
ORIGINAL ARTICLE

Influence of the scan time point when assessing hypoxia
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Abstract
Purpose 18F-fluoromisonidazole (18F-FMISO) is the most widely used positron emission tomography (PET) tracer for imaging
tumor hypoxia. Previous reports suggested that the time from injection to the scan may affect the assessment of 18F-FMISO
uptake. Herein, we directly compared the images at 2 h and 4 h after a single injection of 18F-FMISO.
Methods Twenty-three patients with or suspected of having a brain tumor were scanned twice at 2 and 4 h following an
intravenous injection of 18F-FMISO. We estimated the mean standardized uptake value (SUV) of the gray matter and white
matter and the gray-to-white matter ratio in the background brain tissue from the two scans. We also performed a semi-
quantitative analysis using the SUVmax and maximum tumor-to-normal ratio (TNR) for the tumor.
Results At 2 h, the SUVmean of gray matter was significantly higher than that of white matter (median 1.23, interquartile range (IQR)
1.10–1.32 vs. 1.04, IQR 0.95–1.16, p< 0.0001), whereas at 4 h, it significantly decreased to approach that of the white matter (1.10, IQR
1.00–1.23 vs. 1.02, IQR 0.93–1.13, p=NS). The gray-to-white matter ratio thus significantly declined from 1.17 (IQR 1.14–1.19) to 1.09
(IQR 1.07–1.10) (p< 0.0001). All 7 patients with glioblastoma showed significant increases in the SUVmax (2.20, IQR 1.67–3.32 at 2 h
vs. 2.65, IQR 1.74–4.41 at 4 h, p= 0.016) and the TNR (1.75, IQR 1.40–2.38 at 2 h vs. 2.34, IQR 1.67–3.60 at 4 h, p=0.016).
Conclusion In the assessment of hypoxic tumors, 18F-FMISO PET for hypoxia imaging should be obtained at 4 h rather than 2 h
after the injection.
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Introduction

Hypoxia, i.e., lack of oxygen, causes poor prognoses in pa-
tients with malignant tumors [1–3]. Clinically, there is strong

evidence that the poor prognoses are due to the effects of
hypoxia on therapy resistance and malignant progression [4].
18F-fluoromisonidazole (18F-FMISO) positron emission to-
mography (PET) is a promising and noninvasive method for
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in vivo hypoxia imaging [5–8]. Valk et al. first evaluated the
18F-FMISO uptake in glioma in 1992 [9], and subsequent
reports demonstrated the usefulness of 18F-FMISO for the
assessment of glioma differentiation and prognosis [8, 10–18].

Glioblastoma (GBM), which is classified among gliomas
asWorld Health Organization (WHO) grade IV [19, 20], is the
most malignant glioma, requiring multidisciplinary treatment.
Histopathologically, GBM is characterized by the presence of
palisading necrosis and hyperplastic blood vessels. We have
demonstrated that 18F-FMISO PET has the potential to distin-
guish GBM from lower-grade gliomas [21]. We also observed
a strong relationship between the presence of necrosis and
18F-FMISO uptake, regardless of the pathological subtype
[22]. However, other studies have reported that 18F-FMISO
uptake was observed in not only GBMs but also lower-grade
gliomas [12, 17, 23]. This discrepancy might be due to the
difference in the scan time point following 18F-FMISO admin-
istration. The scan time used in the literature for imaging hyp-
oxia in brain tumors is variable, ranging from 120 (or even
less in some papers) to 240 min post-injection. The lack of
standardization has led to inconsistency of data. Therefore,
there is a need to establish the precise scanning time which
most accurately reflects hypoxia. Both 2-h and 4-h scanning
protocols have advantages and disadvantages. In the present
retrospective analysis, we focused on the ability of 18F-
FMISO PET to discriminate between GBM and non-GBM
at 2 h and 4 h after a single injection of 18F-FMISO and
directly compared the images taken at the two scanning time
points to determine their ability to visualize hypoxia.

Materials and methods

Study subjects

The Ethics Committee of Hokkaido University Hospital ap-
proved this retrospective study (IRB No. 015-0159). We ana-
lyzed the cases of the patients who had brain parenchymal
tumor-like lesions with a maximum diameter of ≥ 2 cm on
magnetic resonance (MR) imaging from September 2014 to
July 2015 at our hospital. This study included both patients
who were at initial diagnosis and those being evaluated for
lesion recurrence. Only patients who could undergo two PET
scans at 2 h and 4 h after an injection of 18F-FMISO were
included in this study.

