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Abstract
Purpose Image quality of positron emission tomography (PET) is limited by various physical degradation factors. Our study
aims to perform PET image denoising by utilizing prior information from the same patient. The proposed method is based on
unsupervised deep learning, where no training pairs are needed.
Methods In this method, the prior high-quality image from the patient was employed as the network input and the noisy PET
image itself was treated as the training label. Constrained by the network structure and the prior image input, the network was
trained to learn the intrinsic structure information from the noisy image and output a restored PET image. To validate the
performance of the proposed method, a computer simulation study based on the BrainWeb phantom was first performed. A
68Ga-PRGD2 PET/CT dataset containing 10 patients and a 18F-FDG PET/MR dataset containing 30 patients were later on used
for clinical data evaluation. The Gaussian, non-local mean (NLM) using CT/MR image as priors, BM4D, and Deep Decoder
methods were included as reference methods. The contrast-to-noise ratio (CNR) improvements were used to rank different
methods based on Wilcoxon signed-rank test.
Results For the simulation study, contrast recovery coefficient (CRC) vs. standard deviation (STD) curves showed that the
proposed method achieved the best performance regarding the bias-variance tradeoff. For the clinical PET/CT dataset, the
proposed method achieved the highest CNR improvement ratio (53.35% ± 21.78%), compared with the Gaussian (12.64% ±
6.15%, P = 0.002), NLM guided by CT (24.35% ± 16.30%, P = 0.002), BM4D (38.31% ± 20.26%, P = 0.002), and Deep
Decoder (41.67% ± 22.28%, P = 0.002) methods. For the clinical PET/MR dataset, the CNR improvement ratio of the proposed
method achieved 46.80% ± 25.23%, higher than the Gaussian (18.16% ± 10.02%, P < 0.0001), NLM guided by MR (25.36% ±
19.48%, P < 0.0001), BM4D (37.02% ± 21.38%, P < 0.0001), and Deep Decoder (30.03% ± 20.64%, P < 0.0001) methods.

Jianan Cui and Kuang Gong contributed equally to this work.

This article is part of the Topical Collection onAdvanced Image Analyses
(Radiomics and Artificial Intelligence)

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00259-019-04468-4) contains supplementary
material, which is available to authorized users.

* Huafeng Liu
liuhf@zju.edu.cn

* Quanzheng Li
Li.Quanzheng@mgh.harvard.edu

Jianan Cui
jianancui@zju.edu.cn

Kuang Gong
KGONG@mgh.harvard.edu

1 Center for Advanced Medical Computing and Analysis,
Massachusetts General Hospital, 55 Fruit St, White 427,
Boston, MA 02114, USA

2 State Key Laboratory of Modern Optical Instrumentation, College of
Optical Science and Engineering, Zhejiang University, 38 Zheda
Road, No.3 Teaching Building, 405, Hangzhou 310027, China

3 Gordon Center for Medical Imaging, Massachusetts General
Hospital/Harvard Medical School, 55 Fruit St, White 427,
Boston, MA 02114, USA

4 Department of Nuclear Medicine, First Hospital of Shanxi Medical
University, Taiyuan, China

5 Department of Nuclear Medicine, Peking Union Medical College
Hospital, Beijing, China

6 Department of Nuclear Medicine, The Chinese PLA General
Hospital, Beijing, China

https://doi.org/10.1007/s00259-019-04468-4

Received: 11 March 2019 /Accepted: 29 July 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s00259-019-04468-4&domain=pdf
https://doi.org/10.1007/s00259-019-04468-4
mailto:liuhf@zju.edu.cn
mailto:Li.Quanzheng@mgh.harvard.edu


Restored images for all the datasets demonstrate that the proposed method can effectively smooth out the noise while recovering
image details.
Conclusion The proposed unsupervised deep learning framework provides excellent image restoration effects, outperforming the
Gaussian, NLM methods, BM4D, and Deep Decoder methods.

