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Abstract
Purpose To assess the predictive power of pre-therapy 18F-FDG PET/CT-based radiomic features for epidermal growth factor
receptor (EGFR) mutation status in non-small cell lung cancer.
Methods Two hundred and forty-eight lung cancer patients underwent pre-therapy diagnostic 18F-FDG PET/CT scans and were
tested for genetic mutations. The LIFEx package was used to extract 47 PET and 45 CT radiomic features reflecting tumor
heterogeneity and phenotype. The least absolute shrinkage and selection operator (LASSO) algorithm was used to select
radiomic features and develop a radiomics signature. We compared the predictive performance of models established by
radiomics signature, clinical variables, and their combinations using receiver operating curves (ROCs). In addition, a nomogram
based on the radiomics signature score (rad-score) and clinical variables was developed.
Results The patients were divided into a training set (n = 175) and a validation set (n = 73). Ten radiomic features were selected to
build the radiomics signature model. The model showed a significant ability to discriminate between EGFR mutation and EGFR
wild type, with area under the ROC curve (AUC) equal to 0.79 in the training set, and 0.85 in the validation set, compared with
0.75 and 0.69 for the clinical model. When clinical variables and radiomics signature were combined, the AUC increased to 0.86
(95% CI [0.80–0.91]) in the training set and 0.87 (95% CI [0.79–0.95]) in the validation set, thus showing better performance in
the prediction of EGFR mutations.
Conclusion The PET/CT-based radiomic features showed good performance in predicting EGFRmutation in non-small cell lung
cancer, providing a useful method for the choice of targeted therapy in a clinical setting.
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Introduction

Lung cancer is a malignant tumor with the highest morbidity
and mortality in the world. Non-small cell lung cancer
(NSCLC) accounts for more than 85% of lung cancer patients,
adenocarcinoma being the most common pathological type
[1]. In recent years, with the development of molecular biol-
ogy, targeted therapy has gained increasing attention, in addi-
tion to more traditional treatment methods. In particular, epi-
dermal growth factor receptor tyrosine kinase inhibitors
(TKIs) have been widely used in the treatment of NSCLC
and were shown to effectively prolong the survival of lung
adenocarcinoma patients with epidermal growth factor recep-
tor (EGFR) gene mutations [2]. Accordingly, it is important to
determine whether a patient has EGFR mutations prior to
targeted therapy. Currently, tissue or cytological specimens
are commonly used for genetic testing, which are mostly
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invasive, making them unavailable to many NSCLC patients
due to technical difficulties, cost, patient health status, tumor
heterogeneity, and other reasons [3]. Therefore, it is necessary
to develop noninvasive, rapid, and simple methods for gene
mutation detection.

Radiomics is an emerging field in which a large number of
objective and quantitative imaging features are explored to
select those most significantly associated with clinical, patho-
logical, molecular, and genetic characteristics, so as to im-
prove the diagnostic and prognostic accuracy and the evalua-
tion of therapeutic efficacy [4]. At present, radiomics research
for predicting lung cancer gene mutations is mostly based on
CT images [5–7]. However, there are few studies on 18F-FDG
PET/CT in this field, often based on visual analysis or con-
ventional quantitative indicators such as SUV values, leading
to unsatisfactory predictive ability [8–10]. In this paper, 18F-
FDG PET/CT radiomics, which extracts the texture features of
PET and CT images from the same volume of interest (VOI),
and combines the texture features of metabolism and structure,
is applied to develop a radiomics signature for the prediction
of EGFRmutation status. Therefore, the aim of this study was
to build and validate a PET/CT radiomics-based model to
predict EGFR mutation status in patients with lung
adenocarcinoma.

Materials and methods

Patient selection

This was a retrospective single-center study.We included con-
secutive patients with histologically proven lung adenocarci-
noma, who had undergone pre-therapy 18F-FDGPET/CTscan
between January 2015 and January 2019 in our department,
and satisfying the following inclusion criteria: (1) lung adeno-
carcinoma confirmed by pathology, (2) 18F-FDG PET/CT ex-
amination performed within 1 month before surgery or biopsy,
(3) no anti-tumor treatment received before PET/CT examina-
tion, (4) no history of other malignant tumors, (5) single lesion
with a maximum diameter of > 1 cm to avoid partial volume
effects. The exclusion criteria were (1) no genetic testing for
EGFR or other mutations and (2) pure ground-glass nodule
(pGGN) without FDG metabolism.

