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Abstract
Introduction Immunotherapy has improved outcomes for patients with non-small cell lung cancer (NSCLC), yet durable clinical
benefit (DCB) is experienced in only a fraction of patients. Here, we test the hypothesis that radiomics features from baseline
pretreatment 18F-FDG PET/CT scans can predict clinical outcomes of NSCLC patients treated with checkpoint blockade
immunotherapy.
Methods This study included 194 patients with histologically confirmed stage IIIB-IV NSCLC with pretreatment PET/CT
images. Radiomics features were extracted from PET, CT, and PET+CT fusion images based on minimum Kullback–Leibler
divergence (KLD) criteria. The radiomics features from 99 retrospective patients were used to train a multiparametric radiomics
signature (mpRS) to predict DCB using an improved least absolute shrinkage and selection operator (LASSO) method, which
was subsequently validated in both retrospective (N = 47) and prospective test cohorts (N = 48). Using these cohorts, the mpRS
was also used to predict progression-free survival (PFS) and overall survival (OS) by training nomogram models using multi-
variable Cox regression analyses with additional clinical characteristics incorporated.
Results The mpRS could predict patients who will receive DCB, with areas under receiver operating characteristic curves
(AUCs) of 0.86 (95%CI 0.79–0.94), 0.83 (95%CI 0.71–0.94), and 0.81 (95%CI 0.68–0.92) in the training, retrospective test,
and prospective test cohorts, respectively. In the same three cohorts, respectively, nomogram models achieved C-indices of 0.74
(95%CI 0.68–0.80), 0.74 (95%CI 0.66–0.82), and 0.77 (95%CI 0.69–0.84) to predict PFS and C-indices of 0.83 (95%CI 0.77–
0.88), 0.83 (95%CI 0.71–0.94), and 0.80 (95%CI 0.69–0.91) to predict OS.
Conclusion PET/CT-based signature can be used prior to initiation of immunotherapy to identify NSCLC patients most likely to
benefit from immunotherapy. As such, these data may be leveraged to improve more precise and individualized decision support
in the treatment of patients with advanced NSCLC.
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Introduction

Lung cancer is the most commonly diagnosed cancer and the
leading cause of cancer-related death in the world [1], with
non-small cell lung cancer (NSCLC) being the most common-
ly diagnosed histologic subtype [2]. Over the past 30 years,
the 5-year overall survival (OS) of patients with metastatic
disease has remained at 5% [3]. More recently, checkpoint
blockade antibodies targeting PD-(L)1 have revolutionized
cancer treatment and improved long-term survival among
some patients with advanced NSCLC [4–6]. However, current
published evidence showed that PD-1/PD-L1 antibody mono-
therapies yield durable (> 6months) clinical benefit (DCB) for
only a subgroup of patients (15~19.4% in phase I/II clinical
trials [4, 7]). As such, robust biomarkers that are predictive of
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response immune checkpoint blockades at baseline are needed
to avoid immune-related toxicities in patients unlikely to
achieve durable clinical benefit.

Currently, PD-L1 status is the only approved diagnostic
biomarker for immunotherapy; patients with positive PD-L1
status generally have higher objective response rates (ORRs)
[8, 9]. However, patients with PD-L1-negative tumors can still
benefit from anti-PD-(L)1 therapies [6, 10]. A recent study
showed that a combination of pembrolizumab and chemother-
apy achieved objective radiographic response rates, ORRs, of
22.9 to 61.4% regardless of PD-L1 status [11]. Additionally,
intra-tumor heterogeneity of PD-L1 staining across biopsies is
prevalent, leading to sampling bias [12]. There have been
concerted efforts to utilize molecular characteristic biomarkers
for prediction and, along these lines, total mutational burden
(TMB) exhibited a sensitivity of 86% and a specificity of 75%
in predicting DCB in response to PD-1 checkpoint blockade
[13]. However, TMB by whole exome sequencing is not clin-
ically approved in the immunotherapy setting and is similarly
subject to sampling bias. Hence, we seek to identify alterna-
tive predictive biomarkers that do not suffer from these
weaknesses.

