPSMA. Second,
in contrast to some biomarkers, it is not limited to osseous
sites of disease (such as ALP and BSI). And third, it uniquely
provides a measure of tumour glycolysis, increased in aggres-
sive tumour subtypes. Imaging biomarkers also enable a new
opportunity for targeted biopsies to characterise biological and
molecular heterogeneity of individual patients’ disease.

This study reveals that high-intensity tumour uptake on
PSMA-PET identifies a cohort with long survival undergoing
LuPSMA therapy. While FDG-PET, BSI, ALP and LDH are
prognostic for most patients with mCRPC, high intensity of
PSMA uptake may represent a unique biomarker for
predicting response to LuPSMA therapy. Previously, we have
reported that uptake intensity on PSMA-PET correlates with
delivered radiation dose [Gy] in patients treated with
LuPSMA, as well as PSA response at 12 weeks [7].

Fizazi et al. associated high ALP with decreased
progression-free survival (PFS) and OS in a large cohort of
patients receiving chemotherapy for mCRPC [8]. Together
with previous findings from retrospective studies, our results
support that this association is also applicable to patients re-
ceiving LuPSMA therapy. Along with ALP, BSI is one of two
known bone-metabolism markers prognostic of OS [9].

Jadvar et al. reported on the prognostic value of
summarised SUVmax in FDG-PET in 87 mCRPC patients
[10]. Patients with high SUVmax had decreased survival.
Our present analysis confirms that FDG-PET is prognostic
of survival in patients treated with LuPSMA. Patients with
low volumes of FDG avid disease had a longer OS than other
patients (6.1 vs 9.6 months, p < 0.001). In contrast, the volume
of tumour burden on PSMA PET/CT was not prognostic.
Accordingly, we infer in this setting of PSMA-avid advanced
prostate cancer, the volume of aggressive disease defined by
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Bone scan

SUVmax : 41

SUVmean : 7.98

Volume : 1290 ml 

PSMA-PET

SUVmax : 7.1

SUVmean : 5.9 

Volume: 51 ml
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Fig. 3 Baseline imaging in a
patient enrolled in our trial. This
case demonstrates that despite
widespread PSMA-positive dis-
ease only a fraction is FDG-posi-
tive. Furthermore, automated
bone scan analysis only detected a
small portion of bone metastases.
Regions of interest are coloured in
red

2325Eur J Nucl Med Mol Imaging  (2020) 47:2322–2327



FDG has a much higher impact on patient outcome than the
volume of PSMA-avid disease which is effectively targeted by
the therapy. This should encourage histopathologic compari-
son of FDG-positive versus negativemetastases in future stud-
ies to better understand molecular drivers of aggressive phe-
notype. Figure 3 demonstrates the different tumour burdens in
one patient before undergoing LuPSMA. FDG-avidity is het-
erogeneous across different sites of disease and should there-
fore be considered when obtaining histologic correlation.

A primary limitation of our study is the sample size which
did not enable valid multivariate regression analysis.
Although our clinical protocol listed analysis of baseline bio-
markers as an exploratory endpoint, we did not pre-define the
methods for imaging analysis. Our thresholds for PET imag-
ing analysis and use of BSI were selected after commencing
the study. As such, these results must be interpreted as explor-
atory rather than definitive. We will further evaluate the pre-
dictive and prognostic utility of PET imaging parameters in
our randomised study of cabazitaxel [11].

In summary, this analysis demonstrates that quantitative bio-
markers derived from imaging including the volume of FDG-
avid disease and intensity of PSMA-avid disease, as well as
conventional blood biomarkers identify patients with a poorer
prognosis undergoing PSMA-directed radionuclide therapy.
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