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Abstract
Purpose Pathological complete response (pCR) following neoadjuvant chemoradiotherapy or radiotherapy in locally advanced
rectal cancer (LARC) is reached in approximately 15–30% of cases, therefore it would be useful to assess if pretreatment of 18F-
FDG PET/CT and/or MRI texture features can reliably predict response to neoadjuvant therapy in LARC.
Methods Fifty-two patients were dichotomized as responder (pR+) or non-responder (pR-) according to their pathological tumor
regression grade (TRG) as follows: 22 as pR+ (nine with TRG= 1, 13 with TRG = 2) and 30 as pR- (16 with TRG = 3, 13 with
TRG = 4 and 1 with TRG = 5). First-order parameters and 21 second-order texture parameters derived from the Gray-Level Co-
Occurrence matrix were extracted from semi-automatically segmented tumors on T2w MRI, ADC maps, and PET/CT acquisi-
tions. The role of each texture feature in predicting pR+ was assessed with monoparametric and multiparametric models.
Results In the mono-parametric approach, PET homogeneity reached the maximum AUC (0.77; sensitivity = 72.7% and spec-
ificity = 76.7%), while PET glycolytic volume and ADC dissimilarity reached the highest sensitivity (both 90.9%). In the
multiparametric analysis, a logistic regression model containing six second-order texture features (five from PET and one from
T2w MRI) yields the highest predictivity in distinguish between pR+ and pR- patients (AUC = 0.86; sensitivity = 86%, and
specificity = 83% at the Youden index).
Conclusions If preliminary results of this study are confirmed, pretreatment PET and MRI could be useful to personalize patient
treatment, e.g., avoiding toxicity of neoadjuvant therapy in patients predicted pR-.
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Introduction

Colorectal cancer is the third leading cause of cancer-related
mortality in Western countries and in approximately one-third
of cases the tumor is localized in the rectum [1]. The standard

therapeutic scheme for locally advanced rectal cancer (LARC)
involves surgical resection, preceded by neoadjuvant chemo-
radiotherapy (CRT) or radiotherapy only (RT) [2, 3].
Neoadjuvant treatment can reduce the risk of local recurrence,
downsize the tumor, and facilitate subsequent successful R0
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resection and sphincter-preserving surgery [4]. Pathological
complete response (pCR) is reached in approximately 15–
30% of subjects and in these cases a wait-and-see strategy is
becoming a viable therapeutic option [5]. To improve patient
management, it could be advantageous to determine the like-
lihood of pCR or near pCR before treatment to allow clini-
cians to tailor therapy. Importantly, patients predicted as non-
responders could benefit from alternative treatments or up-
front surgery, avoiding toxicity and side effects of CRT/RT.

Recently, the idea has emerged that medical images are like
the Bdark matter in space^ since only a small percentage of
image Bdata^ is actually used by the radiologist for interpre-
tation whilst the vast majority is locked up within the images
themselves. Radiomics analysis can extract hidden data and
process large amounts of information from routinely acquired
medical images with the scope of providing a comprehensive
quantification of tumor phenotype. Radiomics uses advanced
quantitative feature analysis, including analysis of the spatial
layout of images and of their geometric shape [6].
Improvement in image analysis through the understanding of
its texture proprieties has revealed important prognostic infor-
mation on disease course [7, 8] and on the understanding of
underlying genomic patterns [9].

Texture analysis has been applied to MRI to predict long-
term survival of patients with LARC [10], to discriminate
different stages of rectal cancer [11] and also to predict re-
sponse to CRT [12, 13]. The role of texture analysis in
predicting response to CRT has also been investigated with
18F-FDG PET/CT [14, 15]. To our knowledge, combining
18F-FDG-PET and MRI texture features with the aim of
predicting which patients with LARC will respond to neoad-
juvant therapy has never been attempted before. However, this
approach has shown promising results in other tumor models.
For example, Vallières et al. [16] have shown that the predic-
tive value of baseline 18F-FDG-PET texture features in the
risk evaluation of lung metastasis at the time of diagnosis of
primary soft-tissue sarcomas was significantly enhanced by
the addition of MRI parameters.