Radiological images are routinely available in clinic. In
particular, 18F-FDG PET/CT imaging is widely used for the
staging of patients with advanced NSCLC. These medical
images can be analyzed quantitatively with machine learning
or “radiomics,” which is the process of converting medical
images into high-dimensional mineable data. Prior studies
have shown a strong correlation of radiomics signatures with
genetics in NSCLC [14]. Recent advances in PET/CT
radiomics have provided insights into precision medicine re-
lated to therapeutic response assessment [15, 16]. A radiomics
approach has multiple advantages, including (1) being non-
invasive and thus available for longitudinal sampling, (2)
based on standard-of-care images and thus widely available,
and (3) sampling the entire tumor and thus not subject to
sampling bias [17].

The goal of this study was to determine if PET/CT
radiomics features at baseline, alone, or in combination with
clinical factors can predict subsequent immunotherapy re-
sponse leading to DCB, as well as to predict PFS and OS in
patients with advanced NSCLC, and secondarily, whether the
PET/CT radiomics feature could be a prediction biomarker in
real time. The workflow is presented in Fig. 1.

Patients and Methods

Patients

Inclusion criteria for this study included the following: (1)
patients with histologically confirmed advanced stage (stage
IIIB and IV) NSCLC who were treated with anti-PD-(L)1

immunotherapy; (2) PET/CT images were acquired during
the interval (less than 6 months) of the last treatment (or diag-
nosis) and the start of immunotherapy; 3) no other treatment
were provided during the interval; and (4) follow-up time
from initiation of immunotherapy treatment was greater than
6 months (Fig. 2). Initially, 146 retrospective patients were
enrolled who initiated therapy between June 2011 and
December 2017. These patients were randomized into training
(N = 99) and test (N = 47) cohorts, with the conditions that
these two cohorts were not significantly different in terms of
demographics, as well as FDG PET avidity, as measured by
the maximum standard uptake value (SUVmax). Using the
same inclusion criteria, a prospective cohort was subsequently
accrued, consisting of 48 patients who initiated immunother-
apy between January 2018 and June 2019. This was used as an
additional independent (prospective) test cohort.

The baseline clinical characteristics (age, sex, histology,
smoke, chronic obstructive pulmonary disease (COPD) status,
family history, Eastern Cooperative Oncology Group (ECOG)
Scale of performance status, distant metastasis (M stage),
brain metastasis, and prior treatments) and gene (EGFR,
ALK, and ROS1) mutation status were obtained from the
medical records. The main endpoints of this study were
DCB (durable benefit), PFS, and OS. Clinically, immunother-
apy response is frequently measured as DCB or NDB (no
durable benefit) using binary cutoff of PFS at 6 months [18,
19]. PFS and OS were defined as the time from the start date
of immunotherapy to progression (or death) and patients free
of progression (or alive) or lost to follow-up which were cen-
sored at the time of the last confirmed contact. Response
Evaluation Criteria in Solid Tumors (RECIST1.1) [20] was
used to define progression.

This study was approved by the Institutional Review Board
at the University of South Florida (USF) and was conducted in
accordance with ethical standards of the 1964 Helsinki decla-
ration and its later amendments. The requirement for informed
consent was waived, as PHI was not revealed.

PET/CT imaging

18F-FDG PET/CT imaging was performed as standard diag-
nostic work-up before treatment with immunotherapy. Details
of the retrospective PET/CT images obtained from 9 different
scanners and the prospective PET/CT images obtained from 2
different scanners are shown in Supplemental Methods S1.
Heterogeneity in scanner parameters was deliberately chosen
to ensure generalizability of the derived predictive models. All
PET images were converted into SUV units by normalizing
the activity concentration to the dosage of 18F-FDG injected
and the patient body weight after decay correction. Further, all
the PET and CT images were resampled to 1 × 1 × 1 mm3

voxels using 3-dimensional Lagrange interpolating
polynomials.

Eur J Nucl Med Mol Imaging (2020) 47:1168–1182 1169



Radiomics feature extraction

The primary lung tumors of PET and CT images were semi-
automatically segmented with an improved level-set method
based on gradient fields [19] and were further reviewed and
corrected by a radiologist with 16 years of experience (JQ)

who was blinded to the outcome label. After spatial registra-
tion using a rigid transformation by maximizing the dice sim-
ilarity coefficients on the condition that the maximal axial
cross-sections of the nodules were aligned, Kullback–Leibler
divergence (KLD) images were generated from the fused PET
and CT images on a voxel-wise basis using KLD criteria [21].
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Fig. 1 Radiomics workflow. The workflow includes image selection
(only images with slice thickness ≤ 5 mm no artifacts, and the tumor in
PET images has FDG uptake, were included), registration and semi-

automatic delineation, imaging preprocessing and feature extraction, fea-
ture selection, model training, and model validation

