
ORIGINAL ARTICLE

The A/T/N model applied through imaging biomarkers
in a memory clinic

Alessandra Dodich1
& Aline Mendes2 & Frédéric Assal3 & Christian Chicherio4,5

& Barinjaka Rakotomiaramanana6 &

Paulina Andryszak4,6 & Cristina Festari7,8 & Federica Ribaldi6,7,8 & Max Scheffler9 & Roger Schibli10,11 &

Adam J. Schwarz12,13,14 & Dina Zekry2 & Karl-Olof Lövblad15
& Marina Boccardi6,7 & Paul G. Unschuld16

& Gabriel Gold2
&

Giovanni B. Frisoni4,6,7 & Valentina Garibotto1,17

Received: 3 July 2019 /Accepted: 12 September 2019 /Published online: 2 December 2019
# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Purpose The A/T/N model is a research framework proposed to investigate Alzheimer’s disease (AD) pathological bases (i.e.,
amyloidosis A, neurofibrillary tangles T, and neurodegeneration N). The application of this system on clinical populations is still
limited. The aim of the study is to evaluate the topography of T distribution by 18F-flortaucipir PET in relation to A and N and to
describe the A/T/N status through imaging biomarkers in memory clinic patients.
Methods Eighty-one patients with subjective and objective cognitive impairment were classified as A+/A− and N+/N− through
amyloid PET and structural MRI. Tau deposition was compared across A/N subgroups at voxel level. T status was defined
through a global cut point based on A/N subgroups and subjects were categorized following the A/T/N model.
Results A+N+ and A+N− subgroups showed higher tau burden compared to A−N− group, with A+N− showing significant
deposition limited to the medial and lateral temporal regions. Global cut point discriminated A+N+ and A+N− from A−N−
subjects. On A/T/N classification, 23% of patients showed a negative biomarker profile, 58% fell within the Alzheimer’s
continuum, and 19% of the sample was characterized by non-AD pathologic change.
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Conclusion Medial and lateral temporal regions represent a site of significant tau accumulation in A+ subjects and possibly a
useful marker of early clinical changes. This is the first study in which the A/T/Nmodel is applied using 18F-flortaucipir PET in a
memory clinic population. The majority of patients showed a profile consistent with the Alzheimer’s continuum, while a minor
percentage showed a profile suggestive of possible other neurodegenerative diseases. These results support the applicability of
the A/T/N model in clinical practice.
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Introduction

In 2018, the National Institute on Aging and Alzheimer’s
Association (NIA-AA) proposed a “research framework”
based on the A/T/N model [1] for observational and in-
terventional research on Alzheimer’s disease (AD) [2].
Differently from the NIA-AA diagnostic criteria [3], this
framework defines AD as a biological rather than a clin-
ical construct, characterized by extracellular deposits of
β-amyloid peptide (Aβ; “A”), intraneuronal aggregates
of hyperphosphorylated tau (“T”) and neurodegeneration
(“N”). The A/T/N model considers A, T, and N status
relatively independent from one another. As a conse-
quence, this model takes into consideration possible alter-
native biomarker pathways leading to AD, together with
clear negative (A−T−N−) and positive (A+T+N+) AD
profiles. In particular, the description of subjects with an
A−N+ profile (i.e., suspected non-Alzheimer’s pathology
(SNAP)) [4], who represent approximately the 25% of
both cognitively unimpaired individuals aged > 65 year
and mildly cognitive impaired individuals [4], questions
the classical temporal evolution of AD biomarkers.
Overall, these findings call for the investigation of the
dynamic interactions between AD-related pathological
phenomena through multimodal biomarkers in order to
characterize and identify differential disease trajectories,
as this could lead to a significant improvement in guiding
diagnostic and prognostic reasoning in clinical practice.

