
European Journal of Nuclear Medicine and Molecular Imaging
https://doi.org/10.1007/s00259-019-04422-4

ORIGINAL ARTICLE

Biological correlates of tumor perfusion and its heterogeneity
in newly diagnosed breast cancer using dynamic first-pass
18F-FDG PET/CT

Neree Payan1 · Benoit Presles1 · François Brunotte1 · Charles Coutant2 · Isabelle Desmoulins3 ·
Jean-Marc Vrigneaud1,4 · Alexandre Cochet1,4

Received: 3 April 2019 / Accepted: 1 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Purpose The aim of this prospective study is to analyze the global tumor blood flow (BF) and its heterogeneity in
newly diagnosed breast cancer (BC) according to tumor biological characteristics and molecular subtypes. These perfusion
parameters were compared to those classically derived from metabolic studies to investigate links between perfusion and
metabolism.

Methods Two hundred seventeen newly diagnosed BC patients underwent a 18F-FDG PET/CT exam before any treatment.
A 2-min dynamic acquisition, centered on the chest, was performed immediately after intravenous injection of 3 MBq/kg
of 18F-FDG, followed by a two-step static acquisition 90 min later. Tumor BF was calculated (in ml/min/g) using a single
compartment kinetic model. In addition to standard PET parameters, texture features (TF) describing the heterogeneity of
tumor perfusion and metabolism were extracted. Patients were divided into three groups: Luminal (HR+/HER2-), HER2
(HER2+), and TN (HR-/HER2-). Global and TF parameters of BF and metabolism were compared in different groups of
patients according to tumor biological characteristics.

Results Tumors with lymph node involvement showed a higher perfusion, whereas no significant differences in SUV max
or SUV mean were reported. TN tumors had a higher metabolic activity than HER2 and luminal tumors but no significant
differences in global BF values were noted. HER2 tumors exhibited a larger tumor heterogeneity of both perfusion and
metabolism compared to luminal and TN tumors. Heterogeneity of perfusion appeared well correlated to that of metabolism.

Conclusions The study of breast cancer perfusion shows a higher BF in large tumors and in tumors with lymph node
involvement, not paralleled by similar modifications in tumor global metabolism. In addition, the observed correlation
between the perfusion heterogeneity and the metabolism heterogeneity suggests that tumor perfusion and consequently the
process of tumor angiogenesis might be involved in the metabolism heterogeneity previously shown in BC.
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Introduction

Breast cancer (BC) is the most common cancer and the
second leading cause of death by cancer among women.
This cancer has various molecular subtypes that differ in
aggressiveness, treatment, and outcome [39, 52]. As a great
heterogeneity regarding genetic profile, aggressiveness, and
therapeutic options [43] persist, it appears essential to
develop additional diagnostic tools to better characterize
tumors and to guide therapeutic strategies, using biology,
next-generation sequencing, and imaging. Tumors are often
associated with an increase in glucose metabolism [31]
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and in the context of BC, baseline metabolism is posi-
tively associated with tumor aggressiveness [15]. Beyond
glucose metabolism, tumors have an increased blood flow
(BF), due to the angiogenesis [35]. Since a mismatch
between tumor metabolism and tumor blood flow has been
reported [30], evaluation of these two different parameters
appears essential to fully characterize breast tumors. Differ-
ent imaging modalities, such as dynamic contrast-enhanced
magnetic resonance imaging (MRI), 15O-water positron
emission tomography/computed tomography (PET/CT) and
1-h dynamic 18F-fluorodeoxyglucose (18F-FDG) PET/CT,
have yielded kinetic parameters reflecting vascular perme-
ability and perfusion. Methods based on the 2-min half-life
15O remain the gold standard for perfusion evaluation [25].
However, because an on-site cyclotron is needed, only a
restricted number of research centers are able to use 15O-
water. Furthermore, 18F-FDG PET has become a standard
for primary staging of large and locally advanced breast can-
cer [9] and a full 1-h dynamic 18F-FDG PET acquisition
allows tumor blood flow and metabolism evaluation after a
single injection of 18F-FDG. As a 1-h acquisition is hardly
suitable in clinical routine, an alternative method allowing
the measurement of the tumor blood flow from a first-pass
18F-FDG PET has been developed by Mullani et al. [33].
The calculated blood flow [10, 20, 21] showed an excellent
correlation with the tumor perfusion measured with 15O-
water [34]. In the context of BC, few studies have suggested
the interest of the perfusion evaluation to monitor BC ther-
apies and its ability to provide predictive and prognostic
information [10, 13, 20, 21, 29, 46].