The aim of this study is to assess if a combination of MRI
and 18F-FDG PET/CT texture features can reliably predict
response to neoadjuvant therapy (CRT/RT) in LARC and pro-
vide clues that could ultimately improve patient management.

Materials and methods

Patients

Subjects with LARC that underwent neoadjuvant CRTor only
RT followed by surgical resection at our institution were ret-
rospectively enrolled in a single institution study between
July 2010 and October 2016. Inclusion criteria were the fol-
lowing: (a) biopsy-confirmed stage II/III LARC (any T,

positive N); (b) absence of distant metastasis (M0); (c) axial
MRI examination, including T2-weighted (T2w) and
diffusion-weighted imaging (DWI), and fluoro-D-glucose
(FDG) PET performed at our institute prior to neoadjuvant
treatment. Exclusion criteria were: (a) significant image arti-
facts at MR and/or FDG-PET examinations, (b) absence of
tumor regression grading (TRG) evaluation [17], (c) age < to
18 years, (d) pregnancy, (e) mentally incompetent subjects.
The study design was approved by the local Ethics
Committee, in accordance with the Helsinki Declaration;
signed informed consent to use and analyze imaging data
was obtained from all participants before entering the study.
All accrued patients were evaluated by our internal tumor
board before and after the completion of the neoadjuvant
treatment.

Treatment

Thirty-two of the 57 patients enrolled in this study were part of
a protocol (RectumSIB: ClinicalTrials.gov identifier:
NCT01224392) comparing the standard neoadjuvant
radiation treatment (CRT arm; 17 patients) to an exclusive
radiotherapy treatment protocol with a simultaneous
integrated boost (RT arm; 15 patients), as previously
reported [18]. The remaining 25 patients performed standard
CRT treatment with the same technical specification of the
RectumSIB protocol. Six to eight weeks after the end of
radiotherapy, all patients repeated the MRI examination of
the rectum and FDG-PET and subsequently underwent total
mesorectal excision (TME).

Reference standard

Resected tumors were evaluated by an experienced patholo-
gist. All surgical specimens were received under vacuum
sealing and stored at 4 °C within 2 h from the resection. The
specimens were then opened and the tumor bed was macro-
scopically identified and extensively sampled at 5-mm inter-
vals. Tissue slices were then fixed in 10% buffered formalin at
room temperature for 24 h and subsequently paraffin embed-
ded. Semiserial sectioning at 0.5-mm intervals from each tis-
sue slice from the tumor bed was performed and the sections
stained with hematoxylin and eosin for microscopic examina-
tion. Semi-quantitative pathological evaluation of primary tu-
mor regression was performed, determining the number of
residual tumor cells comparedwith the desmoplastic response,
using the Mandard’s five-point assessment scheme [19].

In this system, TRG 1 represents a complete regression
(fibrosis without detectable tissue of tumor); TRG 2 represents
a partial response (rare residual tumor cells); TRG 3 is defined
as fibrosis outgrowing residual tumor; TRG 4 is defined as
residual tumor outgrowing fibrosis; TRG 5 represents a com-
plete non-response (absence of regressive changes).
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Imaging

MRI was performed with a 1.5-T scanner using an eight-
channel phased-array surface coil (HDx Signa Excite, GE
HealthCare, Milwaukee, WI, USA). Patients were positioned
in the supine position and, unless contraindicated, a 20-mg
intramuscular injection of butyl-scopolamine was administered
intravenously 10 min before the beginning of the examination
to minimize motion artifact induced by bowel peristalsis. The
acquisition protocol included a fast spin-echo T2w sequence
acquired on the axial plane perpendicular to the longest tumor
diameter having the following scanning parameters: repetition/
echo time (TR/TE) = 7660/110 ms, acquisition matrix = 416 ×
224, slice thickness = 4mm, pixel size = 0.4297 × 0.4297mm2,
field of view = 22 cm, and flip angle = 90°, as well as an axial
EPI-SE diffusion-weighted (DW) sequence with the following
scanning characteristics: TR/TE = 2000/87 ms, acquisition ma-
trix = 96 × 128, slice thickness = 4 mm, pixel size = 0.8594 ×
0.8594 mm2, field of view = 22 cm, flip angle = 90°, and b-
value = 800 s/mm2. Total examination time including a sagittal
and a coronal T2w sequence and a dynamic contrast enhanced
T1w sequence was 31 min.

