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Abstract
Purpose To assess the role of radiomics parameters in predicting pathological complete response (pCR) to neoadjuvant chemo-
therapy (NAC) in patients with locally advanced breast cancer.
Methods Seventy-nine patients who had undergone pretreatment staging 18F-FDG PET/CT and treatment with NAC between
January 2010 and January 2018 were included in the study. Primary lesions on PET images were delineated, and extraction of
first-, second-, and higher-order imaging features was performed using LIFEx software. The relationship between these param-
eters and pCR to NAC was analyzed by multiple logistic regression models.
Results Nineteen patients (24%) had pCR to NAC. Different models were generated on complete information and imputed
datasets, using univariable and multivariable logistic regression and least absolute shrinkage and selection operator (lasso)
regression. All models could predict pCR to NAC, with area under the curve values ranging from 0.70 to 0.73. All models
agreed that tumor molecular subtype is the primary predictor of the primary endpoint.
Conclusions Our models predicted that patients with subtype 2 and subtype 3 (HER2+ and triple negative, respectively) are more
likely to have a pCR to NAC than those with subtype 1 (luminal). The association between PET imaging features and pCR
suggested that PET imaging features could be considered as potential predictors of pCR in locally advanced breast cancer
patients.
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Background

Breast cancer, the leading cause of cancer death among women
(http://gco.iarc.fr/today/online), is a heterogeneous disease that
comprises different molecular subtypes characterized by
diverse histological characteristics, aggressiveness, therapeutic
strategies, and prognostic implications [1]. Growing evidence
supports the application of personalized therapies to cancer
patients. However, a reliable method for patient stratification in
terms of prediction of therapeutic success is still a major issue,
including in breast cancer.

Neoadjuvant chemotherapy (NAC) has become a standard
approach for patients with locally advanced breast neoplasms
[2, 3]. The backbone of NAC is the combination of
anthracycline and taxane, with addition of trastuzumab in
cases of human epidermal growth factor receptor 2-positive
(HER2+) breast cancer [3]. NAC aims at expanding the sur-
gical indications and facilitating breast-conserving surgery.
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Furthermore, pathological complete response (pCR) to NAC,
defined as the absence of remaining invasive cancer in the breast
and axillary nodes on pathological examination of the post-
treatment surgical excision specimens (ypT0/TisN0) [4], has
been shown to be a surrogate endpoint of long-term event-free
and overall survival in breast cancer [5, 6]. The strongest associ-
ation between pCR and long-term outcome has been reported in
the most aggressive subtypes (triple negative, luminal high-
grade, and HER2+ hormone-receptor-negative) [6]. On the other
hand, patients with pathological residual disease (non-pCR) after
NACare at higher risk of relapse. However, NACmay be limited
by a number of toxic side-effects (e.g., hematological ones);
consequently, only 73–87% of regimens are completed in the
preoperative setting, and impairments affecting daily life may
persist even 3 years after treatment itself [7, 8]. Therefore, a
staging procedure capable of predicting response to NAC could
avoid eventual toxicities in selected patients.

The role of 18F-fluorodeoxyglucose (18F-FDG) positron emis-
sion tomography/computed tomography (PET/CT) in breast can-
cer staging is routinely limited to advanced disease [3, 9]. PET/
CT allows imaging of both intratumor heterogeneity and
treatment-induced changes. Standard semiquantitative imaging
parameters obtained from 18F-FDG PET/CT have been shown
to correlate with tumor aggressiveness in breast cancer, and are
therefore likely also to correlate with patient outcome [10–16].
Radiomics, an approach able to quantify lesion heterogeneity
using medical imaging, is an emerging translational research
topic in breast cancer [17]. Recent literature data indicate that
features obtained from 18F-FDG PET/CT correlate with tumor
histological characteristics and molecular subtypes [18–22], but
there is still limited evidence relating to their role as predictive
parameters [21–25].

The main objective of this study was to evaluate the role of
advanced imaging features obtained from baseline 18F-FDG
PET/CT in combination with clinical and pathological param-
eters in the prediction of tumor response to NAC in breast
cancer patients.