Retrospective advanced NSCLC
patients treated with Immunotherapy

(2011.6~2017.12)
N = 380

Eligible participants
N =151

Final participants
N =146

Training (N=99) Test (N = 47)
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Fig. 2 Inclusion and exclusion
diagram. The training cohort
comprised clinical data, and the
corresponding imaging data of the
retrospective patients were used
to train the radiomics signature,
the DCB, and the PFS and OS
nomogram models, which were
further validated using the test
cohort of the retrospective
patients and the prospective
cohort enrolled according to the
same inclusion and exclusion
criteria
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Seven hundred ninety features including PET features, CT
features, and KLD features were then extracted from these
segmented tumors and scaled into the range [0 1] with unity-
based normalization, as shown in Supplemental Methods S2-
S4. After dimensionality reduction according to the internal
stability (Supplemental Methods S5), we investigated the
radiomics expression patterns with unsupervised clustering
to observe correlations among different features and different
patients.

Statistical analyses

The Wilcoxon signed-rank test and Fisher’s exact test were
used to test of differences for continuous variables and cate-
gorical variables, respectively. For PFS and OS comparisons,
a log-rank test was used. To determine the association of the
radiomics expression patterns with clinical characteristics, a
χ2 test was used. P values less than 0.05 were regarded as
significant. Statistical analyses were performed with R 3.5.2
and MATLAB R2019a (Natick, MA).

Feature selection and radiomics signature building

We improved the least absolute shrinkage and selection oper-
ator LASSO method [22] by performing analyses separately
on squamous carcinomas or adenocarcinoma (Supplemental
Methods S6) to develop minimal feature sets for each that
retained predictive information, which were then combined
into a multiparametric radiomics signature (mpRS) weighted
by their respective coefficients. To avoid overfitting, 100
times 5-fold cross-validation was performed in the training
cohort to generate a prioritized list of the most parsimonious
sets of predictive features.

Improved diagnostic validation of mpRS

To investigate the importance of the KLD features, digital
phantom simulation experiments were performed. Two differ-
ent digital phantoms were generated to have the same hetero-
geneity distribution (measured by entropy and inverse differ-
ence calculated from the 3D co-occurrence matrix) and used
to detect the different heterogeneity distribution of the KLD
fusion images.

Additionally, three different radiomics signatures generated
from PET features (PETRS), CT features (CTRS), and the
linear combination of PETand CT features (PETCTRS) using
the above method were used for the comparison with mpRS
according to their discrimination performances measured by
the areas under receiver operating characteristics curves
(AUC), classification accuracy (ACC), sensitivity (SEN),
and specificity (SPEC). Furthermore, the total net reclassifi-
cation improvement (NRI) was used to investigate the added
value of the KLD features to PET and CT features.

ANOVA analysis was performed to compare the distribu-
tion of the radiomics signatures among the different scanner
types.

DCB prediction nomogram model building

Univariable logistical regression analysis was initially con-
ducted to identify radiomics signatures, clinical factors, and
commonmetrics (including the image-derived features of vol-
ume, SUVmax, and metabolic tumor volume [23]) that are
associated with a DCB. Covariates that yielded a significant
Wald’s statistic from multivariable logistical regression anal-
ysis were used for developing the DCB prediction nomogram
model.

The goodness-of-fit for the models were evaluated with
Akaike information criteria (AIC) and the Hosmer–
Lemeshow (HL) tests [24]. The AUC, ACC, SEN, and
SPEC were also used to evaluate the discrimination perfor-
mances of different models. To compare the clinical useful-
ness of the different models, a decision curve analysis was
performed by quantifying the added benefits at different
threshold probabilities [25].

PFS and OS estimation nomogram model building

The potential of the radiomics signature to predict PFS and OS
was assessed and optimized in the training cohort and then
validated in the two independent test cohorts by using
Kaplan–Meier survival analysis. The patients were classified
into high-risk or low-risk groups according to the radiomics
score cutoff that maximized Youden’s index based on the
training cohort.