Image acquisition and reconstruction

For each patient, 18F-FMISO was injected once, and PET
images were acquired twice at 2 and 4 h after the injection
(Fig. 1). All clinical PET images were acquired using a single
scanner (Gemini GXL 16 PET/CT; Hitachi Medical, Tokyo).
The injected dosage of 18F-FMISO was 395.0 (interquartile

range [IQR] 388.0–410.0) MBq. The duration of each emis-
sion scan was 20 min. X-ray CT scanning was performed
before the emission scanning for attenuation correction. The
images were reconstructed by a line of response-row action
maximum-likelihood algorithms with the following settings:
number of iterations, 2; relaxation parameter, 0.2813; blob
radius, 3.234 pixels; alpha, 9.5088; and increment, 2.0375.
The image matrix size was 128 × 128 pixels for the 256-mm
field of view (FOV), and the voxel size was 2 mm3. The
reconstructed images were not additionally post-filtered.

Image analysis

The PET images were three-dimensionally coregistered to
T1-weighted MR images before and after the contrast me-
dium injection with the use of the SPM8 software package
[10]. An experienced nuclear medicine physician (K.K.)
visually validated that there was no mis-coregistration.
The 18F-FMISO radioactivity concentrations in the back-
ground brain tissues and in the lesions were then evaluat-
ed both visually and semi-quantitatively. For the visual
analysis, two readers who were experienced in nuclear
medicine (K.K. and O.M.), and who were masked to the
patients’ clinical information, imaging reports, and the
other reader’s interpretation, independently reviewed the
18F-FMISO PET/CT images. A third experienced reader
(K.H.) who was also masked to the clinical information
and image interpretations was included to resolve any
differences in interpretation by the two primary readers,
by consensus review. The information as to whether the
patients had undergone treatments before the PET scan
was also masked, but the readers could guess it from
MRI data. A difference in pattern definition among the
three observers was settled by consensus. For the semi-
quantitative analysis, an experienced nuclear medicine
physician (K.K.) placed regions of interest (ROIs) in each
lesion by referring to the MR images, while blinded to the
pathological diagnosis.

The gray-to-white matter contrast (GWC) in the back-
ground brain tissue was evaluated first. The GWC was
defined as positive when the uptake in the gray matter
was higher than that in the white matter. The GWC was
defined as negative when the uptake in the gray matter
was equal to that in the white matter (Fig. 2). In the semi-
quantitative assessment, the radioactivity concentrations
in the background brain tissues were obtained as follows:
circular 10-mm-diameter ROIs were placed on the cere-
bral gray matter, the cerebral white matter, and the cere-
bellar cortex. A total of 30 ROIs (5 per side × 2 sides per
slice × 3 slices) were placed on each region [21]. The
standardized uptake values (SUVs) were calculated from
all of the voxels within these ROIs. The SUV was defined
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as [tissue radioactivity concentration (Bq/ml)] × [body
weight (g)]/[injected radioactivity (Bq)].

For the assessment of the tumor lesions, the 18F-FMISO
uptakes were visually categorized into two groups. The uptake
was considered positive when the lesion uptake was higher
and negative when the lesion uptake was equal to or lower
than that of the surrounding brain tissues (Fig. 2).

For an additional assessment, 12 patients with histolog-
ically confirmed glioma were evaluated visually and
quantitatively to compare the grade IV gliomas (i.e., the
GBMs) with the gliomas that were ≤ grade III (the non-
GBMs). For the quantitative assessment of the tumor le-
sions, we calculated the maximum SUV (SUVmax) and
the tumor-to-normal ratio (TNR) as in the previous study
[21]. Minimum and mean SUVs were not used because
they are easily affected by the ROI size and position. The
SUVmax was the SUV of the voxel having the highest
SUV in the entire lesion. The TNR was defined as the

SUVmax divided by the reference value, which was de-
rived from the cerebellar ROIs [10].