Materials and methods

Study population

Data for patients with a diagnosis of locally advanced breast
cancer (n = 291), treated by NAC and surgery at Humanitas
Clinical and Research Center between January 2010 and
January 2018, were retrospectively collected. Patient inclu-
sion criteria were as follows: (i) histological diagnosis of pri-
mary breast cancer, (ii) performance of 18F-FDG PET/CT for
staging purposes before any treatment, and (iii) NAC as pri-
mary treatment followed by surgery. Ninety-two patients were
selected. Patients who had already been treated for breast can-
cer (n = 2) and those who had suspicion of distant metastasis

on the staging 18F-FDG PET/CT were excluded (n = 11).
Finally, 79 patients fulfilling the above-mentioned inclusion
and exclusion criteria were included in the present analysis.
The Institutional Ethics Committee reviewed and approved
this retrospective study. Specific informed consent was not
required according to local ethics committee rules for retro-
spective studies.

NAC treatment

A standard NAC protocol with anthracycline and taxane, plus
trastuzumab in patients with HER2 amplification [3], was per-
formed in 68/79 patients. In the remaining 11 patients, a dif-
ferent therapeutic regimen was performed in accordance with
the oncologist’s indication (detailed in Table 1 of the electron-
ic supplementary material). Surgery was performed after com-
pletion of NAC in 77/79 patients. In two patients, the standard
NAC protocol was discontinued, and surgery was performed
irrespective of failure to complete NAC (these patients had no
evidence of response to systemic treatment and severe infec-
tion, respectively).

Data collection

Data on programmed clinical examination, tumor marker mea-
surement (cancer antigen 15.3), and radiological follow-up were
collected from the medical records (n = 76). Three patients were
referred to other hospitals for further oncological management;
therefore, their radiological follow-up was not available. Data on
survival status were available for all patients.

Histological characteristics of the primary tumor (expression
of hormone receptors, HER2 status, Ki67 value, tumor dimen-
sions and grade, histological tumor type, molecular subtype) and
clinical characteristics of each patient (age at diagnosis, meno-
pausal state, evidence of disease relapse or death, type of chemo-
therapy) were retrieved from the institutional database.

Image acquisition

The imaging acquisition protocol has been previously de-
scribed [21]. Details according to the Image Biomarker
Standardisation Initiative (IBSI) reporting guidelines [26] are
provided in Table 2 of the electronic supplementary material.
Briefly, 18F-FDG PET/CT images were acquired 60 ± 5 min
after 18F-FDG injection in accordance with the European
Association of Nuclear Medicine (EANM) guidelines, version
1.0 and, from February 2015, version 2.0 [27] using an inte-
grated PET/CT scanner, either a Siemens Biograph 6 LSO
(Siemens, Erlangen, Germany) or a General Electric
Discovery 690 (General Electric Healthcare, Waukesha, WI,
USA). CT images without contrast enhancement or respiratory
gating (free-breathing images) were acquired. All PET images
were corrected for attenuation using the acquired CT data.
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Image analysis

18F-FDG PET/CT images were retrieved from the Picture
Archiving and Communication System (PACS). A board-
certified nuclear medicine physician with more than 10 years’
experience in PET/CTsegmented breast tumor lesions on 18F-
FDG PET/CT images using a semiautomatic approach. The
volume of interest (VOI) of the breast lesion was defined on
PET images with a threshold of 40% of the maximum stan-
dardized uptake value (SUVmax) using commercial software
(PET VCAR; GE Healthcare). Only the primary tumor was
segmented. Textural features (i.e., first-, second-, and higher-
order imaging parameters) were extracted using dedicated
software for radiomics (LIFEx) (https://www.lifexsoft.org/
index.php). LIFEx, for technical reasons, extracted second-
and higher-order imaging parameters only for lesions greater
than 64 voxels.

Primary endpoint

The primary endpoint of this study was the prediction of pCR
to NAC, defined as the absence of remaining tumor on histo-
pathological examination of the post-treatment surgical exci-
sion specimens [4].

Statistical analysis

Clinical data, biological characteristics of the tumor, and
imaging-derived features were tested as possible predictors of
pCR to NAC. Two different approaches (complete case and sen-
sitivity) were used for model building.