Recently, investigation of tumor heterogeneity using tex-
ture analysis (TA) has emerged [44, 45]. Standard PET/CT
parameters combined with TA [2, 3, 19] appear promising
to bring valuable information on the relationship between
metabolism heterogeneity and clinical, biological parame-
ters, tumor subtypes, or tumor aggressiveness [16, 28, 32,
44, 45]. In a similar way, the present paper hypothesizes
that perfusion heterogeneity analysis might bring valuable
additional information to metabolic imaging with 18F-FDG
PET/CT. Indeed, the reasons why tumors are heterogeneous
are still largely unknown and one of the explanations could
be the vascular disorders related to the anarchic nature of
the tumor angiogenesis [1]. Nonetheless, although several
previous studies have quantified 18F-FDG uptake intratu-
moral heterogeneity, to the best of our knowledge, none
was carried out on tumor BF heterogeneity. The first-pass
18F-FDG PET/CT represents an opportunity to assess tumor
perfusion in addition to tumor metabolism and to evaluate
in a single exam, perfusion heterogeneity and its relation to
metabolism heterogeneity.

The objective of this prospective study is to analyze
the global tumor blood flow and its heterogeneity in a
large cohort of 217 newly diagnosed breast cancer cases

according to tumor biological characteristics and molecular
subtypes. These perfusion parameters were compared to
those classically derived from metabolic studies to further
investigate links between perfusion and metabolism.

Materials andmethods

Patients and study design

From January 2011 to May 2017, 217 patients with newly
diagnosed stage II or III BC were prospectively recruited,
based on oncologists’ recommendations for a 18F-FDG
PET/CT scan before any treatment. Patients with high
glycemia (> 9 mmol/l) and unable or unwilling to undergo
PET scan were excluded. The institutional review board
approved this prospective study as a current-care study. The
medical team documented patient non-opposition in source
documents and in the information notice provided to the
patient, and the need for a signature indicating informed
consent was not required. Core biopsies of primary tumors
were used to evaluate histological characteristics, such
as histological type and tumor grade, using the Scarff–
Bloom–Richardson (SBR) system [6]. Tumor, lymph nodes,
metastasis, and classification of malignant tumors (TNM)
were established in accordance with the 8th edition of
the American Joint Committee on Cancer (AJCC) staging
system [4]. Molecular markers examined included estrogen
receptor (ER), progesterone receptor (PR) and HER2
expression. ER and PR status were considered positive if
tumors showed at least 10% of positive cells. HER2 status
was assessed by immunohistochemistry or fluorescent in
situ hybridization (FISH) and graded from 0 to 3+.
Scores of 3+ were considered positive. HER2 amplification
confirmed by FISH was used to assess positivity in
ambiguous cases (2+). Patients were classified into three
groups according to their molecular subtypes: luminal
(hormone receptors (HR)-positive, HER2-negative), HER2
(HER2-positive) and triple negative (TN) (HR-negative,
HER2-negative).