Studies applying the A/T/N model on clinical and preclin-
ical populations are still limited [5–9]. Overall, they suggest
an age effect in the A/T/N profile distribution in cognitively
unimpaired subjects [7], and a variability in clinical popula-
tion according to the clinical disease stage [8]. Notably,
Ekman and colleagues explored the A/T/N frequencies in pa-
tients with stable mild cognitive impairment (MCI) or who
progressed to dementia at 36 months of follow-up, showing
that 84% of progressor MCI presented at baseline an A+T+
profile (A+T+N+ 54%, A+T+N− 30%), compared to 48% of
stable MCI (29% A+T+N+ 19% A+T+N−) and 21% of
healthy controls (A+T+N+ 12%, A+T+N− 9%) [8]. Thus,
the presence of tau pathology associated to amyloid positivity
might represent a strong indicator of clinical decline. The in-
troduction of PET tracers with high affinity to paired helical

tau filaments (see [10] for review) and successfully discrimi-
nating AD from other neurodegenerative disease [11] offers
the opportunity not only to evaluate the T positivity but also to
describe its topographical distribution, representing thus a bio-
marker of disease stage [2].

Aim of the study was to evaluate in a patient population
enrolled in a prospective study currently ongoing at the Geneva
University Hospitals the occurrence and distribution of tau pa-
thology in the presence of A and N, on the basis of which the
cutoff for T positivity was defined. Finally, we assessed by im-
aging biomarkers the frequency of A/T/N profiles.

Methods

Subjects

Eighty-one subjects were included in the context of an ongo-
ing study investigating the pathological bases of AD as
displayed through advanced PETand magnetic resonance im-
aging (MRI) biomarkers. Subjects with subjective cognitive
decline (SCD n = 16), mild cognitive impairment (MCI n =
57), and AD dementia (n = 8) were prospectively recruited in
the Geneva Memory Center at Geneva University Hospitals.
Inclusion criteria were (i) subjects older than 50 (ii) cognitive
complaints [12], satisfaction of Petersen’s criteria for MCI
[13] or probable AD [14]. The presence of psychiatric disor-
ders or stigmata of vascular dementia represented exclusion
criteria for this prospective study.

At baseline, all subjects underwent in-depth neurological
evaluation and standard neuropsychological assessment in
agreement with that included in IMI Pharmacog WP5/
European ADNI, adapted from US ADNI [15] (for the battery
of tests see http://www.centroalzheimer.org/sito/contenuti/
download/pharmacog_battery.pdf).

MRI scan, amyloid and tau PET scans were acquired with-
in a year from inclusion between March 2016 and June 2018.
The local review board (Commission cantonale d’éthique de
la recherche—CCER de Genève) approved the study, which
has been conducted in accordance with the principles of the
Declaration of Helsinki and the International Conference on
Harmonization Good Clinical Practice. Each subject provided
written informed consent for participation in the study.
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Structural imaging data acquisition

Magnetic resonance imaging was performed at Geneva
University Hospitals’ radiology department in 72 individuals,
using a 3 Tesla Siemens Magnetom Skyra scanner, equipped
with a 64-channel head coil. T1-weighted (3D sagittal acqui-
sition, square FOV = 256 mm, slice thickness = 0.9 mm, TR/
TE = 1930/2.4 ms, flip angle = 8°, no fat suppression) and
fluid-attenuated inversion recovery (FLAIR, 3D sagittal ac-
quisition, FOV = 256 mm, slice thickness = 1 mm, TR/TE/
TI = 5000/386/1800 ms, flip angle = 120°) images were ac-
quired corresponding to IMI Pharmacog WP5/European
ADNI sequences and published procedures [16]. Nine sub-
jects underwent MRI for clinical reasons before study inclu-
sion with various protocols, all including T1 images, and im-
aging according to the exact ADNI parameters was not repeat-
ed in these cases. Images were stored on the hospital’s Picture
Archiving and Communication System. Lesion Prediction
Algorithm [17] (LPA), a fully automated algorithm imple-
mented in Lesion Segmentation Toolbox (LST), was used to
segment FLAIR images. LST allows extracting the number of
white matter lesions, as well as overall lesion volume.