The complete-case approach was applied for the main analy-
sis. Accordingly, only subjects with complete variable informa-
tion were included in the main analysis. Two models were built
within the complete-case approach to predict pCR to NAC. In
the first model, clinical data, biological tumor characteristics, and
first-order imaging features were included. Univariable logistic
regression was used to estimate odds ratios (ORs) and 95% con-
fidence intervals (CIs) for the association of each variable and
pCR to NAC. Variables satisfying an a-priori set criterion of
p < 0.2 were included in the multivariable model. SUVmax and
total lesion glycolysis (TLG), identified in the literature as poten-
tial predictors of outcome [28, 29], were also included in the
model (hereafter referred to asmodel 1).We further testedwheth-
er any clinically meaningful interactions would improve the
model fit.

In the second model, second- and higher-order imaging
features were also evaluated as possible predictors of pCR to
NAC. Features identified at univariable logistic regression as
additional predictors of the outcome, along with the variables
identified in the first model, were included in the model (here-
after referred to as model 2).

Model performance was evaluated through discrimination
and calibration. The discriminatory power of the two models
was assessed using the area under the receiver operating char-
acteristic (ROC) curve. Area under the ROC curve (AUC) is
the probability that the model we developed will assign a
higher probability of the outcome to a patient with the out-
come than to a randomly chosen patient without the outcome
[30]. Since the dataset used for model development was also
used to assess model discrimination, the actual AUC estimates
could be over-optimistic [31]. Thus, an internal validation
with 100 iterations of tenfold cross-validation was used for
AUC evaluation. Calibration of the two models was evaluated
by plotting predicted and observed probabilities of outcome
[31].

As a second approach, a sensitivity analysis was per-
formed. Multiple imputation with chained equation (MICE)
was used to impute the missing data [32, 33]. Two models
using two thresholds (i.e., 0.5 for model 3 and 0.4 for model
4) were used for predictor selection. Details for imputation
analysis and predictor selection for models 3 and 4 are pro-
vided in the supplementary material. Model performance was
then evaluated as described in the main analysis.

All analyses were performed using STATA (version 15,
StataCorp, College Station, TX, USA) and R Statistical
Software (Foundation for Statistical Computing, Vienna,
Austria).

Results

Baseline characteristics of all patients included in the study are
presented in Table 1. Missing values were observed only for
tumor dimension (n = 13) and information on Ki67 expression
(n = 2). The mean age of our study population was 50.7 years,
and 48% of included patients were postmenopausal women.
Thirty-nine percent of patients had HER2+ breast cancer, 32%
had triple-negative neoplasms, and the remaining 29% had
luminal disease. The mean tumor diameter was 2.95 cm.

Nineteen out of seventy-nine (24%) patients had pCR to
treatment, while the remaining 60/79 (76%) had residual dis-
ease on surgical specimens.

During follow-up, disease relapse occurred in 16 cases (lo-
cal recurrence n = 9, distant metastases n = 7), while two pa-
tients died.

In the patient with a multifocal tumor, two areas of focal
uptake on PET images were separately segmented and consid-
ered as two different lesions. Results in respect of the features
extracted are provided in supplementary Table 3. Collectively, all
textural features (i.e., n = 43) were available in 71/79 cases. In
8/79 patients, lesions were smaller than 64 voxels; hence, only
first-order parameters were extracted. Figure 1 provides images
of two patients as representative examples.
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Model selection and model performance

Model 1

Results from the univariable and multivariable models used
for selection of the variables in the simple prediction model

containing clinical data, biological characteristics of the tu-
mor, and the first-order imaging features are presented in
Table 2. Age, molecular subtype, and HER2 status satisfied
the inclusion threshold for the univariable analysis. Since the
molecular subtype is defined based on the expression of se-
lected receptors, including HER2, the HER2 status was re-
moved from the model due to possible collinearity issues.
SUVmax and TLG did not satisfy the inclusion threshold in
our dataset (p > 0.2). Nevertheless, we evaluated whether the
performances of the model would be improved by adding
SUVmax and TLG (Table 2). If the discriminatory performance
of the final model was evaluated on the same dataset as was
used for the model development, the addition of SUVmax and
TLG slightly improved the discrimination (AUC = 0.73 vs
0.71). However, the mean AUC over 100 iterations of tenfold
cross-validation was lower for the model with SUVmax and
TLG (mean AUC = 0.59, Fig. 2a) than for the model contain-
ing only the age and molecular subtype (mean AUC = 0.61,
Fig. 2b). Thus, the model with age and molecular subtype was
selected as the final model 1. Calibration for model 1 is pre-
sented in Fig. 3.