Surgical procedures

The detailed procedures of our subjects’ PET-guided sur-
geries were described previously [24]. In brief, all surgical
operations were performed under a neuronavigation sys-
tem (StealthStation™ Treon® or S7®; Medtronic,
Minneapolis, MN). Before each surgery, the 18F-FMISO
uptake lesions were superimposed onto MR T1-weighted
images with gadolinium enhancement. When a patient
underwent a biopsy, the biopsy target was set in the 18F-
FMISO uptake lesion under the navigation system if the
18F-FMISO uptake lesion was identified. When a patient
underwent a maximum tumor resection, the 18F-FMISO
accumulation areas were contained in the area of the re-
section as much as possible.

Fig. 2 Representative cases of glioblastoma (a) and grade III glioma (b).
a The 18F-FMISO uptake of the tumor at the left parietal lobe was
classified as negative at 2 h but positive at 4 h. At 2 and 4 h, the
SUVmax values were 1.66 and 1.74 and the TNR values were 1.40 and
1.67, respectively. The gray-to-white matter contrast (GWC) in the

background brain tissue was positive at 2 h but negative at 4 h. b At 2
and 4 h, the 18F-FMISO uptake of the tumor at the right temporal lobe
was classified as positive and negative, respectively; the SUVmax values
were 1.43 and 1.12, and the TNRs were 1.20 and 0.99. The GWC was
positive at 2 h but negative at 4 h

Fig. 1 Study protocol. PET
images were acquired twice, at 2
and 4 h after a single 18F-FMISO
injection
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Each pathological diagnosis was determined by agreement
between the two experienced neuropathologists based on the
2007 WHO classification [19, 20].

Statistical analyses

All parametric variables are presented as medians with the
IQR. Categorical variables are presented as absolute numbers
with percentages. A p value of < 0.05 was considered signif-
icant. The Wilcoxon signed-rank test was used for intergroup
comparisons. Fisher’s exact test was used to compare discrete
data. The diagnostic performances of TNR and the identifica-
tion of the optimal cutoff points for the differentiation between
GBM and non-GBM were evaluated using receiver operating
characteristic (ROC) curves and the assessment of the area
under the ROC curve (AUC). Statistical calculations were
carried out using JMP Pro ver. 14 software (SAS, Cary, NC).

Results

Patients

The cases of 23 patients were retrospectively analyzed: 10
males, 13 females; age 61 years (IQR 47–68 years)
(Table 1). The first and second scans were initiated at
114 min (IQR 100–121 min) and 226 min (IQR 209–
237 min) after the injection, respectively. Among the 23 pa-
tients, 14 underwent surgery that included either biopsy or
resection after 18F-FMISO PET, and these 14 patients were
pathologically confirmed to have gliomas (n = 12), glial pro-
liferation (n = 1), or a tumefactive demyelinating lesion (n =

1). The interval between 18F-FMISO PET and the surgical
procedure was 8 days (IQR 5–14 days).

Of the remaining 9 patients, 5 did not undergo surgery but
were strongly suspected of having recurrent glioma (GBM,
n = 2 ; a n a p l a s t i c o l i g o d e n d r o g l i om a , n = 2 ;
oligodendroglioma, n = 1) based on previous pathological di-
agnoses. One patient was clinically diagnosed as having a
tumefactive demyelinating lesion, 2 patients were clinically
diagnosed with metastatic brain tumors (origins: breast and
renal cancer), and the diagnosis of the remaining patient was
unknown because he was transferred to another hospital.

Gray-to-white matter contrast of background brain
tissue

In the visual assessment, all 23 cases showed positive GWC at
2 h, whereas only five patients showed positive GWC (21.7%)
at 4 h (p < 0.0001).

In our quantitative analysis, the SUVmean in the cerebral
gray matter was 1.23 (IQR 1.10–1.32) at 2 h, and the
SUVmean significantly decreased to 1.04 (IQR 0.95–1.16)
at 4 h (p < 0.0001). The SUVmean values in the cerebral white
matter (1.04, IQR 0.95–1.16 vs. 1.02, IQR 0.93–1.13, p =
0.01) and in the cerebellar cortex (1.30, IQR 1.23–1.47 vs.
1.17, IQR 1.12–1.35, p < 0.0001) and the gray-to-white matter
ratio (1.17, IQR 1.14–1.19 vs. 1.09, IQR 1.07–1.10,
p < 0.0001) were also significantly decreased from 2 to 4 h
(Fig. 3).