Amyloid PET data acquisition

PET scanning using [18-F] radioligands was performed at the
nuclear medicine and molecular imaging division at Geneva
University Hospitals using a Siemens Biograph mCT PET
scanner. Aβ images were acquired using 18F-florbetapir
(n = 64) or 18F-flutemetamol (n = 17) tracers. 18F-
florbetapir images were acquired 50 min after the intravenous
administration of 200Mbq of the radiotracer (3 × 5-min image
frames). For 18F-flutemetamol the injected radiotracer’s dose
was 150MBq and images were acquired 90 min after the time
of injection (4 × 5-min image frames).

Tau PET data acquisition and preprocessing

18F-flortaucipir (18F-AV1451), synthesized at the Center for
Radiopharmaceutical Sciences ETH-PSI-USZ in Zurich,
Switzerland, under license from the IP owner (Avid/Lilly), was
used for the tau PET scans. Subjects received 180 MBq of 18F-
flortaucipir, with image acquisition performed 75min after injec-
tion (acquisition time 30 min) [18]. Each emission frame was
reconstructed in 6 × 5-min frames using a 3D OSEM iterative
reconstruction (4 iterations, 12 subsets), corrected for randoms,
dead time, normalization, scatter, attenuation, and sensitivity, and
averaged after motion correction.

Tau-PET images were preprocessed using the SPM12 soft-
ware package (Wellcome Department of Cognitive
Neurology, London, UK) and MATLAB R2013a
(MathWorks, Natick, MA, USA). For each subject, PET im-
ages were first rigidly co-registered to T1-weighted MRI scan

images. The MRI images were spatially normalized into the
Montreal Neurological Institute space to obtain the normali-
zation matrix, which was then applied to the co-registered
PET scans. Each individual image was smoothed with a 6-
mm full-width at half-maximum Gaussian kernel with inten-
sity normalization applied using the cerebellar crus as refer-
ence region [19] and data from specific regions of interest
(ROIs) [20] were extracted using the automated anatomic la-
beling atlas [21].

Classification of A and N status

Criteria for N and A classification are summarized in Table 1.
A positivity was determined in each patient by an expert in
nuclear medicine (VG) using visual assessment and standard
operating procedures approved from the European Medicines
Agency (https://www.ema.europa.eu/documents/product-
information/vizamyl-epar-product-information_en.pdf;
https://www.ema.europa.eu/documents/product-information/
amyvid-epar-product-information_en.pdf).

Depending on T1-weighted image availability, N status
was defined by hippocampal volumetry and/or by visual as-
sessment of medial temporal atrophy (MTA) following the 5-
point Scheltens scale [22]. According to this scale, a score of 0
is assigned when no cerebrospinal fluid is seen surrounding
the hippocampus, while a score of 4 represents severe atrophy
of the medial temporal lobe with enlargement of the temporal
horn and the choroid fissure. All subjects were classified ac-
cording to the MTA scale, automated hippocampal volumetry
was available in 72 subjects and was performed using ACM-
AdaBoost software [23] on the neuGRID platform (www.
neugrid2.eu) [24, 25]. Through this software, each
hippocampal volume (left and right sides) was converted
into an age-and-gender-normalized percentile [26]. For sub-
jects without hippocampal volumetry (n = 9) N was defined
through MTA. Three different age-corrected MTA cutoffs
[27–29] and two different percentile-based cutoffs (i.e., at
least one hippocampal volume < 5th percentile or at least
one hippocampal volume < 10th percentile) were considered,
and Cohen’s kappa agreement was computed in subjects with
both measures to define the percentile-based and MTA cutoff

Table 1 Criteria to define A and N status. MTA: medial temporal
atrophy

A • Visual assessment according to approved standard
operating procedures (European Medicines Agency)

N • In 89% of the study group: automated hippocampal
volumetry with AdaBoost: N+ if right or left hippocampal
volume < 5th percentile based on normative values

OR
• In 11% of the study group: MTA classification according to

Scheltens scale: N+ if right or left MTA score above
the age-based cutoff
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with the highest agreement. The MTA cutoff proposed by
Cotta Ramusino and colleagues [29] and ACM-Adaboost <
5th percentile showed the highest agreement (Cohen’s k = 0.
60, 95% CI 0.40–0.79) compared to the others, thus these
criteria were adopted to define N. Subjects with both hippo-
campal volumetry and MTAwere classified according to the
percentile-based cutoff method (see Table 1 for the adopted A
and N criteria).