Model 2

One second-order advanced imaging feature (correlation) and
two higher-order imaging features (coarsenessNGLDM and
GLNUGLZLM) satisfied the inclusion threshold for the
univariable analysis (Table 3). Results from the univariable
and multivariable logistic regression using the variables se-
lected in model 2 are presented in Table 3. The actual AUC
for model 2 was 0.72 (Table 3). Calibration for model 2 is
presented in Fig. 4.

Models 3 and 4

Using the threshold of 0.5 (conservative criterion, model 3),
age, molecular subtype, HER2 status, correlation, and
coarsenessNGLDM were selected for the final model. Age, mo-
lecular subtype, estrogen receptors, HER2 status, type of
NAC, Ki67, correlation, coarsenessNGLDM, and GLNUGLZLM

were selected when 0.4 was used as the threshold (model 4).
HER2 status was excluded from both models due to the possible
collinearity. The actual AUCs for the two models were 0.70 and
0.73, respectively (Table 4). Calibration of the twomodels can be
seen in Fig. 5.

Discussion

The primary aim of the study was to investigate the relation-
ship between pCR to NAC in breast cancer patients and PET-
derived features. In particular, we aimed to assess the predic-
tive power of first-, second-, and higher-order imaging

Table 1 Baseline characteristics of the study population

Population (n = 79)

N %

Age, years

Mean (SD) 50.67 (11.93)

Dimension, cm

Mean (SD) 2.95 (1.39)

Median (range) 2.60 (1.00–8.00)

Estrogen receptors, %

Mean (SD) 38.62 (43.60)

Progesterone receptors, %

Mean (SD) 20 (34)

Ki67, % (mean, SD)

Mean (SD) 38.96 (22.50)

Median (range) 35.00 (5.00–90.00)

Menopausal state

No 41 51.90

Yes 38 48.10

Primary tumor

Unifocal 78 99

Multifocal 1 1

Molecular subtype

Luminal 23 29.11

HER2+ 31 39.24

TN 25 31.65

Standard NAC protocol

Yes 68a 83.54

No 11 16.46

Response to NAC

Complete 19 24.05

Incomplete 60 75.95

Follow-up, months

Median (range) 21.23 (5.16–65.33)

Disease relapse

Yes 16 20.25

No 61 79.75

Not available 2

Death

Yes 2 2.53

No 77 97.47

SD standard deviation,HER2+ human epidermal growth factor receptor 2
amplified, TN triple negative, NAC neoadjuvant chemotherapy
a Including two patients in whom NAC was not completed
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features. The strength of the present study relies on the meth-
odology used for the analysis, determined by the sample size,
the retrospective study design, and the number of events (i.e.,
pCR versus non-pCR). Accordingly, a rigorous statistical plan
comparing the complete-case approach (i.e., complete-case
dataset) and the sensitivity analysis (i.e., dataset where

missing data were imputed), was applied for building models,
management of missing data issues, and selection of variables,
in order to obtain reliable results not affected by chance. Two
models within the complete-case approach for prediction of
pCR to NAC were built; a simple model containing clinical
data, biological characteristics of the tumor, and the first-order

Fig. 1 Representative PET/CT images of a patient with pCR (a) and a
patient with pathological residual disease (b) after NAC. a A three-
dimensional reconstruction of PET/CT images, axial PET — zoom on
the primary breast lesion, fused axial PET/CT, and a transverse view of a
three-dimensional reconstruction of PET/CT images (panels a, b, c, and d
respectively) in an 81-year-old patient with HER2+ breast cancer,
estrogen receptor expression 0%, progesterone receptor expression 0%,
Ki67 40%, and HER2/neu +++, with no evidence of residual disease at
postsurgical histological analysis after neoadjuvant treatment (12 cycles
of paclitaxel/trastuzumab). PET parameters (↑ and ↓: above and below the
median value): SUVmaximum 14.3↑, total lesion glycolysis (TLG) 33.5↓,
CorrelationGLCM 0.52↑, CoarsenessNGLDM 0.035↑, GLNUGLZLM 4.056↓.