Keywords Position emission tomography . Denoising . Deep neural network . Unsupervised deep learning . Anatomical prior

Introduction

Positron emission tomography (PET) is a powerful functional
imaging modality which can detect molecular-level activity in
the tissue by specific tracers. It has wide applications in oncol-
ogy [1, 2], cardiology [3], and neurology [4, 5], but still suffers
from the low signal-to-noise ratio (SNR) which affects its detec-
tion and quantification accuracy, especially for small structures.

The noise in PET images is caused by the low coincident-
photon counts detected during a given scan time and various
physical degradation factors. In addition, for longitudinal
studies or scans of pediatric populations, it is desirable to
reduce the dose level of PET scans, which would further in-
crease the noise level. Clinically, the Gaussian filter is always
used for PET image denoising. However, it can smooth out
important image structures during the denoising process.
Other post-filtering approaches, such as adaptive diffusion
filtering [6], non-local mean (NLM) [7], wavelet [8, 9] and
HYPR processing [10], were then proposed, trying to reduce
the image noise while preserving structure details. As the im-
age restoration process is ill-conditioned due to limited infor-
mation available from the noisy PET image itself, another
widely adopted strategy for PET image denoising is to incor-
porate high-resolution anatomical priors, such as the patient’s
own MR or CT images, as additional regularizations. One
intuitive approach is extracting information from segmented
prior images, assuming homogenous tracer uptakes in the
same segmented regions [11–13]. Techniques not requiring
segmentation were also developed, attempting to leverage
the high-quality priors directly: Bowsher et al. [14] encour-
aged the smoothness among nearby voxels that have similar
signal in the corresponding anatomical images; Chan et al.
[15] embedded the CT information for PET denoising using
a non-local mean (NLM) filter; Yan et al. [16] proposed aMR-
based guided filtering method [17]; mutual information (MI)
and joint entropy (JE) were also proposed to extract informa-
tion from anatomical images [18–21].

Over the past several years, deep neural networks (DNNs)
have been widely and successfully applied to computer vision
tasks such as image segmentation and object detection, by
demonstrating better performance than the state-of-the-art
methods when large amounts of datasets are available.
Recently, in medical imaging field, with the help of DNN,
details of low-resolution images can be restored by employing

high-resolution images as training labels [22–25].
Furthermore, by utilizing co-registered MR images as addi-
tional network inputs, anatomical information can help syn-
thesize high-quality PET images [26, 27]. One challenge for
these DNN-based methods is that large paired training
datasets are needed, which is not always feasible in clinical
practice, especially for pilot clinical trials. To acquire high-
quality PET images as labels, longer scanning time or higher
dose injection is needed, which does not fall into clinical rou-
tines and may bring extra safety concerns. Besides, huge ef-
forts to collect and process the data are additional obstacles.

In this paper, we explore the possibilities of utilizing ana-
tomical information to perform PET denoising based on DNN
through an unsupervised learning approach. Recently, Ulyanov
et al. [28] proposed the deep image prior framework, which
shows that DNNs can learn intrinsic structures from corrupted
images without pre-training. No prior training pairs are needed,
and random noise can be employed as the network input to
generate clean images. Inspired by this work, we have proposed
a conditional deep image prior framework for PET denoising.
In this proposed framework, CT/MR images from the same
patient are employed as the network input and the final
corrected images are represented by the network output. The
original noisy PET images, instead of high-quality PET images,
are treated as training labels. In our framework, the modified
3D U-net was adopted as the network structure, and L-BFGS
was chosen as the optimization algorithm for its monotonic
property and better performance observed in the experiments.

Currently, CT/MR images of the same patient are readily
available from PET/CT or PET/MR scans, and this proposed
method can be easily applied for PET denoising. Contributions
of this work include two aspects: (1) anatomical prior images
are used as network input to perform PET denoising, and no
prior training or training datasets is needed in this proposed
method; (2) this is an unsupervised deep learningmethod which
does not require any high-quality images as training labels.