FDG-PET was performed using a PET-CT Gemini TF
scanner (Philips Medical System, Cleveland, OH) with
Time-of-Flight (TOF) technology. All studies were carried
out according to the European Association of Nuclear
Medicine (EANM) guidelines [19]. Before the examination,
patients fasted for a minimum of 6 h and were required to
have a serum glucose concentration below 200 ng/dl. A
weight-based amount of [18F]FDG, with standard dose of
2.5 MBq/kg was injected. After 60 min of rest, patients were
asked to void their bladder and were placed in supine position
with arms raised. Image acquisition time was 15–20 min.

Image segmentation

We developed an algorithm using C++ and the ITK libraries to
segment tumors on MR images [20]. The semi-automatic seg-
mentation method was applied on both the T2w and the DW

images. First, a bounding box enclosing the rectal region (Fig.
1a) was drawn manually on the T2w images. Second, the
bounding box was automatically applied to both T2w and
DW images to crop the two datasets along the same physical
coordinates (Fig. 1b, c). Subsequently, a k-means algorithm
was applied on both datasets. The k-means method is an un-
supervised learning algorithm that classifies a given dataset
through a k number of clusters, in which each observation is
associated with the cluster having the closest mean. In our
algorithm, we defined k = 3 for the T2w sequence and k = 5
for the DW image. On the T2w images, the cluster having the
lowest mean intensity value is more likely to contain voxels
belonging to the tumor, while on the DW images the two
clusters with the highest intensity values more likely belong
to non-necrotic areas of the tumor (Fig. 1d-e). Therefore, the
final segmentation was composed of voxels belonging to the
tumoral region in both T2w/DW datasets (Fig. 1f, g), i.e., the
intersection between the two segmentations (Fig. 1h). Finally,
the 2D biggest connected region is kept as the final region of
interest, while other non-connected regions (i.e., noise, ves-
sels, and regions outside the tumor) are discarded. Once the
automatic segmentation was completed, an experienced radi-
ologist (more than 10 years of experience in interpreting ab-
dominal MRI) manually reviewed the results of segmentation
on both T2w and ADCmaps to include missing voxels and/or
to exclude voxels that were erroneously included by the algo-
rithm (Fig. 1i).

Segmentation of tumors on PET imageswas obtained using
the previously described automatic Adaptive Threshold
Algorithm [21]. First, a background area close to the lesion
was drawn by a nuclear medicine physician, then the algo-
rithm iteratively determined a threshold value based on the
percentage of the maximum intensity in the cross-section area
of a sphere containing the tumor. The threshold values were
entirely based on the apparent activity concentration in the
images and not on known activities. On our dataset, the
threshold values ranged from 0.737 to 16.848. Finally, all
masks were reviewed by an expert nuclear medicine
physician.

Fig. 1 Pipeline of the tumor segmentation on the T2w image. a T2w
image; b cropped T2w image: c cropped DW image; d k-means applied
on the T2w image; e k-means applied on the DW image; f thresholding to
extract tumoral cluster on the T2w image; g thresholding to extract

tumoral cluster on the DW image; h intersection between k-means
mask f and g; i final mask refined by the radiologist and superimposed to
the T2w image
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Features extraction

The following radiomics features were extracted from voxels
belonging to the segmented 2D mask in the T2w, ADC, and
PET images: (a) five first-order parameters, i.e., mean inten-
sity, median intensity, 10th, 25th, and 75th percentile; (b) 21
second-order texture parameters derived from the Gray-Level
Co-Occurrence matrix (GLCM); (c) the mean standard uptake
volume (SUVmean), the metabolic volume, defined as the area
of the segmented PETmask, and the glycolytic volume, which
is the product between metabolic volume and SUVmean.

