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Abstract

. Catherine Cheze Le Rest' - Vincent Jaouen' - Mathieu Hatt'

Techniques from the field of artificial intelligence, and more specifically machine (deep) learning methods, have been core
components of most recent developments in the field of medical imaging. They are already being exploited or are being
considered to tackle most tasks, including image reconstruction, processing (denoising, segmentation), analysis and predictive
modelling. In this review we introduce and define these key concepts and discuss how the techniques from this field can be
applied to nuclear medicine imaging applications with a particular focus on radio(geno)mics.
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Introduction

Nuclear medicine and radiology have evolved greatly over the
last 20 years thanks mainly to hardware developments, such as
the deployment of multimodality imaging devices in the 2000s
[1], and the development of fast detector technologies [1, 2].
Software innovations have also led to substantial improvements
in the spatial resolution and the signal-to-noise ratio of recon-
structed images, thanks for example to point-spread function
and time-of-flight (ToF) information being incorporated into
PET image reconstruction [3]. Despite being quantitative by
nature, nuclear medicine images are, in most clinical publica-
tions, clinical trials and obviously routine clinical practice,
exploited in a very restrictive manner (i.e. analysed mostly vi-
sually or semiquantitatively). There seems to be growing inter-
est in more automatic analysis of medical images coupled to
extraction of multiple features, including some that may not be
accessible to the naked eye, even the expert trained eye [4, 5].
The main objective of this evolution and change in paradigm is
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to better harness the information provided by imaging studies in
terms of influencing patient management workflow within the
context of precision medicine. As a result, within this new
framework, medical imaging should play an enhanced role,
and become essential beyond diagnosis to cover therapy plan-
ning, as well as therapy monitoring and assessment, and pre-
dictive modelling and stratification, to become overall an inte-
gral part of future clinical decision-making systems.

The aim of the present paper is to provide definitions of
artificial intelligence (AI, machine/deep learning) and
radio(geno)mics, as well as some insights into their potential
applications in nuclear medicine imaging.

Definitions of artificial intelligence, machine
(deep) learning and radio(geno)mics

Artificial intelligence

The term artificial intelligence is a ‘fuzzy concept’ with a
number of possible definitions depending on context, time
and applications. As an academic discipline, it is considered
to have been founded in 1956 at the Dartmouth conference
[6]. A rather general definition is “intelligence demonstrated
by machines, in contrast to the natural intelligence displayed
by humans and other animals”. However in the present con-
text of medical imaging, a more specific definition may be
more appropriate: “a system’s ability to correctly interpret
external data, to learn from such data, and to use those
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learnings to achieve specific goals and tasks through flexible
adaptation” [7]. As algorithms tackle increasingly complex
tasks, those considered to require ‘intelligence’ are sometimes
removed from the field of Al, leading to the assertion that “Al
is whatever has not been done yet” [8]. An example of this is
character recognition, which may no longer be considered as
‘artificial intelligence’, because it is now a standard routinely
used technology, for example by postal services. Well-known
capabilities of today’s algorithms usually considered as Al
include speech recognition and more importantly understand-
ing, language translation, mastering complex games such as
Go [9] and more recently even more complex strategy video
games?, or autonomously driving cars.

Al systems can be classified as analytical, human-inspired
or humanized Al [7]. Analytical systems possess only charac-
teristics related to cognitive intelligence, using learning based
on past experience to make predictions. Human-inspired Al
systems possess emotional intelligence and understanding in
addition to cognitive elements. Humanized Al systems are
able to demonstrate cognitive, emotional and social intelli-
gence, with self-consciousness and self-awareness in interac-
tions with others. In the twenty-first century, Al techniques
have benefited from improved theoretical understanding
(e.g. in neural network mathematics), advances in computer
power (e.g. graphical processing units, GPU), wider availabil-
ity of always larger quantities of data for learning (e.g. through
the development of social networks and other platforms, cloud
storage/computing, etc.), and availability of the algorithms
and libraries themselves. As a result, older concepts and the-
ories can now be actually applied to real-life problems and
tasks, even by nonexperts on commercially available systems.