Univariable Cox regression analyses were conducted using
the radiomics signature, clinical factors, SUVmax, MTV
(metabolic tumor volume), and volume. Statistically signifi-
cant hazard ratios (HRs) were included in PFS and OS nomo-
gram models using multivariable Cox regression analysis and
a backward stepwise selection with AIC as the stopping rule.
The C-index and AIC were used to evaluate the prediction
ability of the models, and the Z test was applied to determine
whether the differences between different models were
significant.

Pilot study for longitudinal assessment of the radiomics
signature

In order to validate the dynamic characteristic and investigate
whether the radiomics signature could identify the patients
receiving benefit over the ensuing 6 months, patients with
follow-up PET/CT scans after the initiation of the immuno-
therapy were used to investigate the longitudinal trend of the
radiomics signature. The patients who had DCB since the start
of the immunotherapy but progressed within 6 months since
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the follow-up scan time were regarded as follow-up NDB, and
the patients who did not progress within 6 months since the
follow-up scan time were regarded as follow-up DCB. The
AUCwas calculated to evaluate the follow-up DCB and NDB
discrimination performances of the radiomics signature, and
the distribution of the radiomics signature across the baseline
time and follow-up time was used to reveal the trend of the
radiomics signature.

Finally, to assess the quality of this radiomics study, the
radiomics quality score (RQS) was calculated according to
Lambin et al. [26]

Results

Clinical characteristics

The demographic and clinical characteristics of the three pa-
tient cohorts are presented in Table 1. Among the 146 retro-
spective patients, there were 88 men and 58 women and the
overall mean age was 65.72 (± 12.88), and the median PFS
and OS were 7.52 and 10.38 months, respectively. The retro-
spective training and test cohorts had identical distributions of
SUVmax and statistically insignificant differences in their
clinical characteristics, PFS (P = 0.62) and OS (P = 0.42)
(Supplemental Fig. S1). The 48 prospective patients curated
from standard-of-care regimens had median PFS and OS of
6.78 and 9.95 months, respectively. Although slightly shorter
compared with the retrospective cohorts, the PFS and OSwere
not significantly different in the prospective cohort. There
were also no significant differences in histology, smoking his-
tory, sex, age, and mutation status. Twenty-two patients had
follow-up PET/CTscans between 1 and 53months of therapy,
and these were used to investigate the longitudinal trend of the
radiomics signature in a pilot study. Five of these patients had
NDB since the start of the immunotherapy. For the remaining
17 patients who had DCB since the start of the immunother-
apy, 6 of them progressed within 6 months since the follow-up
scan time, while 11 patients did not progress and continued to
experience clinical benefit within 6 months since the follow-
up scan time.

Feature extraction

Of the original 790 extracted features, 324 remained after
filtering for internal stability. Unsupervised clustering re-
vealed 3 clusters of patients with similar radiomics expression
patterns (Fig. 3a), which were significantly associated with
histology (P = 0.008, χ2 test) and response (P = 0.028, χ2
test). The prospective patients further showed similar
radiomics expression patterns and validated this association
of these radiomics feature patterns with histology (P = 0.041,
χ2 test) and response (P = 0.085, χ2 test) (Fig. 3b).

Feature selection and radiomics signature building

Pearson grouping was used to eliminate redundant fea-
tures, resulting in 21 uncorrelated features (10 PET fea-
tures, 4 CT features, and 7 KLD features). These were
then used as inputs into the LASSO method. Through 5-
fold cross-validation on the training cohort (Supplemental
Fig. S2), 8 features emerged as the best features to con-
struct radiomics signature, and these are shown in
Supplemental data S7. Representative radiomics signa-
tures of two patients from baseline PET/CT scan and
follow-up PET/CT scan are shown in Fig. 4.

Validation of the radiomics signature

Improved diagnostic validation of mpRS

From the simulated PET images (the first column) and simu-
lated CT images (the second column) shown in Fig. S3, the
two phantoms are classified as having the same heterogeneity
and homogeneity distribution. However, from the fusion im-
ages (the third column), the two phantoms were classified as
having different heterogeneity and homogeneity, whichmeans
the KLD features could identify the relative different position-
al relationship of the heterogeneity.