b A three-dimensional reconstruction of PET/CT images, axial PET —
zoom on the primary breast lesion, fused axial PET/CT, and a transverse
view of a three-dimensional reconstruction of PET/CT images (panels a,
b, c, and d respectively) in a 37-year-old patient with HER2+ breast
cancer, estrogen receptor expression 95%, progesterone receptor
expression 90%, Ki67 50%, and HER2/neu +++, with persistence of
disease at postsurgical histological analysis after neoadiuvant treatment
(four cycles of doxorubicin/cyclophosphamide followed by four cycles of
docetaxel/trastuzumab). PET parameters: SUVmaximum 19.2↑, TLG 17.8↓
, CorrelationGLCM 0.295↓, CoarsenessNGLDM 0.041↑, GLNUGLZLM

2.139↓

Table 2 Odds ratios and 95% CIs
from the univariable and
multivariable logistic regression
models predicting pCR to NAC
using the variables selected in
model 1

Univariable analysis Multivariable analysis

OR 95% CI OR 95% CI OR 95% CI

Age 0.96 0.92, 1.01 0.97 0.91, 1.02 0.96 0.92, 1.01

Molecular subtype

Luminal 1.00 – 1.00 – 1.00 –

HER2+ 5.78 1.14, 29.37 6.59 1.22, 35.47 5.82 1.11, 30.37

TN 3.32 0.60, 18.45 4.25 0.60, 30.09 3.37 0.59, 19.22

SUVmax
a 1.00 0.93, 1.06 0.99 0.89, 1.10 – –

TLGa 1.00 0.99, 1.00 1.00 0.99, 1.00 – –

Actual AUC 0.73 0.71

Mean cross-validated AUC 0.59 0.62

OR odds ratio, CI confidence interval, HER2+ human epidermal growth factor receptor 2 amplified, TN triple
negative, SUVmax maximum standardized uptake value, TLG total lesion glycolysis, AUC area under the ROC
curve
a Imaging parameters included in the model based on previous knowledge (p > 0.2)
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imaging features (model 1), and a more complex model in
which second- and higher-order features were added (model
2). Age and molecular subtype proved to be the sole, albeit
weak, predictors of outcome in the simple model, with slight
improvement in the model’s predictive power upon addition
of the textural PET-derived features.

18F-FDG PET imaging parameters have already been pro-
posed as predictors of response to NAC in patients with other
tumor types, for example esophageal cancer [34], but infor-
mation on their predictive role in breast cancer is scarce. Only

Fig. 2 Variation in the area under the ROC curve (AUC) estimates with
the 95% confidence intervals over the 100 iterations of tenfold cross-
validation for (a) the model including only age and the molecular
subtype and (b) the model including SUVmax and TLG in addition to
age and molecular subtype

Fig. 3 Calibration of the logistic regression model including only age and
molecular subtype (model 1). The size of the circles is proportional to the
number of events in the deciles of predicted risk

Table 3 Odds ratios and 95% CIs from the univariable and
multivariable logistic regression models predicting pCR to NAC using
the variables selected in model 2

Univariable
analysis

Multivariable
analysis

OR 95% CI OR 95% CI

Age 0.96 0.92, 1.01 0.96 0.91, 1.02

Molecular subtype

Luminal 1.00 – 1.00 –

HER2+ 5.78 1.14, 29.37 4.24 0.76, 23.60

TN 3.32 0.60, 18.45 1.90 0.30, 12.15

Correlation 0.09 0.01, 1.51 0.33 0.01, 12.16

CoarsenessNGLDM
a 1.02 0.99, 1.05 1.01 0.96, 1.05

GLNUGLZLM 0.93 0.84, 1.04 0.97 0.84, 12.15

Actual AUC 0.72

Mean cross-validated AUC 0.58

OR odds ratio, CI confidence interval, HER2+ human epidermal growth
factor receptor 2 amplified, TN triple negative, NGLDM neighborhood
gray-level different matrix, GLNUGLZLM gray-level non-uniformity gray-
level zone length matrix
a CoarsenessNGLDM ranges from 0.00068 to 0.07237, and we thus report
the ORs as the change in odds for 0.001 unit increase