Lesion uptake (all patients)

At 2 h after the injection of 18F-FMISO, there were 4 lesions
with negative uptake and 19 lesions with positive uptake.
Between 2 h and 4 h, the visual scores were changed in 9
patients (39.1%): 3 patients showed an increase and 6 patients
a decrease in the visual scores. In the remaining 14 patients,
the scores were unchanged. Therefore, 7 and 16 lesions were
scored as showing low and high uptake at 4 h, respectively.

Tumor lesion uptake of histologically confirmed
glioma

Histological diagnosis of glioma was made in 7 GBM and 5
non-GBM patients (Table 2). In the visual assessment of im-
ages obtained at 2 h, 6 of the 7 GBM patients showed positive
uptake and the remaining patient showed negative uptake. In
contrast, at 4 h, there were 7 patients with positive uptake and
no lesion with negative uptake. Regarding the non-GBMs, 5
patients showed positive uptake at 2 h, and all 5 of these cases
showed negative uptake at 4 h. The sensitivity, specificity, and
accuracy for diagnosing GBMs were 100%, 100%, and 100%
for 4 h, respectively, which were all superior to the corre-
sponding values at 2 h: 85.8%, 0.0%, and 50.0%.

Table 1 Patient characteristics

Age (years) 61 (47–68)

Male, n 10

Injection dose (MBq) 395 (388–410)

Duration from injection to the first scan (min) 114 (100–121)

Duration from injection to the second scan (min) 226 (209–237)

Histologically diagnosed glioma patients (n = 12):

GBM 7

Non-GBM 5

Recurrent glioma from GBM 2

Recurrent glioma from AO 3

Metastasis 2

Tumefactive demyelinating 2

Glial proliferation 1

Unknown 1

Data are represented as the median (interquartile range) or number

GBM glioblastoma, AO anaplastic oligodendroglioma
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In our semi-quantitative evaluation, we observed that the
SUVmax of the GBMs increased significantly between 2 and
4 h (2.20, IQR 1.67–3.32 vs. 2.65, IQR 1.74–4.41, p = 0.016),
and the TNR also increased significantly between 2 and 4 h
(1.75, IQR 1.40–2.38 vs. 2.35, IQR 1.67–3.60, p = 0.016).
Note that all of the GBM cases showed increasing SUVmax
values. In contrast, the non-GBMs showed no significant

difference in either index between 2 and 4 h (SUVmax: 1.43,
IQR 1.30–1.65 vs. 1.36, IQR 1.14–1.47, p = 0.06; TNR: 1.16,
IQR 1.00–1.27 vs. 1.06, IQR 0.99–1.30, p = 0.31) (Fig. 4).

Through ROC curve analysis using TNR, both GBM and
non-GBMwere well-differentiated both at 2 h and 4 h (Fig. 5).
The cutoff values of TNR were 1.35 for 2 h and 1.51 for 4 h.
Both areas under ROC curves were 1.00.

Fig. 3 Quantitative results of
normal brain tissues. The
SUVmean values of cerebral gray
matter (a), cerebral white matter
(b), cerebellar cortex (c), and
gray-to-white matter ratio (d)
were significantly decreased at
4 h compared with 2 h

Table 2 Characteristics of the 12
patients with histologically
diagnosed glioma

Patient Gender Diag. WHO
grade

SUVmax
(2 h)

SUVmax
(4 h)

TNR
(2 h)

TNR
(4 h)

Visual
score
(2 h)

Visual
score
(4 h)

1 M OD II 1.70 1.47 1.16 1.06 pos. neg.

2 M OD II 1.25 1.19 1.00 1.03 pos. neg.

3 M GBM IV 1.66 1.74 1.40 1.67 neg. pos.

4 M GBM IV 3.32 4.41 2.38 3.76 pos. pos.

5 F GBM IV 3.55 4.65 2.39 3.60 pos. pos.

6 F AA III 1.39 1.14 0.99 0.90 pos. neg.

7 M AO III 1.43 1.12 1.20 0.99 pos. neg.

8 M GBM IV 2.85 3.89 2.11 3.34 pos. pos.

9 M GBM IV 1.67 1.67 1.35 1.51 pos. pos.

10 F GBM IV 2.20 2.65 1.70 2.22 pos. pos.

11 M GBM IV 1.92 2.57 1.75 2.35 pos. pos.

12 F DA II 1.55 1.36 1.27 1.29 pos. neg.

AA anaplastic astrocytoma, AO anaplastic oligodendroglioma, DA diffuse astrocytoma, GBM glioblastoma, neg.
negative, OD oligodendroglioma, pos. positive, SUVmax maximum standardized uptake value, TNR tumor-to-
normal ratio, WHO World Health Organization
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Discussion