There were significant differences in the four radiomics
signature scores between DCB and NDB patients in the
training cohort (PETRS: P < 0.001; CTRS: P = 0.020;
PETCTRS: P < 0.001; mpRS: P < 0.001). Except for the
CTRS, the other three radiomics signatures had significant
differences between DCB and NDB patients in the retro-
spective (PETRS: P = 0.006; PETCTRS: P = 0.003;
mpRS: P < 0.001) and prospective (PETRS: P = 0.019;
PETCTRS: P = 0.009; mpRS: P < 0.001) test cohorts.
The mpRS achieved the highest AUCs of 0.86 (95%CI
0.79–0.93), 0.83 (95%CI 0.71–0.94), and 0.81 (95%CI
0.68–0.92) in the training, retrospective test, and prospec-
tive test cohorts, respectively (Supplemental Table S1 and
Fig. S4). Compared with PET+CT features, the inclusion
of the KLD features yielded a total net reclassification
improvement (NRI) of 0.50 (95%CI 0.11–0.88, P =
0.011), 0.55 (95%CI − 0.012–1.11, P = 0.055), and 0.94
(95%CI 0.44–1.45, P < 0.001) in the training, test, and
prospective test cohorts, respectively, which showed sig-
nificantly improved classification accuracy for response
prediction. Therefore, only mpRS was used for the subse-
quent analyses.

Box plots and ANOVA analyses of each of the radiomics
signatures are shown in Supplemental Fig. S5, which illus-
trates that these signatures are stable across 9 different equip-
ment manufacturers (P > 0.05), with mpRS being the most
stable signature with the fewest outliers.
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(c) Prior to immunotherapy, PFS time = 12.8 months (progression)

(d) 9 months post immunotherapy

Fig. 4 Radiomics signatures of
NSCLC patients. (a, b) The CT,
PET, and fusion images for a
patient with ADC NSCLC
obtained 1 month before and
6 months after immunotherapy,
which means the patient would
have DCB since the start of
immunotherapy and 6 months
post-immunotherapy. (c, d) The
CT, PET, and fusion images for a
patient with ADC NSCLC
obtained 1 month before and
9 months after immunotherapy,
which means the patient would
have DCB since the start of
immunotherapy, but would have
NDB after 9-month immunother-
apy. The corresponding clinical
feature and radiomics scores are
shown in the bottom of each
image
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Fig. 3 Expression patterns of
radiomics features. (a)
Unsupervised clustering of all the
retrospective and prospective pa-
tients on the row direction and
radiomics feature expression on
the column direction revealed
clusters of patients with similar
radiomics expression patterns. (b)
Clinical patient parameters for
showing significant association of
the radiomics expression patterns
with histology (retrospective: P =
0.008, prospective: P = 0.041, χ2
test) and response (retrospective:
P = 0.029, prospective: P 0.085,
χ2 test)

Eur J Nucl Med Mol Imaging (2020) 47:1168–1182 1175



DCB prediction nomogram

Univariable logistical regression analysis on the training co-
hort identified mpRS, distant metastasis, and ECOG status as
strong predictors for response, and these were also validated in
the test cohorts (P < 0.05, Supplemental Table S2). Through
multivariable logistical regression analysis (Supplemental
Table S3), ECOG scale and distant metastasis were predictive
of a DCB response combined with the mpRS (Fig. 5a), and
adding these clinical variables generated a higher AUC of
0.89, 0.86, and 0.86 in the training, retrospective test, and
prospective test cohorts, respectively (Supplemental
Table S1 and Fig. S4). This model was well calibrated in all
three cohorts (Fig. 5c). The inclusion of ECOG scale and
distant metastasis yielded a significant total NRI of 0.79
(95%CI 0.47–1.01, P < 0.001), 1.05 (95%CI 0.55–1.54,
P < .001), and 1.20 (95%CI 0.75–1.65, P < .001) in the train-
ing, retrospective test, and prospective test cohorts,
respectively.

The decision curves shown in Fig. 5b indicate that the
combined (clinical+radiomics) DCB nomogram model had
the highest overall net benefit across the majority of the range
of reasonable threshold probabilities in all the patients com-
pared with radiomics or clinical signatures alone.