Materials and methods

Conditional deep image prior

Recently, Ulyanov et al. [28] proposed the deep image prior
method which shows that DNN itself can learn intrinsic

2781Eur J Nucl Med Mol Imaging (2019) 46:2780–2789



structure information from the corrupted image. No prior
training pairs are needed, and random noise can be employed
as the network input to generate restored images. This is an
unsupervised learning approach, which has no requirement for
large data sets and high-quality label images. In this frame-
work, the unknown clean image we try to restore, x, can be
represented as.

x ¼ f θjznoiseð Þ ð1Þ
where f represents the neural network, θ denotes the unknown
parameters of the network, and znoise is the network input with
random noise supplied. The process of image restoration
transfers to train a neural network, whose output tries to match
the original noisy image x0 while being constrained by the
network structure. The network parameters θ are iteratively
updated to minimize the data term as follows:

θ ̂ ¼ argmin
θ

E f θjznoiseð Þ; x0ð Þ; x ̂ ¼ f θ ̂jznoiseÞ
� ð2Þ

where E(∙) is a task-dependent data term.
It is shown in conditional generative adversarial network

(GAN) [29] studies that prediction results can be improved by
using associated priors as network input, instead of random
noise. Inspired by this, a conditional deep image prior method
is proposed in this work to perform PET denoising, where the
CT/MR images of the same patient are employed as the net-
work input. To demonstrate the benefits of employing the
prior image as the network input, a comparison between using
the random noise as the network input and using the same
patient’s MR prior image as the network input was performed,
and shown in supplementary Fig. 1. We can see that with the
MR prior image as the network input, more cortex details can
be recovered and the noise in the white matter is much
reduced.

When using L2 norm as the training loss function, the
whole denoising process can be summarized as two steps.

θ ̂ ¼ argmin
θ

x0− f θjzað Þk k; x ̂ ¼ f θ ̂jzaÞ
� ð3Þ

Here, za represents the CT/MR priors supplied as network
input. A schematic of the proposed conditional deep image
prior framework is shown in Fig. 1. A modified 3DU-net [30]
was used as the network structure (network structure details
shown in supplementary Fig. 2). Compared to the traditional
3D U-net, pooling layers were replaced by convolution layers
with stride 2 to construct a fully convolutional neural network;
deconvolution layers were substituted by bilinear interpreta-
tion layers to reduce the checkerboard artifacts. In our imple-
mentation, the whole 3D volume was directly fed into the
network to reduce fluctuations caused by using small batches,
and the L-BFGS method was chosen as the optimization al-
gorithm due to its monotonic property and better performance
observed in our previous experiments [31]. Details of training
loss comparison among the popular L-BFGS [32], Adam [33],
and Nesterov’s accelerated gradient (NAG) [34] algorithms
are shown in supplementary Fig. 3, which confirms the bene-
fits of employing the L-BFGS algorithm as the network opti-
mization algorithm. During network training, when the train-
ing loss does not reach the stop criterial, the network output
f(θn| za ) will be compared with the original noisy PET image
x0 to update the network parameters from θn to θn + 1. Once
the training loss meets the stopping criterial or the epoch num-
ber becomes larger than the predefined number, the optimiza-
tion will stop, and the network will output the restored PET

image x ̂ ¼ f θ ̂jzaÞ
�

.

Datasets

To validate the proposedmethod, a computer simulation study
based on the BrainWeb phantom (matrix size, 125 × 125 ×
105; voxel dimensions, 2 × 2 × 2 mm3) [35] was first per-
formed. Bias-variance tradeoff can be characterized in this
simulation study as the ground truth is known and multiple
independent and identically distributed (i.i.d.) realizations can
be simulated. The simulated geometry is based on the Siemens
mCT scanner. The sinogram data was generated from the last
5-min frame of a 1-h 18F-FDG scan with 1 mCi dose injection,
assuming the count number in each line of response (LOR)

Stop criterial?

Yes

No

Update 

3D Unet

Input

CT/MR image 

144 144 224

th epoch 

144 144 224

Noisy PET

144 144 224

Output

Denoised PET

Loss function:

Label

Fig. 1 Schematic of the proposed unsupervised deep learning framework
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follows the Poisson distribution. Random events and the at-
tenuation effects were considered during the simulation and
the object-dependent scatter was not. The PET images were
reconstructed using the maximum likelihood expectation
maximization (MLEM) algorithm running 40 iterations. The
corresponding T1-weighted MR image was employed as the
prior image.