PET-CT protocol

All images were acquired with a Gemini TruFlight
PET/CT scanner (Philips Medical Systems, Eindhoven, The
Netherlands) providing an axial field of view of 18 cm and
a transaxial slice thickness of 4 mm. An automatic PET
infusion system (Bayer Medical Care, Inc., Indianola, PA,
USA) was used to inject a bolus of 3 MBq/kg of 18F-FDG.
Simultaneously with injection, an early first 8-min 18F-FDG
PET scan was performed, in a prone position and centered
on the breast. A low-dose CT scan (120 kVp, automatic
tube current modulation, 0.5-s rotation time, 16×1.5 mm
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collimation, a pitch of 0.7) of the same region was carried
out for anatomical registration and attenuation correction.
The dynamic first-pass was reconstructed based on twelve
10-s frames extracted from the first 2 min of the PET
acquisition. A whole-body emission and transmission scans
were acquired 60 min later, in a supine position. Finally, 90
min after injection, the delayed static image was acquired
in a prone position with a two-step PET/CT scan restricted
to the chest. The emission acquisition time was 4 min
per bed position. All the PET images were reconstructed
using a first 3D-ordered subset iterative (OSEM) time of
flight reconstruction technique with three iterations and
33 subsets. Images matrix sizes of 144×144 with an
isotropic voxel size of 4 mm were used. The emission data
were corrected for random coincidences, decay, dead time,
scattering and attenuation.

Parametric images

Measurement of blood flow

The tumor blood flow measurement using dynamic PET of
first-pass 18F-FDG uptake is based on the one-compartment
first-pass model of Mullani et al [33, 34] and has already
been explained in detail in the literature [10, 33, 34].

Several volumes of interest (VOIs) were manually delin-
eated on the early static PET image and the corresponding
CT image using a dedicated workstation (Extended Bril-
liance Workspace 3.5; Philips): a first VOI representing
the contours of the primary tumor, a second VOI into the
ascending aorta, and a third VOI in the contralateral normal
breast. The latter was used as a background reference. All
the VOIs were superimposed on the dynamic PET image

and the time–activity curve (TAC) of the ascending aorta
was then calculated. Counting rate reached a maximum
when the arterial input to the tumor ceased and when the
tracer had not left the region of interest (both arterial input
and venous drainage were zero). This time Tm corresponds
to the end of the first pass of the tracer and was visually
determined on the arterial TAC. A parametric BF image
(Fig. 1), containing a BF value in each tumor voxel, was
then computed with in-house scripts using the vv tools [42],
which are based on the Insight Segmentation and Regis-
tration Toolkit (ITK) library [51], by using the following
equation:

BF = Q(Tm)

E
∫ Tm

0 Ca(t)dt
(1)

where Q(Tm) is the amount of tracer measured in each
tumor voxel at time Tm and Ca(t) is the arterial concen-
tration of the tracer measured at time t. The extraction
fraction E of 18F-FDG was assumed to be equal to one [20].

Measurement of glucose metabolism

Semi-automatic segmentation using a contrast-dependent
method of metabolic active tumor volumes (MATVs)
were performed on the delayed static PET images. This
segmentation is based on the determination of an optimal
threshold value as a function of the measured contrast in
the image. It requires a calibration procedure described
in detail by [41]. For this purpose, phantom acquisitions
were performed using the NEMA/IEC body phantom with
sphere-to-background activity concentration ratios ranging
from 40:1 to 2:1. These ratios were chosen to span the whole
range of contrast ratios observed in the delayed PET images.

Fig. 1 Parametric blood flow
(ml/min/g) image (a) from
18F-FDG PET first-pass
dynamic (10-s frames)
acquisition and SUV image (b)
from delayed (4-min per bed
position) acquisition, for a
63-year-old woman with TN
invasive ductal carcinoma of
right breast. A.1: tumor VOI
from parametric blood flow
image after a rescaling using 32
grey levels. B.1: tumor VOI
from SUV image after a
rescaling using 64 grey levels.
Primary tumor BF max: 0.5,
BF mean: 0.2, SUV max: 13.5
and SUV mean: 8.1
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A series of six VOIs were drawn with a distance of at least 5
mm from the spheres. The mean standardized uptake values
(SUV) of all these VOIs was used as the background value.
All the spheres were automatically segmented by varying a
threshold in steps of 0.01. From the optimal threshold values
yielding the best matching with the true spheres’ volume
(± 2%), a regression function was calculated to determine
the relation with the normalized thresholds and the contrast
ratios, as defined in [41]. Two regression functions were
used, a first one for the small volumes (less than 2 ml) and
a second one for the larger volumes (more than 2 ml). The
adaptive threshold algorithm was computed by using in-
house tools based on the vv software. All the necrotic tumor
regions were included in the tumors VOIs. Late PET images
were then converted to SUV (Fig. 1) by using the classical
expression:

SUV = T umor activity concentration (MBq/ml)

Injected dose (MBq) / body weight (g)
(2)

PET-derived features

Standard PET parameters reflecting tumor metabolism
and perfusion were extracted from the SUV PET and
blood flow parametric images, respectively. The computed
features were the average, (SUV mean and BF mean for the
metabolism and the perfusion, respectively), the standard
deviation, (SUV sd and BF sd) and the maximum (SUV max
and BF max) tumor values. In addition, the metabolic
active tumor volume and the total lesion glycolysis
(TLG = MATV× SUV mean) were calculated for the
metabolism. All these first-order statistics provide global
information on tumor perfusion and metabolism, without
any spatial information on the voxel arrangement. On
the contrary, TA using second-order statistics can locally
describe and quantify the spatial arrangement of the voxels.
Several studies have been conducted in order to determine
robust and reproducible texture features (TF) from tumor
metabolic PET images [18, 27, 49] but, to the best of
our knowledge, none have been conducted on the tumor
perfusion images from first-pass 18F-FDG PET in BC.
Therefore, the same TFs were selected to study both
metabolism and perfusion in order to make comparisons
easier. Four TFs were used for the analysis of tumor
heterogeneity: entropy, inverse different moment (IDM),
correlation, and dissimilarity. The entropy is related to
the orderliness in the image (how regular the pixel value
differences are). This feature quantifies the randomness of
the voxel intensity distribution.

Entropy = −
Nbins∑

i=1

Nbins∑

j=1

P(i, j) ln (P (i, j)) (3)

The IDM, also called local homogeneity, quantifies the
homogeneity within an image and will be high if the
intensities of each pair of voxels are similar.

Inverse diff erent moment =
Nbins∑

i=1

Nbins∑

j=1

P(i, j)

1 + (i − j)2

(4)

The correlation measures the linear dependency of grey
levels and the dissimilarity quantifies the variation of grey-
level voxel pairs.

Correlation =
Nbins∑

i=1

Nbins∑

j=1

P(i, j)(i − μi)(j − μj )

σiσj

(5)

Dissimilarity =
Nbins∑

i=1

Nbins∑

j=1

P(i, j) |i − j | (6)

These features were computed in 3D using grey-level co-
occurrence matrices (GLCM), which take into account pairs
of voxels arrangement. For each of the 13 spatial directions,
a GLCM matrix was computed between consecutive voxels
(i.e., a 1-distance relationship). P(i,j) is the probability value
recorded for a pair of voxels in the co-occurrence matrix, μi

and μj correspond to the averages on row i and column j, σi

and σj are the variances on row i and column j and Nbins
is the number of grey levels used in the image quantization.
The TF values were calculated for each matrix and then
averaged to obtain the final TF values.

All the texture parameters were calculated with a
fixed number of 64 bins for the metabolism analysis as
recommended in the literature [17, 18, 47, 49], and with a
number of 32 bins for the perfusion analysis, to minimize
the impact of the noise which is higher in parametric blood
flow than in metabolic images. Original PET images were
rescaled between the minimum and the maximum intensity
within the tumor VOI (a relative rescaling) (Fig. 1).

Statistical analysis

Statistical analysis was performed with R [40]. For all
the features extracted from the parametric images, average,
median, and standard deviation values were calculated.
Shapiros’ test was used to test the normality of the variable
distribution. Since most distributions were not normal,
relations between features and phenotypes were assessed
using the Kruskal–Wallis test, considering a significance
level of 0.05. If statistical significance was found, pairwise
comparisons using a Mann–Whitney test with a Bonferroni
adjustment was computed to find out differences between
phenotypes. Associations between PET features and clinical
and physiological parameters were investigated using a
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two-sided Mann–Whitney test. Correlations between PET
features were evaluated with the Spearman rank test.