The GLCM is a tabulation of how often different combi-
nations of pixel brightness values (i.e., grey levels) occur

between neighboring voxels in an image. Therefore, the
GLCM allows the calculation of second-order texture fea-
tures, i.e., describing the relationship between groups of con-
tiguous pixels in the image. To extract the texture parameters,
we first equalized the histogram by rescaling the intensities
within each ROI between the 1st and the 99th percentile of the
ROI over 64 bins. Using 64 equally divided bins has been a
common approach for image quantification in radiomics anal-
ysis, and at the same time, it makes it possible to explore the
whole range of tumor signal intensities [22]. Then, GLCMs
were generated for each of the four directions of a 2D image,
considering the distance between two neighboring voxels
equal to one. Finally, the four matrices were averaged to make

Fig. 2 a Receiver operating
characteristic (ROC) curves of
PETand ADC features having the
highest areas under the ROC
curve and the highest sensitivities;
b radiomics signature score for
every patient: the green marks
indicate the patients in the
responder group, while the red
marks represent the patients in the
non-responder group. The dotted
line is the threshold which opti-
mizes sensitivity over specificity
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the method rotationally invariant to the distribution of texture.
Texture features were computed using the MATLAB and
Statistics Toolbox Release 2016b (The MathWorks, Inc.,
Natick, Massachusetts, USA).

Statistical analysis

Patients were dichotomized as responders (pR+), having
TRG = 1 or 2, vs. non-responders (pR-) having TRG ≥ 3.
The relationship between pR+/pR- and texture features was
explored by both the mono-parametric and multi-parametric
approach. When using the first approach, we evaluated the
predictive value of each feature individually, using the
Mann–Whitney test. For those variables that were statistically

different between pR+ and pR- patients, we evaluated the area
under the receiver operating characteristic (ROC) curve
(AUC), sensitivity, and specificity at the best cut-off.
Sensitivity was defined as the number of correctly classified
pR+ patients over the total number of pR+ patients, while
specificity was defined as the number of correctly classified
pR- patients over the total number of pR- patients. The best
cut-off maximizes the Youden index, which is the cut-point of
the ROC curve that optimizes the biomarker’s differentiating
ability when equal weight is given to sensitivity and specific-
ity [23]. A p value < 0.05 was considered as indicating a sig-
nificant AUC greater than 0.5. Analyses were performed with
statistical software (MedCalc Statistical Software version
17.4, Ostend, Belgium).

Conversely, in the multiparametric approach, the accuracy
in predicting pR+ of different feature subsets was assessed
using a logistic classifier. Three feature subsets were created
composed of: (a) features from MRI (T2w and ADC maps),
(b) features from PET images, and (c) features from bothMRI
and PET images. However, since the dimensionality of fea-
tures was high for all three subsets, a feature selection step was
necessary to exclude irrelevant or redundant attributes that
might cause overfitting and that might be a source of noise
for the classifier [24]. To this scope, features were first ranked
according to their AUC in discriminating between pR+ and
pR-; subsequently, the correlation matrix between features
was computed to detect which pairs were highly correlated.
When a couple of features showed a Pearson’s linear correla-
tion ≥ 0.8, we discarded the feature with the lower AUC. To
improve stability and avoid bias, this selection was repeated
100 times using random training sets composed of 80% of the
whole patients’ dataset. Only features chosen more than 60
times were included in the subsequent analysis. Once the three
subsets of features were created, they were fed into a logistic
classifier, applying the stepwise regression method to further
exclude irrelevant variables. Within this procedure, the meth-
od searches for terms to add to or remove based on the p value
of the F-statistics and iteratively add or remove terms that have
p value ≤ 0.05 and/or p value > 0.20, respectively. Sensitivity
and specificity, as previously defined, were then estimated.