PFS and OS prediction nomogram

Through Kaplan–Meier survival analysis (cutoff = 0.41),
mpRS was able to significantly predict PFS and OS in
training (P < 0.001, P < 0.001), retrospective test (P =
0.001, P = 0.002) , and prospect ive tes t cohor ts
(P < 0.001, P = 0.002), respectively. Patients with higher
radiomics scores had longer PFS and OS (Supplemental
Fig. S6). According to univariable Cox regression analy-
sis (Supplemental Tables S4 and S6), mpRS, histology,
and ECOG scale were significantly associated with PFS
and OS in the training and test cohorts. To investigate the
prognostic value of the mpRS within the different sub-
groups of histology, stratified Kaplan–Meier survival
analyses were also performed. As shown in Fig. 6, even
though patients with adenocarcinoma (ADC) had better
PFS than those with squamous cell carcinoma (SCC),
the mpRS was predictive of PFS and OS for both histol-
ogies. Further multivariate Cox proportional hazards
models (Supplemental Tables S5 and S7) including
mpRS, histology, and ECOG scale were built for PFS
and OS estimation, which are expressed as nomograms
shown in Fig. 5 d and g. The calibration curves of the
mpRS nomogram on training, retrospective test, and pro-
spective test cohorts are shown in Fig. 5 f and i for PFS
and OS, respectively, which show excellent agreements
between the nomogram predictions and actual observa-
tion. Additionally, the scatter plots of nomogram-

predicted 6-month PFS and 1-year OS probability for in-
dividual patients versus the corresponding PFS and OS
time are provided in Fig. 5 e and h. Spearman’s rank
correlation coefficients for individualized predictions
were > 0.6 with P < 0.001, suggesting a strong positive
correlation.

The quantitative results of different models are shown in
Table 2, which shows the combined (clinical+radiomic) no-
mograms yielded significantly strong prediction results
(P < 0.05) with C-indexes of 0.74 (95%CI 0.68–0.80), 0.74
(95%CI 0.66–0.82), and 0.77 (95%CI 0.69–0.84) for PFS
estimation and C-indexes of 0.83 (95%CI 0.77–0.88), 0.83
(95%CI 0.71–0.94), and 0.80 (95%CI 0.69–0.91) for OS es-
timation in the training, test, and prospective test cohorts,
respectively.

Pilot study for longitudinal assessment of the radiomics
signature

A further analysis using subsequent follow-up scans,
when available, showed the mpRS generated from the
follow-up PET/CT images during treatment could also
predict follow-up DCB with an AUC of 0.82 (95%CI
0.63–1.00). Further, it had a decreasing trend with time
(Supplemental Fig. S7), suggesting that the risk of pro-
gression increased with time.

Radiomics quality score

Radiomics is a rapidly maturing field, and qualities of study
designs and their results can be challenging to evaluate. To
address this, Lambin et al. developed a 36-point “radiomics
quality score” (RQS) metric [26]. The criteria are described in
Supplemental Table S8, which shows that the current study
had a RQS of 24. To put this in perspective, a recent meta-
analysis [27] analyzed 77 radiomics publications and docu-
mented that the mean RQS across all studies was 9.4 + 5.6,
indicating that the current study is in the upper 5 percentile of
radiomics study designs.

A TRIPOD Checklist following reporting guidelines for
prediction model development and validation (https://www.
equator-network.org/reporting-guidelines/tripod-statement/)
has also been provided in Supplemental Table S9, which
further validated the integrity of the work.

Discussion

In this work, we developed a radiomics signature to pre-
dict DCB in immunotherapy-treated NSCLC patients,
which was successfully validated in independent retro-
spective and prospective test cohorts. In addition, combin-
ing this signature with ECOG status and histology into a
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DCB response radiomics nomogram
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nomogram further facilitated the individualized prediction
of PFS and OS prior to initiation of checkpoint blockade
immunotherapy.

PET/CT radiomics studies typically extract image-derived
quantitative features independently from PET or correspond-
ing CT images [28–32], and mutual information between PET
and CT images have only been assessed by qualitative metrics
rather than quantitative descriptors [33–36]. By contrast, in
this work, we constructed KLD features as quantitative de-
scriptors of mutual information between co-registered PET
and CT, and these significantly improved the prediction re-
sults. To illustrate the importance of the KLD features, digital
phantom simulation experiments were performed.
Supplemental Fig. S3 shows that different phantoms (a and
b) could not be distinguished by PET or CT heterogeneity
features. However, the KLD fusion images, which reflect the
relative different positional relationship of the heterogeneity,
could distinguish these phantoms.