Results

Patient characteristics

The study was conducted on 217 patients with a median age
of 49 years and an average primary tumor diameter of 34.5
mm. The median MATV was 6.1 ml with an interquartile
range of 8.2 ml and the median perfused volume was 4.0
ml with an interquartile range of 7.1 ml. Ductal carcinoma
represented 93.6% of the patients, 5.5% were lobular, and
0.9% were not classified. Seventy-nine patients were HER2-
positive, 81 luminal/HER2-negative, and 57 had TN tumors.
Patient and tumor characteristics are summarized in Table 1.

Correlation between PET features

Figure 2 shows the Spearman correlation heat map of
PET features (metabolism and perfusion). Regarding per-
fusion features, BF correlation, BF entropy and BF IDM
were strongly correlated with each other (r>0.74), whereas
BF dissimilarity was inversely correlated with the other
perfusion textural features (r<-0.71). Except for a weak cor-
relation between BF max and BF entropy (r=0.61), BF max
and BF mean were not correlated with perfusion textu-
ral features. Concerning metabolic features, M correlation,
M IDM and M entropy were strongly correlated with each
other (r>0.70) and with MATV (r>0.73) and TLG,
whereas M dissimilarity was strongly inversely correlated
with the other metabolic textural features, MATV, and TLG.
SUV max and SUV mean were not correlated with the
other metabolic features. Regarding the correlation between
perfusion and metabolic features, except for a weak cor-
relation between BF max and TLG (r=0.64), there was
no significant correlation between standard metabolism
features (SUV max, SUV mean, MATV, TLG) and per-
fusion standard features (BF max and BF mean). In con-
trast, BF correlation, BF entropy and BF IDM were cor-
related with M correlation, M entropy, MATV, and TLG,
and inversely correlated with M dissimilarity. Finally,
BF dissimilarity was correlated with M dissimilarity and
inversely correlated with the other metabolic TFs.

Relationship between PET-derived features
and tumor characteristics

Table 2 summarizes the PET-derived features in association
with the tumor characteristics. Concerning perfusion
parameters, there was no difference according to ER, PR,
and HER2 status. In contrast, BF max, BF entropy and

Table 1 Patient and tumor characteristics

Number of patients (%) N = 217

Menopausal

Yes 93 (42.9)

No 124 (57.1)

T stage

T1 23 (10.6)

T2 150 (69.1)

T3 12 (5.5)

T4 32 (14.8)

N stage

N0 74 (34.1)

N1 104 (47.9)

N2 20 (9.2)

N3 19 (8.8)

SBR

Grade 1 and 2 115 (53)

Grade 3 102 (47)

Histological type

Ductal 203 (93.6)

Lobular 12 (5.5)

Others 2 (0.9)

ER status

Positive 124 (57.1)

Negative 93 (42.9)

PR status

Positive 91 (41.9)

Negative 126 (58.1)

HER2 status

Positive 79 (36.4)

Negative 138 (63.6)

Breast cancer sub-group

ER+/HER2- 81 (37.3)

HER2+ 79 (36.4)

TN 57 (26.3)

ER: estrogen receptor; PR: progesterone receptor; TN: triple negative

BF correlation were significantly higher in the event of T
stage 3-4, lymph node involvement or ductal carcinoma,
whereas BF dissimilarity was lower. T stage 3–4 tumors
also exhibited higher BF IDM. Finally, BF max was higher
for SBR grade III. Regarding metabolic features, both
SUV max and SUV mean were significantly higher in the
event of SBR grade III, ductal carcinoma, ER negative,
and PR negative. In contrast, no differences were found
for SUV max and SUV mean concerning HER2 status, T-
stage and N-stage. Higher MATV and TLG were found
in patients with T-stage 3–4, N+ status, and with HER2-
status. TLG was also higher in the event of SBR grade III
and ductal carcinoma. M entropy, M lDM and M correlation
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Fig. 2 Spearman rank
correlation heat map between
blood flow texture features,
metabolism texture features, and
standard PET features. The dark
blue colors represent strong
positive correlations (close to 1),
the dark red represent strong
inverse correlations (close to -1).
The light/white represent an
absence of correlation (close to
0). BF: blood flow; IDM:
inverse different moment; M:
metabolism; MATV: metabolic
active tumor volume; SUV:
standardized uptake value; TLG:
total lesion glycolysis
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were higher in patients with T-stage 3–4 and HER2
negative, whereas M dissimilarity was lower. M entropy and
M correlation were also higher in patients with N+ status.