Results

Patients

From the initial cohort of 57 patients, three were excluded due
to MRI artifacts and two because the TRG score was not
evaluated. The final dataset included 52 patients, of whom
35men (68%). Twenty-two patients were classified pR+ (nine
with TRG= 1, 13 with TRG = 2), the remaining 30 were clas-
sified as pR- (16 with TRG = 3, 13 with TRG = 4, and 1 with
TRG = 5). Patient and lesion characteristics are reported in

Fig. 3 Heatmap shows the normalized mean difference of radiomics
features distributions between pR+ and pR- for both MRI (T2w and
ADC) and PET images. * indicates features statistically different
between pR+ and pR- patients (p < 0.05) using a two-sided Mann–
Whitney test
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Table 2. Of note, age was statistically lower in the pR+ group,
grade 0 and 1 tumors were more represented in the pR+ group,
grade 2 and 3 were more represented in the pR- group, pT0
tumors were significantly more represented in the pR+ group
while pT3 were significantly more represented in pR- group.

Mono-parametric approach

In total, 12 features derived from PET images and five features
computed on the ADC maps accurately predicted response to
neoadjuvant therapy (Table 3). The maximum AUC (0.77)
was obtained by PET homogeneity, which also showed a good
balance between sensitivity (72.7%, 16/22) and specificity
(76.7%, 23/30). Lower values of the PET homogeneity feature
were measured in responders (< 0.18). The highest sensitivity
in the prediction of response was obtained by PET glycolytic
volume and ADC dissimilarity (both 90.9%; 20/22) at the cost
of a low specificity (56.8% [17/30] and 43.3% [13/30], re-
spectively). Conversely, the highest specificity in response

prediction was obtained by metabolic volume (83.3% [25/
30]) to the detriment of sensitivity (63.6% [14/22]).
Figure 2a shows ROC curves of PET and ADC features hav-
ing the highest AUC values and reaching the highest sensitiv-
ities. T2w features did not differ between pR+ and pR- patients
with the mono-parametric approach (Fig. 3).

Figure 4 shows the mean AUC reached by each radiomics
feature computed on PET, T2w, and ADC images during the
100 repetitions. Features from PET images obtained higher
AUCs compared to features from MRI. The median AUC
obtained by texture features from PET was 0.65 (IQR =
0.61–0.73); from T2w image, 0.57 (IQR = 0.56–0.58); and
from ADC maps, 0.59 (IQR = 0.57–0.63).

Multi-parametric approach

The feature selection step returned three features subsets com-
posed of: (a) features from PET images, (b) features from

Fig. 4 Area under the receiver operating characteristics (ROC) curve
reached by each of radiomics features computed on both PET and MRI
(T2w and ADC) images. ROCs were computed 100 times using random
training sets composed of 80% of the whole patients’ dataset. Means and

standard deviations are shown. IMC information measure of correlation;
INN inverse difference moment; IDNN inverse difference moment
normalized
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MRI, (c) features from both PET and MRI. Features included
in each subset are listed in Table 1 (columns 2–4).

The logistic classifier obtained using only PET features
included homogeneity, contrast, metabolic volume, glycolytic
volume, and 10th percentile, and reached an AUC of 0.84, a
sensitivity and a specificity at the Youden index (0.5) of 77%
(17/22) and 83% (25/30), respectively. In order to obtain the
highest sensitivity in predicting pR+, i.e., ensuring treatment
to the large majority of responder patients, we could lower the
cut-off value. With a cut-off value of 0.28 we obtained a sen-
sitivity of 91% (20/22) and a specificity of 57% (17/30) in
recognizing pR+ patients. When only features fromMRI were
used, the logistic regression created a model containing 10th
percentile and correlation 1 from T2w images, and cluster
prominence and information measure of correlation 2 from
the ADC maps. This model reached an AUC of 0.72, and a
sensitivity and specificity of 73% (16/22) and 70% (21/30)
respectively, at the Youden index (0.37). Finally, when fea-
tures from PET and MRI were combined, the logistic regres-
sion computed a model containing: PET homogeneity, PET

contrast, PET 10th percentile, glycolytic volume, metabolic
volume, and T2w correlation 1. The AUC obtained by this
model was 0.86, while sensitivity and specificity at the
Youden index (0.42) were 86% (19/22) and 83% (25/30),
respectively. When lowering the cut-off to 0.25, the model
will correctly recognize as responder one additional patient
(sensitivity 91%; 20/22) but at the expense of a marked reduc-
tion in specificity (53%; 16/30) (see Fig. 2b).