When investigating the informative components of
mpRS formula, we found multiple texture features

(PET_SRLGE, KLD_SZE) were positively correlated,
suggesting that the more heterogeneous tumors had a larg-
er probability to have a DCB. This was a bit surprising, as
prior studies have shown that more heterogeneous tumors
with CT textures had worse response to radiation or che-
motherapy [14]. A recent study showing the patients who
had faster growing tumors before initiation of immuno-
therapy had better responses [37] may suggest that the
more aggressive tumors that respond worse to convention-
al therapies are more susceptible to immune modulation.
In terms of shape, those tumors with more convexity
(smaller CHDensity) had a higher probability of a DCB.
This could be explained by Saeed-Vafa et al.’s study [38]
that PD-L1 cells are able to form a more rounded mass
due to the ability of evading immune attack and coexis-
tence with the vasculature, and high PD-L1 expression is
associated with significantly longer PFS and longer OS
[8, 9]. In terms of metabolic activity, tumors with a lower
mean SUV and HU (KLDiv_mean) had a larger probabil-
ity of having a DCB. This is expected, as more metabol-
ically active tumors will produce more lactic acid [39] and
lactic acid is a potent inhibitor of effector T cell function
[40].

Notably, only 4 CT features remained after Pearson
grouping and internal stability comparison, and the CT
radiomics score constructed with these 4 features did not
perform as well compared with mpRS, with an AUC of
0.69 and 0.64 in test and prospective test cohorts, respec-
tively. These AUCs are smaller than those observed in a
recent Annals of Oncology paper, which generated an
AUC = 0.79 in the NSCLC primary tumors with
contrast-enhanced computed tomography (CE-CT) scans
[41]. This was also surprising, given our prior radiomics
analyses of CT images to predict immunotherapy response
[3]. A possible explanation for the low predictive power
of CT in the current study is that the resolution of CT
images in PET/CT is lower and non-contrast enhanced,
compared with diagnostic CTs, and this also may lead to
lower discrimination ability. Secondly, given no inter-
scanner correction was used for CT features, only a few
CT features remained after filtering for internal stability.
Additionally, other possible reasons that the 4 CT features
were not selected in the mpRS formula were the KLD
features had included the morphological information,
and some studies had shown that the metabolic modifica-
tions on PET are more predictive than morphological
modifications on CT especially in early response predic-
tion [11, 42].

Moreover, as Moffitt Cancer Center is a referral hospi-
tal, many patients’ PET/CT images were acquired from
different institutions, leading to large variability in acqui-
sition and reconstruction methods. As we first filtered for
internal stability, we selected for features that would be

Fig. 5 Nomograms and the corresponding calibration curves. (a) and (c)
are the nomograms constructed with mpRS and clinical characteristics to
estimate the probability of DCB, along with the assessment of the model
calibration in the training cohort, retrospective test cohort, and prospec-
tive cohort, respectively (e.g., for a patient with MRS of 0.6, ECOG 1 at
stage M0, his total point is 95 (MRS 0.6 corresponding to point 54,
ECOG 1 corresponding to point 28, no distant metastasis corresponding
to point 13, 54 + 28 + 13 = 95), which corresponds to a DCB probability
of 0.79). (b) is the decision curves for different radiomics signatures and
DCB response prediction models on all the patients. (d) and (f) are the
nomograms constructed with mpRS and clinical characteristics to esti-
mate the risk of progression, along with the assessment of the model
calibration in the training cohort, retrospective test cohort, and prospec-
tive cohort, respectively (e.g., for a ADC patient with MRS of 0.6 and
ECOG1, his total point is 85 (MRS 0.6 corresponding to point 46, ECOG
1 corresponding to point 39, ADC corresponding to point 0, 46 + 39 +
0 = 85), which corresponds to a 6-month PFS probability of 0.71, 1-year
PFS probability of 0.5, and 2-year PFS probability of 0.42). (e) is the
scatter plot of nomograms’ predicted 6-month PFS probability of individ-
ual patients versus PFS time of the corresponding patients. (g) and (i) are
the nomograms constructed with mpRS and clinical characteristics to
estimate the risk of death, along with the assessment of the model cali-
bration in the training cohort, retrospective test cohort, and prospective
cohort, respectively (e.g., for a ADC patient with MRS of 0.6 and ECOG
1, his total point is 89 (MRS 0.6 corresponding to point 39, ECOG 1
corresponding to point 50, ADC corresponding to point 0, 39 + 50 + 0 =
89), which corresponds to a 6-month OS probability of 0.94, 1-year OS
probability of 0.81, and 2-year OS probability of 0.59). (h) is the scatter
plot of nomograms’ predicted 1-year OS probability of individual patients
versus OS time of the corresponding patients. For (e) and (h), the red
points represent the training cohort, the green points represent the test
cohort, and the blue points represent the prospective cohort. The vertical
dotted line and the horizontal dotted line mean the actual PFS and OS
probability obtained with Kaplan–Meier estimate at the certain time point,
and the horizontal dotted line means the 6-month and 1-year time points.
The pair of the vertical and horizontal dotted lines divided the graph into 4
quadrants, the points in the lower left and top right quadrants correspond
to the accurate prediction