Comparison between phenotypes

Table 3, Figs. 3, and 4 summarize the comparison of
blood flow and metabolism characteristics between BC
phenotypes. Regarding global BF analysis, no significant
differences among phenotypes were observed. TF anal-
ysis showed no significant differences between HER2
and Luminal tumors. However, TN tumors had a signif-
icantly higher entropy than luminal tumors (entropy: TN
= 6.18±1.65, luminal = 5.49±1.45, p=0.011), and a sig-
nificantly higher homogeneity than the HER2 ones (IDM:
HER2 = 0.14±0.05, TN = 0.17±0.06, p=0.015; correla-
tion: HER2 = 0.29±0.22, TN = 0.37±0.23, p=0.034)).
Concerning metabolism analysis, TN tumors showed higher
values of SUV max and SUV mean than HER2 and lumi-
nal tumors. In addition, TF analysis showed that HER2
tumors had a significantly lower homogeneity and entropy
than luminal tumors (IDM: HER2 = 0.06±0.02, lumi-
nal = 0.07±0.02, p<0.001; entropy: HER2 = 6.22±1.53,
luminal = 6.80±1.59, p=0.034). HER2 tumors had also a
lower homogeneity and entropy than TN ones (IDM: TN

= 0.07±0.03, entropy: TN = 6.86±1.93, p=0.023 and
p=0.047). No significant differences in heterogeneity were
reported between TN and luminal tumors.

Discussion

The present paper shows that adding blood flow evaluation,
from the first pass of 18F-FDG, to the more conventional
delayed 18F-FDG uptake, brings new insights into breast
cancer biology. Global blood flow increases in the context
of large tumors and axillary lymph node invasion. Texture
analysis shows that perfusion heterogeneity parallels that
of metabolism. These results suggest a complementary role
of advanced textural features and standard PET imaging
parameters for the in vivo biological characterization of
BC lesions, supporting the hypothesis that advanced PET
imaging analysis can provide additional information.

As previously reported, global tumor perfusion was
found to be almost identical in the three BC subtypes
[20, 46], while glucose uptake significantly increased from
luminal to HER2 and TN tumors [9, 10, 15, 16, 20, 32].
The increased metabolism of some tumors, especially the
TN subtype, has led to the mismatch concept between
perfusion and tumor metabolism [10]. Regarding the
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Table 3 Comparison between blood flow and metabolism characteristics for each breast cancer phenotype

PET features BC subgroups values BC subgroups comparison

Luminal HER2 TN Luminal-HER2 Luminal-TN HER2-TN

(mean ± sd) (mean ± sd) (mean ± sd) (p value) (p value) (p value)

Blood flow BF max (ml/min/g) 0.32±0.19 0.37±0.29 0.40±0.21 − − −
BF mean (ml/min/g) 0.17±0.09 0.18±0.12 0.18±0.08 − − −
Entropy 5.49±1.45 5.62±1.47 6.18±1.65 − 0.011 −
IDM 0.15±0.05 0.14±0.05 0.17±0.06 − − 0.015

Dissimilarity 7.07±2.21 7.20±2.41 6.53±2.61 − − −
Correlation 0.29±0.23 0.29±0.22 0.37±0.23 − − 0.034