According to the above criteria, 248 lung cancer patients
were included, including 135 males and 113 females, with an
average age of 62.43 ± 9.19 years (range 29–84). The sample
included 133 EGFR mutant and 115 EGFR wild-type cases.
The patients were randomly divided into two sets, in the ratio
of 7:3, with 175 cases assigned to the training set and 73 to the
validation set. The study was approved for retrospective anal-
ysis by the institutional ethics committee and the requirement
of informed consent was waived. The patient selection process
is shown in Fig. 1.

EGFR mutation detection

EGFRmutation detection was performed on histological spec-
imens obtained by surgical resection or puncture. EGFR mu-
tation detection was conducted by real-time fluorescence PCR
method to detect mutations of exons 18–21 of the EGFR gene.
The Roche Cobas DNA sample preparation and EGFR muta-
tion detection kit were used, with the specific steps carried out
in accordance with the kit instructions. PCR analysis was per-
formed using Roche Cobas Z480. If any exon mutation in
EGFR exons 18–21 was detected, the tumor was considered
EGFR mutant. Otherwise, the tumor was classified as EGFR
wild type.

Image acquisition

The imaging acquisition protocol was established following the
Image Biomarker Standardisation Initiative (IBSI) reporting
guidelines [11]. All the details of the procedures are provided
in the electronic supplementary material. 18F-FDG PET/CT
(GEMINI GXL16, PHILIPS, The Netherlands) examination
was performed within 1 month before treatment. Briefly, 18F-
FDG PET/CT images were acquired 60 ± 5 min after 18F-FDG
injection in accordance with the European Association of
Nuclear Medicine (EANM) guidelines, version 1.0 (version 2.0
from February 2015) [12]. A 3D LOR reconstruction algorithm
was used to reconstruct the PET images. The attenuation correc-
tion of PET images was carried out with CT data, and the
corrected PET images were fused with CT images.

Radiomic feature extraction

The LIFEx package (version 4.00, http://www.lifexsoft.org)
was used to extract the texture features of PET/CT images of
lesions in the same VOI [13]. The PET/CT image of the pa-
tient in the DICOM format was imported into the software.
Two experienced PET/CT diagnostic physicians semi-
automatically delineated the region of interest of the target
lesion using a threshold of 40% of the maximum standardized
uptake value (SUVmax) [14]. Then, the software program au-
tomatically calculates and extracts 47 PET radiomic features
and 45 CT radiomic features, which are provided in the
Supplementary Material.

Radiomic feature selection and model establishment

In our study, the number of radiomic features was large, while
the number of cases was relatively small. In order to avoid
overfitting of the model, we first selected the features with
significant differences between EGFR mutant and wild type
in the training set using the Mann–WhitneyU test, obtaining a
total of 53 features with p value < 0.05. Then, the least abso-
lute shrinkage and selection operator (LASSO) algorithm was
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used to select the optimal predictive features among the 53
selected in the training set [15]. The LASSO algorithm adds a
L1 regularization term to a least square algorithm to avoid
overfitting. A prediction model was established by logistic
regression, and the radiomics signature score (rad-score) for
each patient was calculated based on the selected discriminat-
ing radiomic features. The model performance was tested in
the validation set. The receiver operating characteristic (ROC)
curve and the area under the curve (AUC) were used to eval-
uate the model performance in the training and validation sets.

Rad-score and clinical information variables were com-
bined to establish a multivariate logistic regression model
(the complex model) and to develop a nomogram, which
can intuitively display the prediction result for each patient.
Moreover, calibration curves were plotted to improve the no-
mogram’s prediction accuracy, which was verified by the
Hosmer–Lemeshow test.

Statistical analysis

Statistical analyses were performed with the R software (ver-
sion 3.4.3, http://www.R-project.org), the EmpowerStats
software (www.empowerstats.com, X&Y solutions, Inc.
Boston MA), and SPSS Statistics for Windows (version 21.
0, IBM, Armonk, NY, USA). The R package “glmnet” was

used to perform LASSO binary logistic regression analysis;
the “rms” package, to create the nomogram; and the “pROC”
package, to analyze ROC curves. Independent sample t tests
or Mann–Whitney U tests were used to compare continuous
variables, while the chi-squared test was used for the compar-
ison of categorical variables. A p value < 0.05 was considered
statistically significant.