Two groups of real datasets with different modalities and
different tracers were used to evaluate performance of the
proposed method. One is a PET/CT dataset with ten lung
cancer patients (8 men and 2 women). The patient information
is listed in supplementary Table. 1. The average patient age is

59.4 ± 10.9 years (range, 43–82 years), the average weight is
69.9 ± 13.5 kg (range, 41–84 kg), and the nominal injected
dose of 68Ga-PRGD2 is 370 MBq. All patients were scanned
with a Biograph 128 mCT PET/CT system (Siemens Medical
Solutions, Erlangen, Germany). A low-dose CTscan (140 kV;
35 mA; pitch 1:1; layer spacing, 3 mm; matrix, 512 × 512;
voxel size, 1.52 ×1.52 × 3 mm3; FOV, 70 cm) was performed
for attenuation correction. PET images (matrix size, 200 ×
200 × 243; voxel dimensions, 4.0728 × 4.0728 × 3 mm3) were
acquired at 60-min post injection and reconstructed using
three-dimensional ordered subset expectation maximization
(3D-OSEM) with 3 iterations and 21 subsets.

The other dataset is a PET/MR dataset containing 30 pa-
tients (21 men and 9 women) with different tumor types.
Patient details are shown in supplementary Table. 2. The av-
erage patient age is 55.2 ± 7.7 years (range, 38–74 years), the
average weight is 66.8 ± 9.9 kg (range, 45–85 kg), and the
average administered dose of 18F-FDG is 350.7 ± 54.7 MBq
(range, 239.8–462.9 MBq). All patients were scanned on a
Biograph mMR PET/MR system (Siemens Medical
Solutions, Erlangen, Germany). T1-weighted images (repeti-
tion time, 3.47 ms; echo time, 1.32 ms; flip angle, 9°; acqui-
sition time 19.5 s; matrix size, 260 × 320 × 256; voxel dimen-
sions, 1.1875 × 1.1875 × 3 mm3) were acquired simultaneous-
ly. PET images (matrix size, 172 × 172 × 418; voxel dimen-
sions, 4.1725 × 4.1725 × 2.0313 mm3) were acquired at 60-
min post injection and reconstructed using 3D-OSEM.

Data analysis

The Gaussian filtering, NLM filtering guided by CT/MR im-
ages [15], BM4D [36], and Deep Decoder [37] methods were
employed as the reference methods. To evaluate the perfor-
mance of different methods quantitatively, for the simulation
data, the contrast recovery coefficient (CRC), between the

Fig. 2 The denoised images using different methods with different
parameters (Gaussian: FWHM= 2.5 pixels; NLM: widow size 5 × 5 ×
5; BM4D: noise standard deviation 50 percentage; Deep Decoder: 3800

epochs; the proposedmethod: 200 epochs) for the simulated brain dataset.
The first column is the corresponding MR prior image

Fig. 3 The CRC-STD curves, between the gray matter region and the
white matter region for the simulation study. Markers are generated for
different FWHM (1.5, 2.5, 3.5, 4.5 pixels) of Gaussian, different window
size (5, 7, 9, 11 pixels) of NLM, different noise standard deviation (40, 50,
60, 70 percentages) of BM4D, different epochs (2000, 2600, 3200, 3800)
of Deep Decoder, and different epochs (150, 200, 220, 250) of the pro-
posed method
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gray matter region and the white matter region vs. standard
deviation (STD) calculated from the white matter region were
plotted to evaluate the bias-variance tradeoff [31]. Ten regions
of interest (ROIs) were drawn on the gray matter region and
thirty background ROIs were chosen on the white matter re-
gion. Thirty realizations were simulated and reconstructed to
generate the CRC vs. STD curves.

As for the clinical data, the contrast-to-noise ratio (CNR)
regarding the lesion and the reference regions was used as the
figure of merit, defined as

CNR ¼ mlesion−mref

SDref
ð4Þ

where mlesion and mref represent the mean intensity inside the
lesion and the reference region of interest (ROI), respectively,
and SDref was the pixel-to-pixel standard deviation inside the
reference ROI. In this study, a homogeneous region in the
muscle of right shoulder was chosen as the reference ROI.
CNR improvement ratio of different methods was calculated
by setting the CNR of the original PET image as the base,

CNR improvement ratio ¼ CNRdenoised−CNRoriginal PET

CNRoriginal PET

� 100% ð5Þ

Wilcoxon signed-rank test was performed on the CNR im-
provement ratios to compare the performance of different
methods. P value less than 0.05 was chosen to indicate statis-
tical significance.