Metabolism SUV max 8.0±5.0 10.0±5.1 13.8±6.8 0.020 <0.001 0.006

SUV mean 4.9±3.0 6.1±3.1 8.0±3.8 0.021 <0.001 0.018

TLG 56.1±87.0 45.9±61.7 157.2±362.7 − 0.033 0.003

Entropy 6.80±1.59 6.22±1.53 6.86±1.93 0.034 − 0.047

IDM 0.07±0.02 0.06±0.02 0.07±0.03 <0.001 − 0.023

Dissimilarity 16.5±4.0 18.4±3.8 16.6±5.3 0.008 − −
Correlation 0.22±0.19 0.14±0.19 0.21±0.25 0.014 − −

BF: blood flow; IDM: inverse different moment; TLG: total lesion glycolysis

relationship between global perfusion parameters and tumor
characteristics, no association between blood flow average
(BF mean) and hormonal receptors or SBR was observed,
as previously reported [10, 20, 32]. Although no perfusion
difference was highlighted in a previous paper from
our institution [20], a significantly higher perfusion was
however noted, in the present study, for ductal carcinomas.
The larger number of patients here (217 vs. 150) may
potentially explain this difference in the results. As there
is an important numeric disproportion between the lobular
and the ductal tumor population, results must be carefully
interpreted. However, the observation of a higher perfusion
for ductal carcinomas is in line with some previous
studies where the expression of vascular endothelial growth
factor (VEGF) protein was significantly higher in invasive
ductal carcinomas than in invasive lobular carcinomas
[11, 26].

Moreover, in the present study, T3-T4 tumors were
found to have a higher BF max than T1-T2 tumors and
this observation has not been reported before. It could
be argued that tumor blood flow increases with size but
the blood flow “max” is calculated within a small part
of a tumor, i.e., a cube of 64 mm3 representing less than
100 mg of tumor. Yet, this observation is in line with a
recent study [23] where a significantly lower microvessel
density was associated with a smaller tumor size. Fifty
percent of tumors with a diameter between 2 and 5 cm
had a microvessel density > 72.9/mm2 by comparison
to only 38% in tumors with a diameter smaller than 2
cm. Moreover, we noted that, in patients with lymph
nodes involvement (N+), primary tumors also exhibited a

higher BF. Lymph node involvement reflects tumor local
invasion and is an important prognostic factor. Similarly,
a borderline correlation has been reported [5] between
vascular proliferation index and positive nodal status in a
series of 110 patients with locally advanced breast cancer.
Supporting these observations, a color Doppler ultrasound
study showed in a large cohort of breast carcinomas
(368 patients) that the peak systolic flow velocity was
significantly associated with tumor size and the presence
of axillary lymph node metastases [7]. In the same way, a
direct association has also been reported between expression
of VEGF and the tumor size and the number of metastatic
lymph nodes [11].

The differences observed in perfusion depending on
tumor size and lymph node involvement might reflect
an increased angiogenesis. Indeed, it has been suggested
that angiogenesis in breast cancer is regulated by vascular
factors secreted by tumor cells and has a close relationship
with axillary nodule metastasis [8]. Angiogenesis plays an
important role in both tumor growth and metastasis of many
types of cancers and is recognized as an important hallmark
of oncogenesis [14]. This might provide an explanation
to the higher perfusion observed in primary tumors with
clinical lymph node involvement, as extensive angiogenesis
could facilitate cancer metastasis. These differences in
perfusion according to T-stage and N-stage are not
paralleled by similar differences in tumor metabolism, as
no significant differences were noted for both SUV max or
SUV mean. This observation might suggest that studying
perfusion might provide further insights in breast cancer
invasiveness.
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In recent years, several studies have investigated the
heterogeneity of 18F-FDG uptake in different tumor
types. Some research has focused on breast cancer and
various image-derived features, reflecting heterogeneity,
have been proposed. Most of these studies have been
mainly descriptive, attempting to find correlations with
tumor subtypes and treatment responses. In the present
study, using a single 18F-FDG PET/CT exam, we were
able to characterize both tumor perfusion and metabolism
heterogeneity and look for possible links between these two
tumor hallmarks’ heterogeneity. Texture feature interpreta-
tion can be influenced by the method used to calculate it.
Depending on the PET image rescaling method [27, 37], it
was shown that the texture feature will not have the same
behavior, and potentially not the same meaning [27, 28,
36–38]. Bearing this question in mind, a limited number
of texture features known to be robust and reproducible
[17, 19, 28, 37, 38, 49] were selected in the present study.
Moreover, similar texture features were used to study both
perfusion and metabolism, thus making comparisons easier.