Results

Clinical characteristics of patients

The baseline characteristics of the patients in the training and
validation sets are summarized in Table 1. There were no
statistical differences in age (p = 0.3849), gender (p =
0.4397), smoking history (p = 0.5652), pathological stage (p
= 0.8117), or carcinoembryonic antigen (CEA) level (p =
0.2721) between the training and the validation sets. Gender
and smoking history were significantly different between the
EGFRmutation and EGFR wild-type groups in both the train-
ing (both p < 0.0001) and the validation set (p < 0.0001 and p
= 0.0003, respectively). EGFR mutations were more common
in women and never smokers, while the EGFR wild type
status was more common in men and smokers in both sets.

Fig. 1 Flowchart of patient
selection. EGFR, epidermal
growth factor receptor; pGGN,
pure ground-glass nodule
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Age, CEA level, and pathological stage were not significantly
different between the EGFR mutation and EGFR wild-type
groups in either the training or the validation set. Univariate
analyses revealed that gender (OR = 3.9, 95% CI [2.1–7.3], p
< 0.001) and smoking history (OR = 0.1, 95% CI [0.1–0.3], p
< 0.001) were significant predictors of EGFR mutation.

Feature extraction and selection

The LASSO algorithm and 10-fold cross-validation were used
to extract the optimal subset of radiomic features. Eventually,
10 radiomic features were extracted to build the radiomics
signature based on the 175 patients included in the training
set (Fig. 2). The 10 selected radiomic features were
SUVpeaksphere, SHAPE_Compacity, Grey-Level Co-occur-
rence Matrix_Energy (GLCM_Energy), Grey-Level Zone
Length Matrix_Short-Zone Emphasis (GLZLM_SZE), Grey-
Level Zone Length Matrix_Zone Percentage (GLZLM_ZP),
Maximum, SHAPE_Sphericity, Grey-Level Run Length
Matrix_High Grey-level Run Emphasis (GLRLM_HGRE),
Neighborhood Grey-Level Different Matrix_Busyness
(NGLDM_Busyness), and Grey-Level Zone Length
Matrix_Zone Length Non-Uniformity (GLZLM_ZLNU).
Among the above features, the first 5 are PET features and
the last 5 are CT features. A radiomics signature score (rad-
score) for each patient was calculated using the following
formula:

Rad-score = – 8.60837 + 0.08830 × SUVpeaksphere + 1.95669
× SHAPE_Compacity + 10.20396 × GLCM_Energy – 2.81476
× GLZLM_SZE – 1.35737 × GLZLM_ZP – 0.00724 ×

Maximum + 7.25372 × SHAPE_Sphericity + 0.00016 ×
GLRLM_HGRE – 24.53804 × NGLDM_Busyness – 0.00687
× GLZLM_ZLNU

The median and the interquartile range for the 10 selected
radiomic features and the calculated rad-score are shown in
Table 2. The rad-score and the 10 selected features were sig-
nificantly different between the EGFR mutant and the EGFR
wild-type groups in both the training and the validation sets (p
< 0.05). Specifically, lung adenocarcinomas with EGFR mu-
tations had higher rad-score than those with wild-type EGFR
in both the training (rad-score = 0.908 vs − 0.154) and vali-
dation sets (rad-score = 0.710 vs − 0.257). The rad-score for
each patient in the two sets is displayed in the form of a bar
graph in Fig. 3a and b.