Discussion

In this study, we show that a logistic regression model con-
taining five second-order PET texture features and one
second-order texture feature from the T2MRI sequence yields
the highest predictivity in determining which patients will or
will not respond to neoadjuvant therapy (AUC = 0.86).
However, the combined PET-MRI regression model yielded
results that were only slightly better than a model including
only 5 PET features (AUC = 0.84) and far better than a model

Table 1 List of features
computed on T2w and PET
images. BX^ in columns 2, 3, 4
show features that have been
chosen in the features selection
step on each features subset

Features PET MRI PET+MRI

First-order Mean intensity

Median intensity

10th percentile X X (T2w) X (PET, T2w)

25th percentile

75th percentile

Metabolic volume (PET) X X (PET)

Glycolytic volume (PET) X X (PET)

GLCM Autocorrelation [25]

Contrast [26] X X (ADC) X (PET, ADC)

Correlation 1 [25] X (T2w) X (T2w)

Correlation 2 [26]

Cluster prominence [25] X X (ADC, T2w) X (PET, T2w, ADC)

Cluster shade [25] X (ADC) X (ADC)

Dissimilarity [25] X (T2w)

Energy [26] X X (PET)

Entropy [25]

Homogeneity [26] X X (T2w) X (PET)

Maximum probability [26]

Variance [26] X (T2w) X (T2w)

Sum variance [26]

Sum entropy [26] X X (T2w) X (PET, T2w)

Sum average [26]

Difference variance [26]

Difference entropy [26]

Information measure of correlation 1 [26] X X (ADC) X (PET, ADC)

Information measure of correlation 2 [26]

Inverse difference normalized [27]

Inverse difference moment normalized [27]
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including only MRI features (AUC = 0.72). If FDG-PET is
confirmed as a reliable predictor of response, then hybrid
PET-MRI imaging could be implemented in the future both
to stage LARC and to tailor treatment to the individual patient.

In the above-described regression models the Youden in-
dex allows determination of the best cut-off value between
sensitivity and specificity. However, from a clinical stand-
point, a high-sensitivity value would ensure that most patients
that will benefit from CRT treatment actually receive it, even
if this will come at the cost of a large group of patients having
to undergo treatment unnecessarily. In our study, the highest
sensitivity was obtained by lowering the cut-off value of the
ROC curve of the multiparametric PET model to 0.28.
Assuming we were in clinical practice, the PET model would
have correctly suggested the use of CRT in over nine out of ten
patients (i.e., 91% sensitivity) and avoided unnecessary treat-
ment in almost six of ten patients (i.e., 57% specificity).

Of note, the AUC was lower for each first- or second-order
feature taken individually. Overall, PET homogeneity yielded
the best results with an AUC of 0.77 followed by PET inverse
difference normalized and ADC entropy. Based on current
knowledge, an explanation cannot be given as to why patients
with metabolically inhomogeneous LARC respond better to
neoadjuvant treatment; however, a similar trend was also re-
ported by Lovinfosse et al. [14]. We might envisage that mo-
lecular traits of tumor may be responsible for poor response
and that combining molecular and imaging metrics will allow
better comprehension of the mechanisms that underlie tumor
objective response. One additional finding of this study is that
we confirm that dissimilarity and contrast directly correlate
with good response, while metabolic volume and glycolytic
volume inversely correlate with good response to RT as pre-
viously demonstrated by other authors who adopted a differ-
ent method, i.e., odds ratio to evaluate correlation between
individual features and response to CRT instead of ROC anal-
ysis [14, 15].