The parameters of Gaussian (FWHM), NLM guided by
CT/MR images (window size), BM4D (standard deviation
of the noise), Deep Decoder (training epoch number), and
the proposed method (training epoch number) were first tuned
for one patient in each dataset (evolving curves shown in
supplementary Fig. 4). Considering the fact that PET images
in the same dataset having similar structures, the optimal pa-
rameters that achieved the highest CNR for each method were

fixed when processing remaining patient data. Hence, the
CNR value is also the stopping criterion of the network train-
ing for the proposed method and the Deep Decoder method:
the epoch number that leads to the highest CNRwas chosen as
the optimal epoch number. Based on supplementary Fig. 4, for
the PET/CT dataset, the Gaussian filter with FWHM equal to
2.4 pixel, the NLM filter with window size 5 × 5 × 5, the
BM4D filter with 10% noise standard deviation, the Deep
Decoder method with 1800 training epochs, and the proposed
method trained with 900 epochs were employed in the
denoising processing. For the PET/MR dataset, the Gaussian
filter with FWHM equal to 1.6 pixel, the NLM filter with
window size 5 × 5 × 5, the BM4Dmethod with 8% noise stan-
dard deviation, the Deep Decoder with 2000 epochs, and the
proposed method trained with 700 epochs were employed in
the denoising process.

All the network training was performed using the NVIDIA
1080 Ti graphic card based on the TensorFlow 1.4 platform.
For the simulation dataset running 200 epochs, the network
training time of the proposed method is around 5 min. For the
PET/CT dataset running 900 epochs and the PET/MR dataset
running 700 epochs, the network training time of the proposed
method is both around 40 min.

Results

Simulation study

Figure 2 shows one transaxial slice of the denoised images
using differentmethods for one simulated realization. Both the
NLM filter and the proposed method can generate clearer
cortex structures with the help of the corresponding MR prior
image. Compared with the NLM filter, the denoised image of
the proposed method has lower noise in the white matter and
the cortex structure is better recovered. Figure 3 shows the
CRC vs. STD curves using different methods. Clearly, the

Fig. 4 Coronal view of (a) the original noisy PET image; (b) the post-
processed PET image using the Gaussian filter with FWHM= 2.4 pixel;
(c) the post-processed PET image using the NLM filter guided by CT
using window size 5 × 5 × 5; (d) the post-processed PET image using the

BM4Dmethod with 10% noise standard deviation; (e) the post-processed
PET image using the Deep Decoder method with 1800 epochs; (f) the
post-processed PET image using the proposed method trained with 900
epochs. Tumors are pointed out using arrows
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proposed method achieves the highest CRC at the same STD
level, which demonstrates that the proposed method has the
better bias-variance tradeoff compared with other reference
methods.

PET/CT

Figure 4 shows one coronal view of the PET images processed
using different methods. In this figure, the parameters for each
method were set bymaximizing the CNR. Based on the image
appearance, we can see that the proposedmethod can generate
images with preserved tumor structures (indicated by arrows)
and less noise, while the smoothing effects of all the other
methods reduce tumor uptakes. Detailed CNR values and

CNR improvement ratios for all ten patient datasets are listed
in supplementary Table. 3. The mean (± SD) CNR for the
original PET images is 13.04 ± 6.30. The mean (± SD)
CNRs for Gaussian, NLM, BM4D, Deep Decoder, and the
proposed method are 14.62 ± 6.85, 15.94 ± 7.47, 18.28 ±
9.68, 18.80 ± 10.10, and 20.35 ± 10.72, respectively.
Figure 5 shows the bar plot of CNR improvement ratios for
all ten datasets using different methods. The overall perfor-
mance of the proposed method (orange) is higher than
Gaussian (gray), NLM with CT (blue), BM4D (yellow), and
Deep Decoder (green), especially for patients 7 and 10, where
its CNR improvement ratio are much better than other
methods. The mean (± SD) CNR improvement ratios for
Gaussian, NLM, BM4D, Deep Decoder, and the proposed

