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Osteoid osteoma: multimodality imaging with focus on hybrid imaging
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Abstract
Osteoid osteoma is a painful, benign, osteoblastic lesion that occurs in younger patients and affects the extremities
or the axial skeleton. While plain film findings may suggest the diagnosis, in complex anatomical regions such as
the spine, pelvis, wrist and foot advanced imaging modalities are often required. A typical nidus surrounded by
sclerosis or cortical thickening characterizes osteoid osteoma on plain radiography and CT. MR is the cross-sectional
imaging modality of choice for most musculoskeletal disorders. Unfortunately, extensive accompanying bone marrow
oedema, soft-tissue alterations, difficulty detecting the nidus, and lesion locations close to a joint (with reactive
arthritis) may make a confident diagnosis of osteoid osteoma by MR imaging difficult. Hybrid imaging with bone-
seeking tracers such as SPECT/CT with 99mTc-labelled bisphosphonates or PET/CT with 18F-labelled sodium fluoride
(18F-NaF) combines high radionuclide uptake with morphological details and provides accurate diagnosis of osteoid
osteoma and additional information for treatment planning. FDG is not the recommended PET tracer because osteoid
osteoma is normally FDG-negative, although some osteoid osteomas may show increased FDG uptake.
Osteoblastoma, Brodie’s abscess and stress fractures may mimic osteoid osteoma on imaging and clinical presenta-
tion. Once identified as the pain generator, destruction of the osteoid osteoma nidus by ablation or resection
techniques usually leads to complete healing. Image-guided drill excision and radiofrequency ablation are widely
used interventions. We review the presentation of osteoid osteoma across all imaging modalities, with special focus
on hybrid imaging techniques.
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Introduction

Osteoid osteoma is a benign but painful skeletal osteo-
blastic lesion that generally affects younger, predomi-
nantly male patients with a peak incidence in the second
decade of life. The lesions are generally smaller than
2 cm, and when detected are very amenable to treatment.
Bergstrand was the first to describe osteoid osteoma in
1935, and Jaffe subsequently characterized osteoid oste-
oma as a distinct clinical entity [1, 2]. Osteoid osteoma

is a benign bone-forming lesion morphologically com-
posed of a central nidus of vascular osteoid tissue
surrounded by extensive formation of compact bone.
The osteoid within the nidus may undergo various de-
grees of calcification and is associated with irregular tra-
becular bone formation. Periosteal reaction with forma-
tion of compact lamellar bone can be seen, as well as
perilesional dense sclerosis within the host bone due to
pressure exerted by the highly vascularized lesion [3–6].

Osteoid osteoma is the third most common benign
bone tumour after enchondroma and nonossifying fibro-
ma [7–9]. The pathogenesis of osteoid osteoma remains
unclear; some authors suggest that it is a true benign
osteoblastic neoplasm, while others believe it may repre-
sent unusual healing or an inflammatory process [10–12].
The classic clinical presentation includes local pain, of-
ten worse at night and relieved by nonsteroidal
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antiinflammatory drugs (NSAIDs) [13]. However, the lo-
cation of the pain is sometimes misleading since it can
be referred to a nearby joint, creating clinical ambiguity
that can hamper the imaging workup. Localized swelling
may be attributed to the highly vascular nature of this
benign tumour, which can be well depicted and evaluated
by scintigraphy and MRI [14–18]. Local production of
prostaglandins, to levels 100 to 1,000 times higher than
in normal bone, plays an important role in the classic
clinical presentation of pain during day and night, which
typically responds very well to NSAIDs [19, 20]. Other
clinical features associated with osteoid osteoma depend
on the specific location of the lesion, and include swell-
ing, limp, painful scoliosis, growth disturbance, joint
stiffness and contracture [8].