There are some points of strength of this study that deserve
consideration. First, unlike most previous studies on the as-
sessment of radiomics features of LARC [12, 28], in this study
not only first- but also second-order features were extracted to
assess tumor characteristics. Second-order features provide
information on the spatial relations between neighboring
regions/voxels of the tumor, which first-order features, such
as histogram-derived features, cannot explore. Lovinfosse
et al. [14] showed that histogram features failed to indepen-
dently predict outcome measures in multivariate analysis.
Contrarily, the same authors identified coarseness, a local tex-
tural feature that quantifies granularity of tumor, as a predictor
of disease-free survival [14]. Second, multivariate analysis
was performed to identify groups of features that were more
predictive of response to treatment than individual parameters.
Third, the collection of PET and MR images we used were all
from the same institution, taken on the same equipment and
using the same exam protocols, ensuring a high reproducibil-
ity of test. Fourth, to our knowledge, this is the first time that
PET and MRI features have been combined in a single classi-
fier with the aim of predicting response to neoadjuvant thera-
py in LARC, with promising results. For data analysis, we
used the original image instead of filtered images as in
Dinapoli et al. [28]. Using original images avoids including
bias in the original data and allows exploitation of a larger
number of texture parameters.

There are also limitations to this work. First, our results
should be validated on data originating from different scan-
ners and different acquisition protocols. Second, texture anal-
ysis was performed on the largest single-slice mask rather than
on the whole tumor. However, the decision to use the whole
dataset or only the slice most representative of the tumor to
measure radiomics features has long been debated and which
is best has not been convincingly determined. Indeed, Ng et al.

Table 2 Patients and lesions characteristics

All (n = 52) pR+ (n = 22) pR– (n = 30) p value

Age 68 (60–74) 63 (57–70) 71 (63–75) 0.05a

Sex

Men 35 14 (40.0%) 21 (60.0%) 0.662b

Women 17 8 (47.1%) 9 (52.9%) 0.662b

Histological type

Adenocarcinoma 42 17 (40.5%) 25 (59.5%) 0.607 b

Mucinous cancer 9 5 (55.6%) 4 (44.4%) 0.370b

Villous adenoma 1 0 (0.0%) 1 (100.0%) 0.711b

Grading

0 4 4 (100.0%) 0 (0.0%) 0.013b

1 4 4 (100.0%) 0 (0.0%) 0.013b

2 27 6 (22.2%) 21 (77.8%) 0.003b

3 10 1 (10.0%) 9 (90.0%) 0.021b

Not evaluated 7 7 (100.0%) 0 (0.0%) n.a.

Post-CRT pathologic
T stage

0 9 9 (100.0%) 0 (0.0%) <0.001b

1 5 3 (60.0%) 2 (40.0%) 0.510b

2 14 6 (42.9%) 8 (57.1%) 0.877b

3 22 3 (13.6%) 19 (86.4%) <0.001b

4 1 0 (0.0%) 1 (100.0%) 0.711b

Tis 1 1 (100.0%) 0 (0.0%) 0.211b

Post-CRT pathologic
nodal status

0 42 20 (47.6%) 22 (52.4%) 0.118b

Positive 10 2 (80.0%) 8 (80.0%) 0.118b

Age and tumour size are expressed as median with interquartile ranges in
parentheses, while other measurements are expressed as counts with per-
centages in parenthesis

pR+ Mandard stage ≤ 2, pR− Mandard stage ≥ 3
a p value of the Mann–Whitney test
b p value of the Fisher’s exact mid-P test
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[29], in a study involving 55 patients with primary colorectal
cancer, showed that entropy computed on CT images was
higher and uniformity lower for the whole tumor volume com-
pared to the largest cross-sectional area at all filter levels and
Kaplan–Meier analysis showed better separation of entropy
and uniformity for whole-tumor analysis for 5-year overall
survival. Nevertheless, findings of other authors appear to be
going in a different direction [30]. Lubner et al. [31], for ex-
ample, compared 2D and 3D texture features from CT images
in a subset of 20 patients with hepatic metastatic colorectal
cancer and demonstrated that overall results were fairly simi-
lar in Bland–Altman analysis (e.g., for entropy, the limits of
agreement were − 0.0182, 0.029, bias 0.005). Also, in a larger
study involving 588 patients with non-small cell lung cancer,
Shen et al. [32] demonstrated that 2D texture features per-
formed slightly better in discriminating between high- and
low-risk tumors, thus suggesting their use in clinical practice
since they are less time-consuming and do not require heavy-
load computation needed for 3D analysis.