Regarding medical imaging, a number of tasks that clini-
cians perform that rely on images could therefore theoretically
be carried out by Al, including but not limited to, lesion de-
tection, disease classification, diagnosis and staging, quantifi-
cation, treatment planning (delineation of targets and organs at
risk, and dosimetry optimization), assessing response to treat-
ment and prognosis [10]. Automation is expected to allow
these tasks to be achieved with much higher robustness and
reproducibility, and potentially with fewer errors, in a much
shorter time. Obviously, there are other aspects of medical
imaging in which Al could provide solutions to improve
practice, such as improving operational workflow, finance
management and quality improvement, amongst others [11].
Most, if not all, Al systems developed for medical image
analysis tasks belong to the class of analytical systems, and
can therefore be classified as machine/deep-learning
techniques.

! https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-
starcraft-ii/

Machine (deep) learning

Machine learning is the study of algorithms that learn and
improve through experience, and as such is a fundamental
concept of Al. Learning is usually considered to be unsuper-
vised or (semi)supervised. Unsupervised learning consists of
finding patterns in unlabelled data [12], whereas supervised
learning uses labels to infer classification or regression, and
semisupervised learning is typically carried out with a small
amount of labelled data and a large amount of unlabelled data
[13]. In the context of medical imaging, the standard
workflow or machine learning pipeline is usually directly ap-
plied to address most tasks (Fig. 1).

Data (e.g. images or parts of images) are fed into a feature
extractor. The goal of the feature extractor is to compute from
the input data a number of ‘handcrafted’ (or ‘engineered’)
features. These can be based partly on expert knowledge,
can be more or less relevant to the task at hand, more or less
complex, and in small or large numbers. These features are
then fed into a classifier (or a regression) algorithm whose
goal is to map the features with the classification task, for
example differentiating between two types of tumour, or strat-
ifying patients based on clinical outcome. This part is often
divided into two steps: feature selection and actual modelling.
Feature selection consists of identifying a smaller relevant
subset amongst the features calculated by the extractor. This
is usually done to facilitate the subsequent modelling step by
reducing training times, avoid dimensionality issues and re-
duce overfitting, as well as to simplify the resulting models
and improve their interpretability. There are several tech-
niques to perform feature selection, that can be either linked
to or independent of the chosen classifier that will subsequent-
ly combine these selected features into some sort of
multiparametric model. These techniques can be categorized
into three main approaches: filter, wrapper and embedded
[14]. Filter methods identify variables independently of the
model that will be combining them, based only on metrics
such as the correlation between each variable and the end-
point, suppressing the least valuable ones. Despite not being
prone to overfitting, filter methods tend to retain redundant
features, as they do not take into consideration correlations
between them [15]. Wrapper approaches evaluate subsets of
features, which allows relationships between features to be
taken into account, in contrast to filter methods. Their main
associated drawbacks are the higher computation time and risk
of overfitting with small samples. Embedded methods com-
bine the advantages of wrapper and filter approaches, by ‘em-
bedding’ the feature selection process within a learning algo-
rithm, performing feature selection and classification simulta-
neously. Actual modelling (i.e. mapping a combination of
features with the endpoint) can be performed thanks to a clas-
sifier or a regression algorithm. A large number of techniques
have been developed in the field of machine learning. Popular
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Fig. 1 The radiomics pipeline, in comparison with the usual machine learning workflow, and the deep learning workflow

examples include random forest, support vector machines and
artificial neural networks [16].

Deep learning (as opposed to ‘shallow’ learning methods,
as described above) is a category of methods belonging to the
machine learning field, that are mostly based on the use of
specific types of artificial neural networks, sometimes with a
very large number of layers and nodes. Thus deep learning is a
specific type of machine learning, which is itself part of Al
(see Fig. 2) [17].