Fig. 5 The CNR improvement
ratios of ten PET/CT datasets
using the Gaussian, NLM guided
by CT, BM4D, Deep Decoder,
and the proposed method

Fig. 6 Coronal view of (a) the original noisy PET image; (b) the post-
processed image using the Gaussian filter with FWHM= 1.6 pixel; (c) the
post-processed image using the NLM filter guided by MR with window
size 5 × 5 × 5; (d) the post-processed PET image using the BM4Dmethod
with 8% noise standard deviation; (e) the post-processed PET image

using the Deep Decoder method with 2000 epochs; (f) the post-
processed PET image using the proposed method trained with 700
epochs. Tumors are pointed out using arrows. Details in the red box are
zoomed-in and shown above the whole-body images using a different
color bar with the maximum value of 2.2
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method are 12.64% ± 6.15%, 24.35% ± 16.30%, 38.31% ±
20.26%, 41.67% ± 22.28%, and 53.35% ± 21.78%, respec-
tively. Figure 8 shows the box plot of CNR improvement
ratios using different methods. We can see that the CNR im-
provement ratio of the proposedmethod is significantly higher
than the Gaussian (P = 0.002), NLM (P = 0.002), BM4D (P =
0.002), and Deep Decoder (P = 0.002) methods.

PET/MR

Figure 6 presents one coronal view of the PET images
processed by the Gaussian, NLM guided by MR, BM4D,
Deep Decoder, and the proposed method, given the opti-
mum parameters regarding the CNR. For the tumor re-
gions, we can see that the proposed method preserves the
tumor uptake. Zoomed subfigures show that the proposed
method can recover the cardiac and spleen structures better
than other methods. The CNR values and CNR improve-
ment ratios calculated for all 30 patients are shown in sup-
plementary Table 4. The mean (± SD) CNR for the original
PET images is 39.34 ± 27.81. The mean (± SD) CNRs for
the Gaussian, NLM, BM4D, Deep Decoder, and the pro-
posed method are 46.42 ± 33.94, 49.17 ± 36.82, 54.15 ±

39.32, 52.18 ± 39.63, and 58.35 ± 43.18, respectively. The
mean (± SD) CNR improvement ratios for the Gaussian,
NLM, BM4D, Deep Decoder, and the proposed method are
18.16% ± 10.02%, 25.36% ± 19.48%, 37.02% ±21.38%,
30.03% ± 20.64%, and 46.80% ± 25.23%, respectively.
Bar plot in Fig. 7 shows the CNR improvement ratios for
all the 30 patients. For the whole PET/MR data set, CNR
improvement ratio of the proposed method is significantly
higher than the Gaussian (P < 0.0001), NLM (P < 0.0001),
BM4D (P < 0.0001), and Deep Decoder (P < 0.0001)
methods. CNR improvement ratios for different tumor
types were further analyzed (Fig. 9), and the box plots of
tumor types with more than five specimens (liver, 12; lung,
6) are listed in Fig. 9. For liver and lung tumors, the mean
(± SD) CNR improvement ratios of the proposed method
(liver, 43.37% ± 30.85%; lung, 35.91% ± 10.48%) are sig-
nificantly higher than the Gaussian (liver, 18.80% ±
9.98%, P < 0.001; lung, 13.20% ± 5.44%, P < 0.05),
NLM (liver, 28.00% ± 21.97%, P < 0.001; lung, 15.65%
± 8.56%, P < 0.05), BM4D (liver 36.13% ± 26.80%, P <
0.001; lung 27.32% ± 9.66%, P < 0.05), and Deep Decoder
(liver 29.19% ± 24.73%, P < 0.001; lung 17.80% ±
11.30%, P < 0.05) methods.