Moreover, 2D analysis has been previously demonstrated
to be a robust prognostic tool to provide important information
for patient management [33–38].

Several advantages of 2D analysis may be worthwhile ad-
dressing. First, in a clinical perspective where time is an im-
portant issue, 2D analysis is more straightforward than 3D
analysis, whether performed manually or via semi-automatic
segmentation. Second, in the specific setting of rectal cancer,
3D segmentation of 2D MRI images may not be accurate, in

particular on the cranial and caudal margins of the lesion due
to low tissue contrast on T2w images and low spatial resolu-
tion of DWI.

In our study, we tried to reduce reader variability by auto-
matically detecting the largest slice of the tumor and semi-
automatically segmenting it. The final segmentation required
a minimal user intervention and might be easily integrated in
clinical practice, providing a straightforward tool for better
management of patients. Currently, we are working on the im-
plementation of a deep-learning algorithm to automatically seg-
ment rectal cancers on MR images, and, if successful, in the
future we will test this algorithm to extract 3D texture features,
comparing the results with our current findings of 2D analysis.

Third, we used a semi-automaticmethod for segmentation of
the tumor, which cannot completely avoid inter-reader variabil-
ity. However, this is the first study attempting to perform a
semi-automatic segmentation, which is a very challenging task
due to the low contrast between tumor and healthy regions.

In conclusion, in this study we explore the potential role of
texture parameters derived from pretreatment MRI and PET
images in predicting the response to CRT/RT in patients with
LARC. These preliminary results, if confirmed, could be useful
to personalize patient treatment, for example to avoid toxicity of
neoadjuvant therapy in patients predicted non-responders.

Funding This work was funded by BAIRC 5xmille Special Program
Molecular Clinical Oncology - Ref. 9970^ and BFPRC 5xmille 2013
Ministero Salute^.

Table 3 Area under the ROC curve, sensitivity, specificity, Youden index, and p value of feature that were statistically different between pR+ and pR-
groups

AUC Sensitivity Specificity Criterion p value

PET Homogeneity 0.771 72.7 (16/22) 76.7 (23/30) < 0.18 < 0.001

Dissimilarity 0.745 81.8 (18/22) 60.0 (18/30) > 4.3 < 0.001

INN 0.744 72.7 (16/22) 70.0 (21/30) < 0.935 < 0.001

Glycolytic volume 0.741 90.9 (20/22) 56.7 (17/30) < 1.549*106 < 0.001

IDMN 0.736 68.2 (15/22) 80.0 (24/30) < 0.9915 < 0.001

Difference variance 0.736 68.2 (15/22) 76.7 (23/30) > 34.2 0.001

Contrast 0.736 68.2 (15/22) 76.7 (23/30) > 34 0.001

Sum entropy 0.735 63.6 (14/22) 80.0 (24/30) > 4.665 0.001

Metabolic volume 0.730 63.6 (14/22) 83.3 (25/30) < 486 0.001

Difference entropy 0.706 77.3 (17/22) 66.7 (20/30) > 2.47 0.005

Energy 0.698 77.3 (17/22) 60.0 (18/30) < 0.0016 0.007

Maximum probability 0.668 86.4 (19/22) 43.3 (13/30) < 0.008 0.027

ADC Difference entropy 0.683 86.4 (19/22) 50.0 (15/30) > 1.98 0.014

Homogeneity 0.682 77.3 (17/22) 56.7 (17/30) < 0.34 0.015

Dissimilarity 0.679 90.9 (20/22) 43.3 (13/30) > 2.349 0.018

INN 0.679 77.3 (17/22) 56.7 (17/30) < 0.963 0.017

Entropy 0.656 68.2 (15/22) 70.0 (21/30) > 6.35 0.045

Sensitivity and specificity are expressed as percentage, within the number of patients in parentheses

INN inverse difference moment, IDMN inverse difference moment normalized
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