These techniques rely on a cascade of multiple layers of
nonlinear processing units for feature extraction and transfor-
mation, where the input to each successive layer is the output
from the previous layer, so that multiple levels of representa-
tion that correspond to different levels of abstraction are
learned [18]. Even though neural networks were designed
much earlier, ‘deep’ networks, with their ability to learn

Artificial intelligence

Machine learning

Deep learning

Fig. 2 Deep learning is a specific type of machine learning, and both are
Al concepts
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efficiently through a general purpose procedure, are more re-
cent. Furthermore, the main impact of convolutional neural
networks (CNN) on computer vision and imaging applications
was considered to be a real breakthrough in the years 2011 and
2012. CNNs trained using the backpropagation algorithm had
existed for decades, and GPU implementations for years.
However in 2012, Ciresan et al. showed how max-pooling
CNN implemented on a GPU could provide improved results
in a number of vision benchmarks. The same year, Krizhevsky
et al. won the ImageNet competition with much better perfor-
mance than shallow machine learning methods, using a simi-
lar CNN design [19]. Ciresan et al. also won both the ICPR
and the MICCAI Grand Challenge on mitosis detection [20].
Over the next years, the performance obtained by challengers
in the ImageNet competition steadily improved thanks to new
CNN designs and techniques [21]. Deep learning methods,
especially CNN but also other types of network (e.g. recurrent
neural networks and generative adversarial networks) have
since been exploited to address existing challenges in a num-
ber of medical imaging tasks, including but not limited to,
image registration, reconstruction, classification, pattern rec-
ognition, segmentation, denoising and super resolution. In
most of these tasks, they often achieved unprecedented per-
formance (in terms of computational efficiency and/or perfor-
mance in the specific task), becoming de facto the new stan-
dard and benchmark to beat [22].

One of the major differences between these techniques and
the ‘older’ machine learning approaches described above is
that the aim of these networks is to learn specific patterns
relevant to a given task (e.g. segmentation or endpoint predic-
tion) from the data (i.e. images) themselves, instead of relying
on ‘engineered’ or ‘handcrafted’ features (including expert
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knowledge) [22, 23]. In that regard, these methods can be
considered a paradigm shift, as they may provide an ‘end-to-
end’ workflow, relying on a general purpose learning proce-
dure (Fig. 1).

User intervention, for example detection and selection of
objects of interest for further characterization, could therefore
be significantly simplified or even deemed unnecessary. On
the other hand, a number of challenges need to be well under-
stood when considering the use of these techniques. Deep
neural networks have a large number of hyper parameters,
and exploring the parameter space to identify optimal ones is
usually not feasible due to limitations in computational re-
sources and time. Tricks such as computing the gradient on
several examples at once (batch processing) can help speed up
computation. The large processing capabilities of GPUs have
enabled significant improvements in training speed. Deep
neural networks are also prone to overfitting. This is due in
part to their ability to model rare dependencies observed in the
training data, thanks to their numerous layers. Various ap-
proaches such as regularization and dropout are usually im-
plemented to limit overfitting [24]. Data can also be augment-
ed by methods such as zooming and rotating to increase the
size of the required training sets [25]. Finally, transfer learning
is an important component in which networks pretrained on
different, although much larger datasets, are fine-tuned using
smaller datasets more specific to the task at hand [26, 27].

Radio(geno)mics

In parallel to the improvements in PET/CT hardware and re-
construction software over the last two decades, several de-
velopments have been made in the field of PET/CT image
processing and analysis: noise filtering [28, 29] and partial
volume effect correction [30] methods can further improve
both the visual quality and quantitative accuracy of PET im-
ages. In addition, (semi)automated image analysis algorithms
can detect lesions of interest [31] and also delineate them with
similar accuracy and higher reproducibility and robustness
than human experts [32—34]. This has opened the way to a
more comprehensive characterization of organs and tumours,
by extracting quantitative metrics (‘handcrafted’ or
‘engineered’ image features) from preprocessed and segment-
ed PET/CT images. In this context, most of the current work
on PET/CT imaging has concentrated on the radiotracer most
commonly used clinically, namely '*F-fluorodeoxyglucose
("*F-FDG), with very few studies considering other tracers
[35]. The four methodological components shown in Fig. 1
(preprocessing, segmentation, feature extraction, modelling)
are the key building blocks of the scientific field known today
as radiomics. The term ‘radiomics’ first appeared in 2010 [35]
and the fully formalized framework of radiomics was de-
scribed in 2012 [36]. As can be understood from the previous
sections, radiomics is simply a translation of the standard