Performance of the radiomics signature and clinical
features

To evaluate the performance of the radiomic features in
predicting EGFR mutation status, we compared models
based on the radiomics signature, clinical variables (gender,
smoking history), and their combinations (Fig. 4). The
radiomics model had good predictive performance, and
its AUCs in differentiating EGFR mutation status were
0.79 (95% CI [0.73–0.86]) in the training set and 0.85
(95% CI [0.76–0.94]) in the validation set. The clinical
model had AUCs of 0.75 (95% CI [0.68–0.82]) and 0.69
(95% CI [0.58–0.81]) in the training and validation set,
respectively. The AUC values of these two models were
not significantly different in the training set (p = 0.3212)

Table 1 Clinical characteristics of lung adenocarcinoma patients in the training and validation sets

Characteristic Training set (n = 175) p Validation set (n = 73) p

EGFR mutant (n = 97) EGFR wild type (n = 78) EGFR mutant (n = 36) EGFR wild type (n = 37)

Age (mean ± SD) (years) 62.25 ± 8.58 63.41 ± 9.71 0.4082 62.03 ± 9.61 61.24 ± 9.42 0.7257

Gender < 0.0001 < 0.0001

Male 37 (38.14%) 55 (70.51%) 12 (33.33%) 31 (83.78%)

Female 60 (61.86%) 23 (29.49%) 24 (66.67%) 6 (16.22%)

Smoking history < 0.0001 0.0003

Never 73 (75.26%) 22 (28.21%) 26 (72.22%) 10 (27.03%)

Current or ever 24 (24.74%) 56 (71.79%) 10 (27.78) 27 (72.97%)

Pathological stage 0.2139 0.3937

I 48 (49.48%) 32 (41.03%) 20 (55.56%) 15 (40.54%)

II 12 (12.37%) 5 (6.41%) 3 (8.33%) 6 (16.22%)

III 10 (10.31%) 13 (16.67%) 2 (5.56%) 5 (13.51%)

IV 27 (27.84%) 28 (35.90%) 11 (30.56%) 11 (29.73%)

CEA level 0.6598 0.3624

Normal (< 5 ng/ml) 70 (72.16%) 53 (67.95%) 26 (72.22%) 31 (83.78%)

Abnormal (≥ 5 ng/ml) 27 (27.84%) 25 (32.05%) 10 (27.78%) 6 (16.22%)

EGFR, epidermal growth factor receptor; SD, standard deviation; CEA, carcinoembryonic antigen
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and marginally significant in the validation set (p =
0.0529). The complex model, based on the radiomics sig-
nature score (rad-score) and clinical variables, had higher
AUCs, namely 0.86 (95% CI [0.80–0.91]) and 0.87 (95%
CI [0.79–0.95]) in the training and validation set, respec-
tively. There were statistically significant differences in
AUC between the complex and the clinical model in both
the training and the validation sets (both p < 0.0001). In
the training set, the AUCs of the complex and the
radiomics models were also significantly different (p =
0.0194). However, in the validation set, there was no sta-
tistically significant difference in AUC between the
radiomics and the complex model (p = 0.6974). The pre-
dictive abilities of the three models, including sensitivity,
specificity, positive predictive value, negative predictive
value, and accuracy, are shown in Table 3.

Individualized nomogram construction and validation

Considering that the complex model based on both rad-score
and clinical variables (gender, smoking history) had better
ability to predict gene mutation, we created a nomogram
representing the individualized predictions based on the train-
ing set, which can visualize the prediction result and the pro-
portion of each factor (Fig. 5a). The calibration curve of the
nomogram is presented in Fig. 5b and c and shows good
agreement between the predicted and observed values in the
training and validation sets. The Hosmer–Lemeshow test was
not significant in either the training (χ2 = 3.568, p = 0.894) or
the validation set (χ2 = 11.196, p = 0.191), demonstrating a
good fit.

Discussion

Given the well-established role of tyrosine kinase inhibitors in
the treatment of lung adenocarcinoma with EGFR mutations,
EGFR genotyping is crucial for targeted treatment. The tradi-
tional identification of the EGFR genotype is invasive and
likely limited by several factors, such as patient refusal to
undergo an invasive biopsy, the location or size of the tumor,
difficulties in biopsy sampling, lack of available tissue, poor
health status of the patient, tumor heterogeneity in space and
time [16–18]. In this study, we established a model based on
10 radiomic features derived from pre-therapy 18F-FDG PET/
CT images to predict EGFR mutations in lung adenocarcino-
ma patients, which showed good predictive performance.