To the best of our knowledge, no prior study has
addressed perfusion heterogeneity using PET/CT in BC.
Among a large population covering different BC phe-
notypes, the differences found between HER2 and TN
tumors were significant, with a higher heterogeneity in the
HER2 subtype. This difference was also found between
HER2 tumors and luminal tumors, but was not signifi-
cant. Metabolism heterogeneity analysis highlighted sim-
ilar differences between phenotypes, with HER2 tumors
significantly more heterogeneous than luminal and TN
tumors. Consequently, HER2 subtype appeared here, as
the most heterogeneous phenotype, in both perfusion and
metabolism. It is worth noting that perfusion heterogeneity
matched metabolism heterogeneity.

One possible interpretation of these facts might be related
to the heterogeneous distribution of vascular density within
the tumor, due to angiogenesis [1]. Indeed, previous pub-
lished works underlined the relationship between the HER2-
positive tumors and angiogenesis [22, 24, 50]. Moreover,
for this BC subtype, clinical trials have suggested that
addition of an antiangiogenic treatment to a conventional
neoadjuvant chemotherapy, can increase the proportion of
patients who achieve a pathological complete response [12],
supporting the link between HER2 and angiogenesis.

Finally, unlike global perfusion parameters that show
only a limited correlation with standard metabolism features
[10, 46], perfusion TFs and metabolism TFs were highly
correlated (for example, r=0.84 for the correlation between
M entropy and BF entropy). As the heterogeneity is assessed
by comparison of neighbor pixels, this could reflect some
anarchic distribution of perfusion and metabolism. One
study has investigated the heterogeneity of microvessels in

BC [1] at the microscopic level. The authors concluded that
heterogeneity is even more important inside a given tumor
than among various types of tumors. Results obtained here
may suggest that understanding perfusion heterogeneity at
the pixel level could possibly be a step forward in the
comprehension of metabolism heterogeneity.

Study limitations

One of the main limitations of this study is the small
volume of the tumors. However, small tumor size is one
of breast cancer’s characteristics and the choice of TFs
was done taking into account this aspect, using local TFs
only. Considering the wide range of techniques available
and the contradictory results, a careful interpretation
of heterogeneity should be done. Regarding perfusion
and metabolism tumor heterogeneities comparison, we
performed a global rather than a voxel-to-voxel comparison
given that perfusion and metabolism were evaluated from
two different acquisitions.

No correction for partial volume effect was applied and
the low count statistics in the dynamic images might add
a bias that could affect the results [48]. By improving
the signal-to-noise ratio and the spatial resolution of the
dynamic short time frames, better image quality should
be obtained, leading to new or more significant results.
Improvement of spatial resolution and sensitivity provided
by new digital PET or dedicated breast PET scanners should
improve the analysis in this range of tumor sizes. Moscoso
et al. [32] recently investigated the dedicated breast PET
resolution improvement. They showed that this technique
enables a more accurate heterogeneity characterization, but
they focused only on metabolism analysis.

Conclusions

In this study, a significantly higher perfusion in tumors with
lymph node involvement has been highlighted, whereas
no significant difference was noted in tumor metabolism.
In addition, tumor blood flow heterogeneity was different
in different breast cancer phenotypes and this was not
previously observed with a global analysis of the perfusion.
A combination of standard PET parameters and textural
features of both tumor perfusion and metabolism could
represent a step forward towards a better understanding of
tumor behavior and therapeutic strategies adaptation, in the
era of personalized medicine. The next step would be to
investigate if all these new texture features and their early
changes during therapy might improve clinical outcome
prediction or treatment response, as potential biomarkers of
therapeutic response.
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