machine learning pipeline (Fig. 1) applied to medical images.
The rationale behind the development of the radiomics field of
research is that medical images contain features of tumour
phenotypes that can reflect at least part of the underlying path-
ophysiological processes at smaller scales, including down to
the genetic level. This is why the term radiomics is often
associated with genomics, in the term ‘radiogenomics’.
Radiogenomics actually has two different meanings. The first,
older one is related to radiobiology and is not relevant in the
present context. The second concerns the association/
combination of radiomics and genomics, which can be cate-
gorized into two different methodological approaches. The
first investigates the links between the two, i.e. what part of
the genomics information can be explained or ‘decoded’ by
radiomics, which has been described as ‘imaging genomics’
[37, 38] and investigated in a number of studies [39, 40]. The
alternative approach concerns the development of methodol-
ogy that combines two sources of information making use of
their complementary value in order to build more efficient
predictive models.

Nuclear medicine imaging applications
of artificial intelligence, deep learning
and radio(geno)mics

Applications of Al in nuclear medicine are extremely wide
and promising and may impact different aspects [41]. The first
step concerns the use of Al for data processing at the detector
level for image reconstruction, including corrections for the
different physics processes associated with the detection pro-
cess (e.g. attenuation, scatter). Beyond the image reconstruc-
tion step, Al may be useful for different image processing
steps including denoising, segmentation and fusion. Finally,
Al can be used in the construction of models based on infor-
mation extracted from images that would help achieve predic-
tive, personalized medicine relying on images.

At the detection level, recent efforts include the use of
CNN to enhance PET image resolution and improve the noise
properties of PET scanners with large pixelated crystals [42]
and to estimate ToF directly from pairs of coincident digitized
detector waveforms [43]. Integrating a deep neural network
into the iterative image reconstruction process may improve
final image quality [44, 45]. Deep learning methods have al-
ready been proposed for attenuation correction and registra-
tion in PET/CT and PET/MR, and have been shown to be able
to generate attenuation maps with high accuracy [46-50]. In
the same context, deep learning has been used for improving
maximum-likelihood reconstruction of activity and attenua-
tion (MLAA) with ToF PET data [51]. Denoising is one of
the most popular image processing applications for which
deep learning techniques have been successfully used, for
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example to generate full-dose PET images from low-dose im-
ages [52] or to directly filter reconstructed PET images [29].

Automated detection, counting and segmentation/
characterization of lesions in images may have wide applica-
tions in diagnosis, as well as in planning treatment and mon-
itoring response, but more broadly, also for all
radio(geno)mics applications. For a long time, methods rely-
ing on older, shallow machine learning frameworks were not
able to reach the required levels of automation and accuracy to
be fully transferred to clinical practice or to allow the fast
processing of hundreds of patients in radiomics analysis.
Some recent developments still involve the use of ‘older’ ma-
chine learning techniques [53], but a growing number are
relying on deep learning methods with the hope of greatly
improving both automation and performance. Indeed, CNNs
have been especially successful for medical image segmenta-
tion tasks [22]. This is explained by the fact that, contrary to
classification tasks (one label per image), segmentation learn-
ing occurs at the voxel level (one label per voxel). The amount
of learning data thus allows efficient training of the network
parameters. For example, despite having only a few training
examples available in the recent PET functional volume seg-
mentation MICCALI challenge, the method based on a
pretrained CNN achieved the highest score (although not sig-
nificantly higher than the scores of some of the more conven-
tional techniques) [32]. CNNs have also been applied to the
problem of multimodal PET/CT cosegmentation [34, 54, 55].
Pipelines for tumour detection and segmentation based on a
deep learning framework [31, 55, 56] are likely to provide
fully automated solutions for this step of the radiomics pipe-
line, thereby eliminating this important bottleneck.