R
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stable across different scanners. We contend that this is a
strength of the current approach, as it allows for a more
generalizable and transportable model (Supplemental Fig.
S5).

SUVmax and MTV were shown effective in predicting
efficacy and survival at 1 month after immunotherapy in
some studies [42]. However, according to Supplemental
Table S2, these factors were not significant factors in
predicting DCB in our current study. On the one hand,
this may be because the time points were different
(1 month versus 6 months), and SUVmax and MTV
may play different roles at different time points. On the
other hand, this may be due to the different cohorts. Those
prior studies were single institution with rigorous acquisi-
tion protocols, whereas our study utilized data from mul-
tiple scanners and multiple institutions, acquired under
standard of care. We have previously shown that repro-
ducibility of SUVmax and SUVmean under standard-of-
care multi-institutional PET+CT imaging is lower than

that which can be achieved at a single institution under
a research protocol [43].

The present study also possesses some limitations.
First, PD-L1 status of most patients was unavailable in
this dataset and hence could not be used for comparing
with the mpRS. Second, given PET/CT is not commonly
used in clinical follow-up, only 22 patients had follow-up
PET/CT scans that could be further analyzed. Their
radiomics scores had a decreasing trend with time
(Supplemental Fig. S7), suggesting that the risk of pro-
gression increases with time, which may be caused by the
emergence of resistance. And the significant prediction
results (AUC = 0.82) showed the radiomics signature
might be used as a prediction biomarker in real time to
guide the following immunotherapy pending further pro-
spective validation with larger cohorts. Third, in order to
capture enough data for training, an interval time of
6 months in inclusion criterion was fairly broad.
However, the median (average) interval time of these data
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Fig. 6 Stratified Kaplan–Meier survival curves. (a–c) are stratified
Kaplan–Meier survival curves of PFS according to mpRS on training,
retrospective test and prospective test cohorts within the different

subgroups of histology. (d–f) are stratified Kaplan-Meier survival curves
of OS according to mpRS on training, retrospective test, and prospective
test cohorts within the different subgroups of histology
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was 1.73 (2.13) months for the retrospective cohort, and
most of the PET/CT images (76%) were acquired within
3 months. Through ANOVA analysis (Fig. S8), there was
no significant difference of mpRS among different sub-
groups divided by interval time for DCB and NDB pa-
tients on both training and test cohorts. Additionally, the
AUCs were decreased with the interval time larger than
3 months and 2 months in the training and test cohorts,
respectively, but the differences were not significant. One
possible reason is the small number of patients with the
interval time larger than 3 months. And another possible
reason could be the mpRS was not significantly correlated
with the volume of the tumor (Spearman’s rho = − 0.20,
P = 0.06 for the training cohort; Spearman’s rho = − 0.17,
P = 0.27 for the test cohort), which means the increased
volume within the interval time may not lead to the sig-
nificant variations of mpRS in predicting DCB. Given the
subgroup patients with 0–1-month interval time has the
largest AUC in both training and test cohorts, the interval
time of all the patients in the prospective cohort was less
than 1 month. Lastly, there were significant differences in
distant metastasis between the retrospective and prospec-
tive cohorts, but this did not affect the final prediction of
DCB due to the incorporation of distant metastasis into
the DCB nomogram model. Given distant metastasis is
not a significant factor for PFS and OS prediction, this
difference also would not affect the PFS and OS
prediction.

Conclusions

In conclusion, an effective and stable radiomics signature
combining PET and KLD features was identified and may

serve as a predictive biomarker for immunotherapy response.
Furthermore, radiomics nomograms well demonstrated the
incremental value of the radiomics signature for individual-
ized DCB response and PFS and OS estimation and have a
potential to be used to guide individual pre- and post-
immunotherapy pending further external validation with larg-
er cohorts.
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