Among the 10 selected features in our study, SUVpeak is a
basic PET feature, while Maximum is a basic CT feature. In
both the training and validation sets, SUVpeak and Maximum
were lower in the EGFR mutation group than in the EGFR
wild group. SUVpeak reflects the mean SUV in a sphere with a
volume of 1 mL, located so that the average value in the VOI
is at maximum and is less affected by noise than SUVmax. Kim
et al. showed that the values of all the metabolic and volumet-
ric 18F-FDG PET/CT parameters were significantly lower in
EGFR mutant than in EGFR wild type lung adenocarcinomas
and that SUVpeak was an independent prognostic factor.
EGFR mutations were associated with low metabolic activity
of localized lung adenocarcinoma on 18F-FDG PET/CT [19].
Some scholars believe that EGFR tyrosine kinase can promote
the glucose uptake of tumor cells: tumor cells with high active
glucose metabolism have sufficient glucose uptake, so they
have less demand for EGFR tyrosine kinase than tumor cells

Fig. 2 The LASSO algorithm and 10-fold cross-validation were used to
extract the optimal subset of radiomic features. a Optimal feature selec-
tion according to AUC value. When the value ln (λ) increased to − 4.071,
the AUC reached the peak corresponding to the optimal number of

radiomic features. b LASSO coefficient profiles of the 53 radiomic fea-
tures. The vertical line was drawn at the value selected by 10-fold cross-
validation, where the optimal λ resulted in 10 nonzero coefficients
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with low metabolism. Therefore, the EGFR mutation rate of
non-small cell lung cancer patients with high SUVmax is lower
[20]. Our findings are consistent with such results.

In our study, the Maximum feature was significantly lower
in the EGFR mutation group than in the wild-type group,
whichmay be related to the fact that the EGFRmutation group
had more ground-glass opacity (GGO) components and less
solid and pulmonary fibrosis components [21–23]. Sacconi
et al. found that the mean, standard deviation, and skewness
of CT quantitative parameters were associated with EGFRmu-
tations in advanced lung adenocarcinoma and that the mean
CT values of the EGFR mutation group were lower than those
of the wild-type group [24], in agreement with our results.
However, in our study, the mean CT value showed marginal
significance between the EGFRmutation group and the EGFR
wild-type group. Finally, Maximum, which showed a signifi-
cant difference, was selected as the modelling index by
LASSO regression, which might be related to differences in
the number of enrolled patients between the two studies.

SHAPE_Sphericity describes how spherical a volume of
interest is and is equal to 1 for a perfect sphere.
SHAPE_Compacity reflects how compact the volume of in-
terest is. According to Desseroit et al., the 3D shape features of
lesions, such as irregularity and sphericity, extracted from
PET and low-dose CT images, are highly repeatable, so that
they can provide morphological indexes of lesions with good
accuracy [25]. In our study, lung adenocarcinomas of the
EGFR mutant type had higher sphericity and were more com-
pact than those with wild-type EGFR.Ta
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Fig. 3 Rad-score of patients in the training and validation sets
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The remaining 6 texture features, including three PET meta-
bolic texture features (GLCM_Energy, GLZLM_SZE,
GLZLM_ZP) and three CT texture features (GLRLM_HGRE,
NGLDM_Busyness, GLZLM_ZLNU), are all associated with
image uniformity and heterogeneity. In this study, lung adeno-
carcinomas with EGFR mutations were more heterogeneous
than those with wild-type EGFR. Many studies have appeared
on heterogeneity in radiomics. Aerts et al. found that radiomic
features could reflect the inherent heterogeneity of lung tumors
and were related to the tumor types based on gene expression
[26]. Yip et al. analyzed the 18F-FDG PET/CT images of 348
NSCLC patients and assessed 21 imaging features, finding that
the PET radiomic features could characterize the differences in
tumor metabolic phenotypes caused by EGFR mutations, and
might potentially be used to develop noninvasive imaging bio-
markers for somatic mutations [27]. Rios Velazquez et al. ana-
lyzed the radiomic characteristics of 763 patients with lung ade-
nocarcinoma from 4 medical centers and their relationship with
EGFR andKRASmutations. Univariate analysis showed that 16
features were associated with EGFR mutations, all of which
suggested that tumors with EGFR mutations were more hetero-
geneous [28]. Our results are consistent with those of the studies
mentioned above: We found that lung adenocarcinomas with

EGFR mutation had lower metabolism and density, and PET
and CT images were more heterogeneous than those of EGFR
wild-type lung cancer.