Fig. 4 Calibration of the logistic regression model including only age,
molecular subtype, and second- and higher-order imaging features
(model 2). The size of the circles is proportional to the number of
events in the deciles of predicted risk
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standard PET parameters (e.g., SUVmax, TLG) have been cor-
related to response to NAC in breast cancer patients [28, 29].
In our study, however, SUVmax and TLG did not appear to be
predictors of pCR to NAC, and adding them to a simple model
containing only age and molecular subtype did not lead to an
improvement in the model’s predictive power. Very recently,
Groheux et al. [35] showed change in 18F-FDG uptake
(ΔSUVmax) between PET1 and PET2 (performed before and
after two cycles of NAC, respectively) in triple-negative
breast cancer to be highly associated with pCR (p = 0.0001),
which was not the case for the absolute value of baseline
SUVmax (p = 0.11). The AUC of pCR prediction improved
(from 0.63 to 0.76) when baseline SUVmax was combined
with the genomic grade index (p = 0.016).

In our study, model 1, which included clinical data only
(i.e., age and molecular subtype), and model 2, which also
incorporated second- and higher-order imaging features (i.e.,
correlation, coarsenessNGLDM, and GLNUGLZLM), had a sim-
ilar discrimination performance. Thus, in our hands the inclu-
sion of second- and higher-order imaging features did not
improve the discriminatory power of the model. This is some-
what inconsistent with recent evidence of a potential role of
high-order PET imaging features as predictors of complete
response to NAC in breast cancer [22, 23]. Molina-Garcia
et al. [22] found an association between higher-order imaging
features, molecular phenotypes, and NAC response,
supporting a relationship between local tumor aggressiveness
and tumor complexity. Similarly, Yoon et al. [23] found that

PET-derived textural features were able to predict responders
to NAC and survival in locally advanced breast cancer. A
possible explanation for the discrepancy between these find-
ings and our own lies in the study population and in the
methods used for the analysis. We evaluated a similar number
of cases (79 versus 68 [22] and 83 [23], respectively), but
unlike Molina-Garcia et al. [22] we excluded patients with
distant metastases (chemotherapy is not a neoadjuvant treat-
ment in the presence of distant metastases [3]), and unlike
Yoon et al. [23] we considered only patients presenting pCR
as responders since, as mentioned above, this is the only class
with a major clinical prognostic relevance. Additionally, in
our series, second- and higher-order imaging features were
not available for 8/79 patients.

We could not rule out model misspecification issues, with
major regard to variable selection. Therefore, in the second
approach (based on imputed datasets with complete informa-
tion, i.e., sensitivity analysis), an alternative specification
strategy was used that favored variables with a large effect
on the model’s discrimination [36]. The lasso approach

Table 4 Odds ratios and 95% CIs from the multivariable logistic
regression models predicting pCR to NAC using the variables selected
over 50 imputed datasets using thresholds set at 0.5 (model 3) and 0.4
(model 4)

0.5 threshold 0.4 threshold

OR 95% CI OR 95% CI

Age 0.96 0.91, 1.01 0.96 0.91, 1.01

Molecular subtypea 1.52 0.73, 3.18 1.00 0.26, 3.84

Estrogen – – 0.99 0 97, 1.02

Type of NAC – – 0.56 0.12, 2.55

Ki67 – – 1.01 0.98, 1.04

Correlation 0.43 0.02, 10.83 0.49 0.02, 15.07

CoarsenessNGLDM
b 1.02 0.98, 1.05 1.01 0.97, 1.05

GLNUGLZLM – – 0.97 0.85, 1.11

Actual AUC 0.70 0.73

Mean cross-validated AUC 0.61 0.56

OR odds ratio, CI confidence interval, NAC neoadjuvant chemotherapy,
NGLDM neighborhood gray-level different matrix, GLNUGLZLM gray-
level non-uniformity for gray-level zone length matrix
aMolecular subtype was treated as a continuous variable
b CoarsenessNGLDM ranges from 0.00068 to 0.07237, and we thus report
the ORs as the change in odds for 0.001 unit increase