We assessed PET images obtained at 2 and 4 h after 18F-
FMISO injection. In the background brain tissue, the GWC
was significantly decreased at 4 h compared with that ob-
served at 2 h. Visual scores were changed in 9 patients
(39.1%) from 2 to 4 h. From 2 to 4 h after the 18F-FMISO
injection, the non-GBMs showed a trend of change from
tracer-positive to tracer-negative, while the GBMs remained
significantly positive for 18F-FMISO.

18F-FMISO is the most commonly used PET tracer for
detecting hypoxia. Oxygen tension in tumors has been mea-
sured in patients by directly inserting polarographic needle
electrodes into the tumors [25–27], but this measurement is
invasive and less reproducible. As an alternative, 18F-FMISO
PET is a promising and noninvasive method for in vivo hyp-
oxia imaging [5–8]. Several research groups suggested that
18F-FMISO accumulation may increase sharply under partial
pressure of oxygen (pO2) at 10–20 mmHg [28, 29]. The 18F-
FMISO PET identification of hypoxia proceeds through sev-
eral steps. First, the blood flow distributes 18F-FMISO in the
cells by passive diffusion. When oxygen is abundant in nor-
mally oxygenated cells, the parent compound is regenerated
by reoxidation and washed out from the tissue. In the hypoxic

region, the reduced 18F-FMISO is not regenerated by reoxi-
dation, and the remaining 18F-FMISO binds to intracellular
peptides or is conjugated to glutathione [30, 31].

Since 18F-FMISO is a lipophilic compound, it takes a lon-
ger time (approximately 4 h) to be excreted from blood and
normal tissues compared with the hydrophilic tracers some-
times used to detect hypoxia (approximately 1 h) [32]. Our
present finding of relatively high gray-to-white matter contrast
at 2 h suggests that the influence of the blood flow remains; in
other words, the washout is not sufficient for evaluation of a
patient’s hypoxia status.

In the WHO criteria, “glioblastoma” is defined as having
palisading necrosis in addition to anaplasia and mitotic activ-
ity [19]. Intratumoral necrosis has been thought to cause hyp-
oxia of surrounding tissue [33, 34]. Although glioblastomas
exhibit abundant angiogenesis, the blood vessels are structur-
ally and functionally abnormal, leading to ineffective perfu-
sion and thus to tumor hypoxia [35]. Hypoxia not only
weakens the DNA-damaging effects of low linear energy
transfer radiations (i.e., X-ray and gamma ray) [36] but also
inhibits the degradation of hypoxia inducible factor (HIF) and
thus promotes a number of cell proliferation genes causing
chemoresistance, adaptation to hypoxia, metastasis, and inva-
sion [37]. Sato et al. reported that 18F-FMISO uptake at 4 h

Fig. 4 The difference in the tracer
uptake between 2 and 4 h. The
SUVmax of a non-GBM tumor
(a), the SUVmax of a GBM (b),
the TNR of a non-GBM (c), and
the TNR of a GBM (d) were
compared between 2 and 4 h.
There were no significant
differences in the non-GBM, but
in the GBM, both the SUVmax
and the TNR increased
significantly from 2 to 4 h. GBM,
glioblastoma; SUVmax,
maximum standardized uptake
value; TNR, tumor-to-normal
ratio
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after injection was significantly higher in patients with high
expression of Ki-67 and HIF-1α [38]. However, there have
been no reports investigating which scan time after injection is
most appropriate for the assessment of correlation between
18F-FMISO uptake and these histological parameters. The
current standard of treatment for a histologically diagnosed
GBM includes resection followed by adjuvant radiation and
chemotherapy [39]. However, GBMs typically recur within
months, and the median survival from onset is only 15months
[40].