Statistical analyses

Differences in demographic and clinical features between
A/N subgroups were assessed by ANOVA (Bonferroni
post hoc test) for continuous variables, with non-
parametric statistics used for variables not distributed nor-
mally (Kruskal-Wallis variance analysis and Mann-
Whitney U test for post hoc comparisons, normality test:
Kolmogorov-Smirnov), or chi-square/Fisher exact test
(χ2) for categorical variables. In order to evaluate tau
deposition in A/N subgroups, whole-brain analyses were
performed using SPM12 software package by computing
two-sample t tests on normalized SUVR PET images, in
order to compare degrees of 18F-flortaucipir tracer reten-
tion in A/N subgroups (p < 0.001 uncorrected at the voxel
level, k = 100, p < 0.05 FWE-corrected at the cluster lev-
el). Considering the possible interaction between tau bur-
den and age [30], this was added as a nuisance variable.

Subsequently, a global SUVR score was computed as the
average uptake of specific regions according to previous liter-
ature recommendations (i.e., medio-temporal regions, lateral
occipital cortex, inferior temporal cortex) [20]. In order to
assess the association between tau deposition with clinical
status, non-parametric correlation analyses between MMSE
and global SUVR score were performed (Spearman’s rho) in
the overall sample.

Finally, for subgroups showing significant differences
in 18F-flortaucipir retention in comparison to A−N− sub-
jects, receiver operator characteristic (ROC) curve analy-
ses were performed, in order to compute a global cutoff
score, then used to classify subjects according to T posi-
tivity and to assess the frequency of different A/T/N
subgroups.

Results

Classification of subjects according to the A/N status

Subjects were classified according to A and N biomarkers
as 24 A−N−, 29 A+N−, 10 A−N+, and 18 A+N+ (see
Table 2 for demographic and clinical features). The fre-
quency of A and N positivity was significantly different
across syndromic diagnoses (Fisher’s exact test X2 =

19.16, p = 0.005) and higher in subjects with MCI and
AD dementia, as shown in Table 2. Seventy-two percent
of SCD subjects were N− and all AD dementia patients
were A+ by definition. 61% of MCI patients were A+,
while only 34% were classified as N+. No significant
difference on demographic variables was found between
A/N subgroups. However, the A+N+ subgroup showed a
higher level of global cognitive impairment in comparison
to the other subgroups (Table 2), as assessed by the
MMSE global score (F(3,77) = 9.91, p < 0.001).

18F-flortaucipir distribution in A/N subgroups

The two-sample t tests on whole-brain analyses showed
higher tau burden in A+ subgroups (i.e., A+N− and A+N+).
In particular, compared to A−N−, A+N+ subjects showed a
widespread tau deposition in bilateral medial and lateral tem-
poral lobes, in the retrosplenial/posterior cingulate cortex, in
parietal, frontal, and occipital regions (Fig. 1a). The compar-
ison between A−N− and A+N− revealed an elevated uptake in
the latter subgroup, but restricted to the bilateral medial and
lateral temporal regions (Fig. 1b). Moreover, A+N+ subjects
showed a higher 18F-flortaucipir uptake compared to the A-
N+ subgroup in a right temporal cluster including the fusiform
gyrus, the inferior, middle, and superior temporal gyri, as well
as in the left inferior temporal gyrus (Fig. 1c).