Fig. 5 Calibration of the logistic regression models including the
variables selected over 50 imputed datasets using threshold set at a 0.5
and b 0.4
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allowed an additional issue of our dataset to be addressed (i.e.,
the combination of a limited number of observations and a
large number of potential predictors). Two models (models 3
and 4) were generated using distinct thresholds for predictor
selection based on the frequency of variable selection in the
imputed datasets. In addition to patient characteristics (i.e.,
age in both models), tumor markers (i.e., molecular subtype
in both models, and estrogen receptor and Ki67 in the 0.4
threshold model only), and type of NAC (for the model 4
only), models 3 and 4 had second- and higher-order PET
imaging fea tures as predic tors (cor re la t ion and
coarsenessNGLDM for both, GLNUGLZLM for the second only).
These models had actual AUC values of 0.70 and 0.73 respec-
tively, which were close to those of models 1 (0.71) and 2
(0.72). This is not surprising, given that all models shared
the variables with the largest predictive weight (i.e., age and
tumor molecular subtype), regardless of the strategy that was
used for variable selection. Despite poor discrimination, this
might indicate the appropriateness of model specification.

Overall, all models displayed limited discrimination perfor-
mances, probably due to the small sample size, which was
further reduced due to the missing data and the complete-
case approach used in the main analysis. However, we per-
formed a sensitivity analysis using multiple imputation with
chained equation, which led to very similar results. The com-
bination of a large number of predictors with the small sample
size could have led to the sparse cell problem if more typical,
although highly criticized, methods for model selection had
been used, such as backward or stepwise selection. Indeed, in
our dataset, we were not able to use these methods for model
selection due to the convergence issues. However, univariable
models for predictor identification performed at least as well
as the more complex models used for dimension reduction,
such as lasso regression. Furthermore, due to the small sample
size we could not divide our population into training and test-
ing sets, which is recommended for model development and
validation. Moreover, alternative validation methods (e.g.,
leave-pair-out cross-validation) might improve the AUC esti-
mates [37].

In our series, the only characteristic that had some predic-
tive weight was the tumor molecular subtype. This is probably
due to the small sample size and the limited number of events
(i.e., pCR), which represent limitations both for model build-
ing and for cross-validation. It should be noted that the models
predict that patients with subtype 2 (HER2+) are more likely
to have a pCR to NAC than those with subtype 1 (luminal)
(OR = 6.59, CI = 1.22–35.47 in the first model), which is con-
sistent with previous knowledge [38].

To summarize, our study has some limitations. First of all,
all clinical data were not available for all patients due to the
retrospective nature of the study design. Also, as mentioned
before, a greater sample size would improve the results and
allow a potentially clinically relevant sub-analysis according

to the molecular subtypes. Moreover, second- and higher-
order features were not extracted for all patients for technical
reasons. However, patient selection and the methods used for
data analysis were extremely rigorous. Only patients with lo-
cally advanced breast cancer eligible for NAC were included
in the analysis. Accordingly, patients with a previous history
of breast cancer or metastases (either suspected or confirmed)
were excluded. pCR was used as the primary endpoint since it
is the only parameter with clinical prognostic significance.
Imputation analysis was performed for all missing data.

In conclusion, our findings suggest that radiomics PET-
derived features may be associated with pCR to NAC.
Therefore, advanced image analysis should be further evalu-
ated in a large population to better clarify and quantitate the
potential predictive role of textural features in locally ad-
vanced breast cancer patients.

Clinical relevance

Breast cancer patients with pCR to NAC have a better prog-
nosis than partial and non-responders. Predictors of pCR
would be of key relevance in daily clinical practice in order
to better guide treatment decisions. In this regard, the extrac-
tion of biologically relevant information from staging images
is increasingly acknowledged as a non-invasive prognostic
approach, but its effectiveness is not established yet.
Although image-derived biomarkers require a clinical valida-
tion before entering routinely into clinical practice, our data
confirmed that they are a promising prognostic tool in locally
advanced breast cancer.
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