Noninvasive differentiation of GBM and non-GBM is im-
portant to avoid insufficient surgery, because the overall sur-
vival of patients cannot be prolonged unless the gadolinium-
enhanced part of the tumor is completely removed by surgery.
The results of our present analyses show that the GBMs were
clearly discriminated from the non-GBMs by the 18F-FMISO
PETat 4 h but not by that at 2 h after the 18F-FMISO injection.
We previously showed that 18F-FMISO PET discriminated
glioblastoma from less malignant gliomas at 4 h after 18F-
FMISO injection due to the much higher accumulation in
GBM vs. non-GBM at that time point [21]. However, Cher
et al. [12] and Yamamoto et al. [17] demonstrated that grade
III gliomas showed elevated 18F-FMISO uptake at 2 h after
injection. This discrepancy is probably due to the difference in
the uptake time.

A kinetic analysis of 18F-FMISO uptake indicated the time-
dependent uptake characteristics of 18F-FMISO and suggested
that a longer uptake time may be more beneficial to evaluate
tumor hypoxia. Thorwarth et al. discussed a theoretical prob-
lem with the images 2 h after injection of 18F-FMISO. They
reported that hot spots occurred on the 18F-FMISO images
after 2 h but disappeared after 4 h based on the kinetic analysis
of a dynamic 18F-FMISO PET dataset. This result suggested
that the high uptake on the images after 2 h might reflect a
high initial influx of the tracer due to increased blood flow as
well as hypoxia [41]. Early reports by Grunbaum et al. also
suggested that longer diffusion times might be required to
achieve acceptable target/background ratios for hypoxia im-
aging [42]. Nevertheless, most of the relevant studies adopted
2-h protocols [8, 9, 12, 13, 15, 17], possibly because a shorter
protocol would generally be more acceptable in clinical set-
tings. In the present study, all grades of glioma showed an
elevated accumulation of 18F-FMISO at 2 h after 18F-
FMISO injection. Conversely, at 4 h, all of the non-GBM
lesions showed negative 18F-FMISO uptake. This data pro-
vides evidence of the uptake time-related differences men-
tioned above.

In addition, our present findings demonstrated that the 2-h
images showed strong contrast between gray and white mat-
ter, and this contrast disappeared at 4 h. This result also

Fig. 5 ROC curves for diagnosis
of GBM and non-GBM by tumor
TNR. TNRs at 2 h (a) and at 4 h
(b) were compared between non-
GBM. ROC curve using TNR
showed that both GBM and non-
GBM were well-differentiated
both at 2 h (c) and 4 h (d). ROC,
receiver operating characteristic;
GBM, glioblastoma; TNR,
tumor-to-normal ratio; AUC, area
under the curve
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supports the concept that the influence of the blood flow
remained at 2 h. We speculate that the 18F-FMISO was not
sufficiently washed out from the normoxic cells at the 2-h time
point. Grkovski et al. evaluated the hypoxic condition in detail
by using kinetic modeling obtained by dynamic imaging [43].
In their report, a static image of 18F-FMISO PETmight lead to
a misinterpretation of hypoxic lesions. However, the images
obtained at 4 h may be preferable as a reasonable surrogate,
since it is clinically difficult to perform continuous imaging
for a long period of time. Static images also have better image
quality than dynamic and parametric images.

Peeters et al. demonstrated that 18F-FMISO uptake was still
increasing at 6 h in their laboratory animal study [44].
However, in a clinical setting, it is difficult to perform a scan
at 6 h post-injection, and the reduced counts may cause a
lower signal-to-noise ratio.

Study limitations

This study has some methodological limitations. It was a ret-
rospective analysis of patients at a single center and included a
relatively small cohort of subjects (n = 23) who underwent
18F-FMISO PET imaging for suspected brain tumors. In this
retrospective study, histological measurements of hypoxia,
such as HIF-1 immunohistochemical staining, and in vivo
blood flow imaging, such as O-15 water PET, are lacking.
Further studies are needed to correlate such information with
18F-FMISO uptake. Nevertheless, these results might have
clinical implications for the staging algorithm for patients with
a suspected brain tumor.

Conclusion

For the evaluation of hypoxia in brain tumors and especially to
distinguish GBMs from non-GBMs, our current data suggest
that 18F-FMISO PET images should be obtained at 4 h rather
than at 2 h after the 18F-FMISO injection.
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