Predictive modelling and radio(geno)mics studies already
heavily rely on machine learning methods [16, 57-59], al-
though most of them are in the field of radiology and not
nuclear medicine. Evaluation of machine learning and deep
learning methods have shown improved feature selection,
more robust model building and harmonization of radiomic
PET features [59—63]. However, only a limited number of
studies have explored the potential of deep network CNNs
to reach a higher levels of automation by using them as an
end-to-end methodology, and most of them have been in the
field of CT or MR imaging [64—70], with only a few examples
of their use in nuclear medicine imaging such as FDG PET
[71-73] and SPECT [74].

Discussion

Although most currently available studies on the use of deep
features, and their combination with usual radiomic features,
have been carried out in the fields of CT and MRI, the same
concepts can be applied to nuclear medicine imaging.
Replacing the usual machine learning/radiomics pipeline by
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one based on end-to-end deep learning (Fig. 1) may be an
attractive solution to solving some of the issues and limitations
of radiomics. In this approach, all steps performed separately
and sequentially (segmentation, feature extraction, modelling)
are performed by one (or several) neural network(s).
However, this approach actually replaces previous challenges
by others more specific to the use of deep learning. First, these
methods are data-hungry and therefore datasets much larger
than those usually available in radiomics studies are needed
for efficient training. Thus, techniques and tricks such as
transfer learning and data augmentation, or reliance on seg-
mentation networks to build classifiers [75], become crucially
important. Second, the requirement to provide interpretable
models is also important in clinical applications. Therefore
there is a need to provide feedback and explanation to the
end-users regarding a network decision, using for example
network visualization techniques [76] to generate heat maps
in the input images highlighting the areas in the image, or even
within the tumour, that were the most relevant in reaching the
decision. This is also important in understanding and
correcting the remaining errors that the algorithms make,
and in trying to address other issues including regulatory, legal
and accountability issues [77].

A major paradigm shift is occurring in the design of most
computer approaches designed for use in the clinic. It is un-
clear how much time is needed for deep learning methods to
be integrated into clinical nuclear medicine practice, and to
achieve full automation of most clinical tasks. Currently, these
developments have focused on tackling the most common
clinical problems for which sufficient data are available.

The aim of most developed methods is to solve one prob-
lem within one specific task. While they may excel in
interpreting image and contextual information, they are usu-
ally not able to make associations the way a human brain does,
and cannot replace clinicians for all tasks they perform. In
addition, they may not yet have reached the same level of
performance as the expert in all situations, and therefore a full
artificial nuclear medicine physician still belongs to the do-
main of science fiction. On the other hand, the role of nuclear
medicine physicians is likely to evolve as these new tech-
niques are integrated into their practice, and it is therefore
important that the acquisition of a basic understanding of these
methods and concepts is part of their training. They will them-
selves also probably contribute to the training of Al, providing
additional expert knowledge and experience to the tools they
will then use.

The availability of data remains a crucial bottleneck in Al
system learning, because curated data (ensuring the training
data conforms to a number of quality criteria, which usually
involves experts and is time-expensive) is simply not yet
available for all tasks and in sufficient amount. On the other
hand, the deep learning software platforms are open-source
and because of this, experimentation and sharing of
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innovations has been fast and on a massive scale, and this may
eventually also help in terms of data processing and availabil-
ity. An additional concern for proper training of machine and
deep learning models is the lack of standardization in both
image acquisition and reconstruction (despite long-term ef-
forts by societies such as the EANM, SNMMI and RSNA,
and others) and in machine (deep) learning techniques them-
selves (including but not limited to, radiomics definitions,
nomenclature, implementation, software, machine learning
methodology and implementation, and optimization). The
strong heterogeneity and variability in scanner models, ven-
dors, acquisition protocols and reconstruction settings is a
considerable challenge for training generalizable models that
remains to be fully addressed. Efforts already ongoing, for
example the Image Biomarker Standardization Initiative
(IBSI) for radiomics standardization [78—80] and
harmonization/normalization techniques [63, 81], should
clearly be emphasized and supported to further improve these
aspects in the future.
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