A/T/N classification

The global SUVR index computed according to previous
literature [20] showed a significant negative correlation
wi th c l in ica l s ta tus (MMSE and globa l SUVR
Spearman’s rho = − 0.34, p = 0.002). Moreover, the ROC
curve analyses indicated an excellent discriminability of
global SUVR in comparing A+N+ from A−N− subjects
(area under the curve AUC = 0.84, SE = 0.07, p < 0.001,
CI 95% 0.70–0.98) but lower discriminative power when
comparing A+N− to A−N− subjects (AUC = 0.74, SE =
0.07, p = 0.003, CI 95% 0.60–0.87). A cutoff of 1.24 had
78% sensitivity and 79% specificity in distinguishing A+
N+ from A−N−, and 51% of sensitivity (specificity 79%)
in classifying A+N− from A−N−.

The A/T/N classification using the global SUVR cutoff
score showed that the profiles most frequently observed in
our samplewere those in accordancewith the amyloid cascade
hypothesis (A−T−N− 23%, A+T−N− 16%; A+T+N− 20% or
A+T+N+ 17%). A-subjects positive for either N or T com-
prised 19% of the overall sample (A−T−N+ 9%, A−T+N+
4%, A−T+N− 6%) (Fig. 2).

The frequency of T+ subjects differed in A−N− compared
to the other A+ subgroups (A+N+ X2 (1) = 14.9, p < 0.001;
A+N− X2 (1) = 7.5, p = 0.006) while no differences were
found with the A−N+ subgroup (X2 (1) = 0.48, p = 0.49).
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Fig. 1 Significant results in voxel-wise comparisons of 18F-flortaucipir
retention between A/N subgroups. aA+N+>A−N−; bA+N− >A−N−; c
A+N+ >A−N+. No significant results were found in A−N+ >A−N−.

Threshold: p < 0.001 uncorrected at voxel level, k = 100 p < 0.05 FWE
corrected at cluster level

Table 2 Clinical and demographic characteristics according to the A/N status

A−N− n = 24
(30%)

A−N+ n= 10
(12%)

A+N− n = 29
(36%)

A+N+ n = 18
(22%)

Statistics

Demographics

F/M 12/12 5/5 12/17 9/9 p = 0.91

Age in years 71.2 ± 6.0 73.8 ± 3.7 75.1 ± 7.3 73.9 ± 8.3 p = 0.23

Years of education 14 ± 3 13 ± 3 13 ± 3 13 ± 4 p = 0.82

Clinical

Classification (SCD/MCI/AD dementia) 42/58/0% 20/80/0% 10/80/10% 6/67/27% p = 0.005

Disease duration in months 51 ± 61 58 ± 81 39 ± 42 36 ± 25 p = 0.82

MMSE score 27.8 ± 2.1 27.2 ± 2.0 26.2 ± 3.0 23.0 ± 4.0a,b,c p < 0.001

Structural

Left hippocampal volume 5604 ± 555 3967 ± 489a,b 5186 ± 500 4175 ± 593a,b p < 0.001

Right hippocampal volume 5707 ± 514 4539 ± 1003a,b 5231 ± 443 4203 ± 516a,b p < 0.001

White matter lesion volumes (ml) 2.5 ± 5.8 5.0 ± 5.1 5.2 ± 14.9 1.4 ± 1.3 p = 0.67

White matter number of lesions 11.9 ± 8.9 15.8 ± 7.8 12.4 ± 7.9 14.1 ± 9.6 p = 0.72

F female, M male, MMSEMini Mental State Evaluation
a Significantly different compared to A−N−
b Significantly different compared to A+N−
c Significantly different compared to A−N+
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Discussion

After the publication of the A/T/N research framework in
2018 [2], the application of this biomarker-based system in
both healthy aging and clinical population has grown. The
available studies adopting this classification on memory clinic
patients mainly used cerebrospinal fluid analysis to define N
(i.e., overall tau) and/or T status (i.e., p-tau) [6, 8]. Thus, to the
best of our knowledge, this is the first observational study in
which the A/T/N status is assessed using imaging biomarkers
in a sample of patients prospectively enrolled in a memory
clinic.