Large-scale studies indicate that EGFR mutations are more
likely to occur in Asians, adenocarcinomas, females, and non-
smokers [29, 30]. Gender and smoking history are also pre-
dictors of EGFR mutation status in our study. The radiomics
model we developed showed a significant ability to discrimi-
nate between EGFR mutation and EGFR wild type, and when
combined with clinical features, its prediction accuracy was
significantly improved, supporting the complementarity of
radiomics and clinical signatures. Furthermore, we created a
nomogram including the radiomics signature score and clini-
cal risk factors (gender, smoking history), which can visualize
the prediction results and provide an easy-to-use method for
individualized prediction of EGFR mutations.

The studies by Liu et al. [31] and Zhang et al. [32] also
demonstrated that combining radiomics features with clinical
risk factors can provide added predictive value for EGFRmutant
status. However, their radiomics studies on the prediction of
lung cancer gene mutations are all based on CT images only.
In our study, the radiomics method is applied to 18F-FDG PET/
CT images to extract the texture features of PETand CT images,

Fig. 4 ROC curves for the radiomics model, the clinical model, and the complexmodel in differentiating EGFRmutation status. a The ROC curve of the
training set. b The ROC curve of the validation set

Table 3 Predictive performance of three models in the training and validation sets

Model Training set Validation set

AUC (95%CI) Sensitivity (%) Specificity (%) Accuracy (%) AUC (95%CI) Sensitivity (%) Specificity (%) Accuracy (%)

Clinical model 0.75 (0.68–0.82) 75.26 71.79 73.71 0.69 (0.58–0.81) 72.22 72.97 72.60
Radiomics model 0.79 (0.73–0.86) 64.95 82.05 72.57 0.85 (0.76–0.94) 86.11 78.38 82.19
Complex model 0.86 (0.80–0.91) 84.54 74.36 80.00 0.87 (0.79–0.95) 91.67 70.27 80.82
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and to integrate the texture features of metabolism and structure.
Simply by visual observation, it can be noted how the model
generated by PET/CT radiomic features alone is superior to the
models generated by CT radiomic features alone in predicting
EGFR mutations. Notwithstanding these differences, the results
of our study together with those mentioned above indicate the
fact that the combination of radiomics features and clinical var-
iables has a complementary and synergistic effect in predicting
gene mutations.

The potential clinical significance of our study is two-fold:
(1) It provides a relatively accurate, convenient, and noninva-
sive method for predicting EGFR mutation status, applicable

to patients with contraindications for biopsy. (2) The EGFR
mutation status can be dynamically observed, as can be the
effectiveness of targeted drug therapy, through the changes of
PETand CT texture features. Therefore, the radiomics method
based on PET/CT is expected to solve the problem of
conducting multiple lesion biopsies in clinical work.

Our study has some limitations: (1) Its single-center design
and the relatively small sample size may compromise the
model’s generalization ability and affect its sensitivity and
specificity. Therefore, it is necessary to formulate a unified
standard for multi-center studies and to establish and test
multi-center data through radiomics methods to ensure better

Fig. 5 Development and performance of a nomogram. a Nomogram
based on rad-score and clinical factors (gender and smoking history).
Calibration curves of the nomogram in the training (b) and validation sets
(c). The horizontal axis is the predicted incidence of the EGFR mutation.

The vertical axis is the observed incidence of the EGFRmutation. The red
line on the diagonal is the reference line, indicating that the predicted
value is equal to the actual value. The black line is the calibration curve,
and the yellow area on both sides represents the 95% CI
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robustness of themodel. (2) EGFRmutation status of only one
tissue type (lung adenocarcinoma) has been studied, and the
predictive performance of this model in other lung cancer
types should be further validated. (3) This study proves that
the radiomics model has good prediction performance: In the
future, deep learning models based on PET/CT images should
be established. Models established by different methods
should be compared and combined to develop a model with
optimal prediction performance.

In conclusion, the model developed by pre-therapy 18F-
FDG PET/CT-based radiomic features has good predictive
performance. 18F-FDG PET/CT radiomics provides a relative-
ly accurate, convenient, and noninvasive method for
predicting EGFR mutation status, which can be very useful
in the clinical practice to identify candidates for targeted
therapy.
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