Fig. 8 Box plot of CNR
improvement ratios for 10 lung
tumor patients in PET/CT
datasets. In the boxplots, lines in-
dicating median, 25th and 75th
percentiles; cross displaying the
mean value; * and ** representing
P < 0.05 and P < 0.01,
respectively

Fig. 7 The CNR improve ratios of thirty PET/MR datasets using the Gaussian, NLM guided by MR, BM4D, Deep Decoder, and the proposed method
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Discussion

The plot of the contrast (mlesion −mref) vs. noise inside refer-
ence ROIs (SDref) for different methods with varying param-
eters (supplementary Fig. 4) shows that the proposed method
can maintain high contrast within the tumor region while
achieving low noise in the reference region. Compared with
the proposed method, the NLM method could not preserve
high contrast with the same noise and the Gaussian method
showed higher noise at the same contrast level. From Fig. 9,
we can see that there is no significant difference between the
Gaussian method and the MR-guided NLM method for the
lung tumor. The fact that the T1-weighted image does not
have too many details in the lung region might be one expla-
nation. However, the proposed method using MR as prior can
still achieve significantly higher CNR improvement ratio
compared with the Gaussian and NLM methods for the lung
tumor case, which demonstrates that the proposed method can
make use of priors more efficiently than the NLM method.

Apart from comparing the proposed method with state-of-
the-art methods, we are also interested in understanding the
factors influencing its performance. Influence of the following
factors were evaluated for the proposed method: modality of
prior images, PET tracer types, tumor sizes, and tumor up-
takes. For the dataset of PET/CT with 68Ga-PRGD2 and the
dataset of PET/MR with 18F-FDG, the mean (± SD) improve-
ment ratios (53.35% ± 21.78%, 46.80% ± 25.23%) are ap-
proximately the same and there is no significant difference,
which shows that the proposed denoising method works well

regardless of modality types and tracer types used in this
work. The tumor size, SUVmax, SUVmean, and total lesion
glycolysis (TLG) vs. CNR improvement ratio for the two
datasets are plotted in supplementary Fig. 5. Here, TLG is
the product of tumor size and SUVmean, which can show joint
effects of tumor size and tracer uptake. We can see that there is
no clear correlation of tumor size, SUVmax, SUVmean, and
TLG with CNR improvement ratio, which is further verified
by the correlation coefficients presented in Table 1. This tells
us that the proposed denoising method is robust for various
tumor sizes and tumor uptakes. In addition, supplementary
Fig. 6 is an example showing that even when there are some
mismatches in the tumor structure between the PET image and
its corresponding CT image, the proposed method can still
recover the tumor structure, which verifies that misregistration
might not lead to artefacts or local distortions of the proposed
method. Further investigations regarding the detailed effects
of misregistration on the proposed method are needed and are
our future work.

Conclusion

In this work, we proposed an unsupervised deep learning
method for PET denoising, where the patient’s prior image
was employed as the network input and the original noisy
PET image was treated as the training label. Evaluations based
on simulation datasets as well as PET/CT and PET/MR
datasets demonstrate the effectiveness of the proposed

Fig. 9 Box plot of CNR improvement ratios for different tumor types in
PET/MR datasets. Number of patients for each tumor type is listed in the
bracket. In the boxplots, lines indicating median, 25th and 75th

percentiles; cross displaying the mean value; *, ***, and ns representing
P < 0.05, P < 0.001, and non-significant, respectively

Table 1 The correlations of CNR values and CNR improvement ratios with different tumor features for all scans of PET/CT and PET/MR datasets

Correlation Tumor size SUV max SUV mean TLG

PET/CT Improvement ratio 0.3734 0.3409 0.1286 0.3664

CNR − 0.0407 0.8949 (p < 0.05) 0.8192 (p < 0.05) 0.1909

PET/MR Improvement ratio 0.1821 0.0039 − 0.0601 0.1039

CNR 0.3251 0.8483 (p < 0.0001) 0.8508 (p < 0.0001) 0.6475 (p < 0.0001)
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denoising method over the Gaussian, anatomically guided
NLM, BM4D, and Deep Decoder methods. Future work will
focus on further clinical evaluations with various tumor types
as well as the detailed effects of misregistration on the pro-
posed method.
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