Patients were initially characterized according to the A/N
status. The whole-brain analyses comparing tau deposition in
A/N subgroups showed a widespread tau deposition in A+N+
subjects, as compared to those with an A−N− profile, in
temporo-limbic as well as in neocortical regions, while in
A+N− subjects the significantly increase in tau burden in-
volved bilateral medial and lateral temporal regions. These
results are in line with the predominant AD biomarker model
proposing a facilitating role of Aβ aggregation in disease pro-
gression [31–37], and identify medial and lateral temporal
regions as early area of tau accumulation in A+ subjects with-
out structural hippocampal neurodegeneration.

Despite the effect of tau-pathology on cognitive symptoms
in subjects classified as N− is to be fully elucidated, recent
evidence highlighted significant tau-related network derange-
ments [38] prior than frank neurodegeneration, suggesting a
possible direct effect of tau-pathology on clinical symptoms,
together with a neurodegenerative-mediated one [39, 40].
Thus, tau accumulation in temporal regions in A+ subjects
might represent a useful early marker of clinical changes in
patients with a still undetectable pattern of structural

neurodegeneration. However, further studies including other
N biomarkers (e.g., global or parietal atrophy, FDG-PET
hypometabolism) are required to test this hypothesis.
Patients with atypical presentation might indeed show early
neurodegeneration in brain regions other than the medial tem-
poral lobe, and the choice of this regionmight have limited the
sensitivity in detecting N. However, we opted for this defini-
tion to be consistent with previous studies on A/T/N that con-
sidered visual [6] or automated [7, 9, 41] measures of temporal
atrophy as index of neurodegeneration, and to overcome the
lack of other validated measures of cortical volumetry, as well
as the low diagnostic value of existing visual scales [28, 42].

Following a binary approach as envisioned by the A/T/N
model, we also computed a T-based cut point to classify pa-
tients according to tau positivity. This score was found to be
only moderately associated to global cognitive functions. One
explanation could be the high prevalence of MCI in our sam-
ple (70%), possibly including other etiologies than AD. It
should be noted that we used a global SUVR index to assess
T, while regional measures and analyses taking into account
other variables affecting cognition, namely age or education,
observed a higher association between 18F-flortaucipir load
and cognitive status [43].

According to the A/T/N classification, 23% of the overall
sample was classified as A−T−N, and 58% showed a bio-
marker profile in the Alzheimer’s continuum (i.e., abnormal
amyloid regardless of tau status, according to the research
framework recently proposed [2]). These percentages, as well
as those for each subgroup, well overlap with the results of a
recent study including 305 memory clinic patients evaluated
troughCSF and imaging biomarkers of AD pathology (22%A
−T−N− and 49% in the Alzheimer’s continuum) [6].

On the other hand, they slightly differ from those of another
study [9] investigating the A/T/N distribution through imag-
ing biomarkers, in which 29% of the sample was classified as
A−T−N−, and a biomarker profile following the Alzheimer’s
continuum was described only in 42% of subjects. The rela-
tive discrepancy between these data can be probably ex-
plained taking into consideration the different study design
(population-based vs memory clinic patients). Even if the
A/T/N research framework should not be considered as the
only template in the investigation of age-related cognitive im-
pairment and dementia, and it is not intended to be used in
general medical practice as clinical guidelines [2, 44], patient
classification according to this model might provide important
information in the definition of the clinical trajectory and in
the design of disease-modifying clinical trials. In fact, biolog-
ically defined AD, as proposed by the NIA-AA research
framework [2], showed a higher prevalence compared to the
conventional definitions based on clinical symptoms [45].
Thus, a biomarker-based definition of AD might represent a
crucial step in the development of future clinical trials, partic-
ularly in the preclinical phase.

Fig. 2 Frequency of subjects in each A/T/N subgroup. Green: subjective
cognitive decline; yellow: mild cognitive impairment; orange: dementia
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Overall, recent studies evaluating the progression of differ-
ent A/T/N profiles showed a clinical stability at 8 years in A−
patients positive to other biomarkers, suggesting a somewhat
benign clinical trajectory [5]. On the other hand, both A+T+N
− and A+T+N+ groups show a relevant cognitive decline at
longitudinal follow-up [6, 9]. In addition to this evidence, our
results suggest that the detection of significant tau deposition
in medial and lateral temporal regions characterizing A+N−
patients could thus represent an important marker in the early
detection of patients at risk of clinical progression.

A longitudinal evaluation is not yet available in these pa-
tients and does not allow testing this hypothesis. However, the
present cohort will be followed prospectively to evaluate clin-
ical and biomarker trajectories.

Finally, in our sample, 19% of patients showed an A−
profile, despite being positive on one or both T and N bio-
markers. The prevalent neuropathological model of AD dis-
ease progression, postulating that Aβ deposition leads to tau
aggregation and neurodegeneration (i.e., synaptic dysfunction
and/or brain atrophy), has been recently questioned by the
discovery of subjects with an abnormal N [4] and/or T [46]
status, despite a normal amyloid burden. Even though wide-
spread neocortical tau deposits were almost exclusively ob-
served in A+ individuals, literature shows evidence of possi-
ble tau deposits in mesial temporal regions in amyloid nega-
tive cases [46], and previous PET-based studies showed that a
minor percentage of A− subjects might present tau deposition
beyond the medial temporal lobe [35, 47]. However, consis-
tently with the results of previous analyses at group level [48],
we found no significant tau increase in our A−N+ sample
when comparing regional tau burden with other A/N sub-
groups. Subjects with A− profile and positive on one or both
T and N biomarkers might then be characterized by heteroge-
neous disease etiologies, including both tau-related diseases
(primary age-related tauopathy [46] or other tauopathies [49])
and non-tau related conditions (e.g., limbic-predominant age-
related TDP-43 encephalopathy [50]) mimicking AD clinical
symptoms, as well as alpha-synuclein pathology [51]. The
longitudinal follow-up will permit to evaluate the progression
of A/T/N profiles, as well as the possible presence of false
positive and negative cases, which can derive by the definition
of a binary threshold. In particular, studying the evolution of
subjects with A−T+N− and A−T+N+ profiles will help under-
standing whether they represent a distinct pathological entity
or an alternative AD pathway, and will allow measuring the
prognostic value of A, T, and N positivity.

Our study has some limitations worth mentioning. Despite
the relatively large population included in this study, the iden-
tification of 8 different A/T/N profiles led to the definition of
subgroups with a limited number of subjects. The other two
major limitations are represented by the lack of pathological
confirmation and information on hippocampal volumetry for
some subjects due tomultiple T1-weighted imaging protocols.

These methodological constraints could have limited our sen-
sitivity. Besides, the global SUVR cut point equal to 1.24 used
in the current study, although falling within the range reported
in previous literature (1.19–1.27) [9, 11, 20, 52] and effective-
ly distinguishing A+N+ from A−N− subjects, showed only a
limited sensitivity in A+N− subjects (51%). Even though pre-
vious evidence failed in providing substantial changes in the
A/T/N prevalence using different reference regions [45], fu-
ture studies should be aimed at investigating the utility of
different cut points and regions of interests based on the clin-
ical stage (i.e., earliest versus advanced stages on the AD
pathway).

In conclusion, in this observational study, we characterized
for the first time a memory clinic population adopting the A/T/
N model using PET- and MRI-based biomarkers, providing
evidence of higher tau tracer retention in A+ subjects and a
heterogeneous picture in patients characterized by an A− pro-
file. In A+ subjects, tau deposition in lateral temporal regions
assessed through tau PET might represent a useful marker in
the early detection of clinical changes. These findings are
consistent with the stages proposed by Braak to describe the
progression of tau-pathology [53], starting from medial tem-
poral regions, and then spreading to lateral temporal and other
neocortical areas. Besides, the unbalance between the frequen-
cy of A+T+N− (20%) and A+T−N+ (5%) further supports the
current view that tau deposition is a required substrate for AD
neurodegeneration.

Overall, the comparison of A/T/N frequencies between
population samples with overlapping features represents an
important step to possibly incorporate this research system
into clinical practice.
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