Patients with osteoid osteoma located close to joints may
present with joint pain, swelling and joint effusions that may
mimic arthritis [21] (Fig. 1). Atypical clinical presentations
without the painful triad are possible, especially with oste-
oid osteomas located in the phalanges, where soft-tissue
swelling is often the primary clinical feature [22, 23].
Osteoid osteomas may occur anywhere within the axial or
appendicular skeleton, with the majority (>50%) occurring
in lower extremity locations such as the femur (Fig. 2) or
tibia [9, 24]. Two thirds of the femoral lesions are situated in
the intertrochanteric or intracapsular regions of the hip. The
humerus is another common location for osteoid osteoma.
Within the bone, osteoid osteomas preferentially involve
the cortex of long bones, usually in the diaphysis (Fig. 3)
or metadiaphysis [9, 25]. Approximately 10% to 20% of

Fig. 1 Osteoid osteoma in a 19-year-old woman with effusion and
pain in the left elbow. a, b The small nidus (arrows) adjacent to the
olecranon fossa is difficult to see on radiographs. c, d Sagittal T2-
weighted (c) and contrast-enhanced T1-weighted (d) MR images
show the nidus (arrows) in the distal humerus and arthritis with

effusion (small arrows). e The whole-body planar bone scan image
shows the Bdouble density^ sign (arrow). f–i Sagittal (f) and coronal
(h) CT images show the nidus (arrow) near the olecranon fossa and
sagittal (g) and coronal (i) SPECT/CT images show increased uptake
(arrows)
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osteoid osteomas occur in the spine (Fig. 4), most common-
ly in the lumbar spine with a predilection for the posterior
elements. The vertebral body is often spared, being in-
volved in only 10% of spinal lesions [26, 27]. Uncommon
locations for osteoid osteoma include the skull (Fig. 5),
hand, ankle and foot (Figs. 6 and 7).

Classification

Kayser et al. classified osteoid osteomas based on their lo-
cation within the bone as follows: subperiosteal ,
intracortical, endosteal and medullary [6]. Intracortical le-
sions are most common, representing approximately 75% of

lesions (Fig. 8). Medullary osteoid osteomas account for
around 20%, and subperiosteal and endosteal lesions ac-
count for the remaining 5% (Fig. 9). Intracortical osteoid
osteomas, known as the Bclassic^ type, are usually seen in
the diaphysis or metaphysis of the long tubular bones, such
as the tibia and femur, where a radiolucent nidus is located
in the centre of fusiform cortical thickening.

Subperiosteal osteoid osteomas are located on the exter-
nal aspect of the cortex, and are usually seen along the me-
dial aspect of the femoral neck, hands, feet and neck of the
talus. Medullary osteoid osteomas are typically juxta-
articular in location, and are often seen in the femoral neck,
hands, feet and posterior elements of the spine. Endosteal
osteoid osteomas are located on the internal aspect of the

Fig. 2 Osteoid osteoma of the right femoral neck in a 48-year-old
woman. a The radiograph shows osteolysis in the medial femoral
neck with a central nidus (arrow). b–d The coronal STIR MR
image (b) shows extensive bone marrow oedema (arrow), the T1-
weighted image (c) shows a hypointense subcortical lesion (arrow)
and demarcation of the hypointense nidus (arrow), and the contrast-
enhanced T1-weighted image (d) shows increased surrounding

contrast enhancement. e, f The early phase planar bone scan image
of the pelvis (e) shows slightly increased uptake in the femoral neck
(arrow) and the late phase bone scan image (f) shows markedly
increased focal uptake (arrow) in the femoral neck with
surrounding mildly increased uptake (Bdouble density^ sign). g, h
The CT image (g) and the fused SPECT/CT image (h) show the
central nidus with increased uptake (arrow)
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cortex and may cause atypical circumferential cortical
thickening [9, 11]. Kayser et al. suggested that inward mi-
gration of an osteoid osteoma caused by continuing remod-
elling of the bone due to subperiosteal deposition and end-
osteal erosion can result in a shift of the nidus from a
subperiosteal to an intracortical or endosteal location, or
even to an intramedullary location [6].

Plain radiography

The radiographic appearance of osteoid osteoma depends
on its location within the involved bone. The most com-
mon Btargetoid^ appearance is a cortical-based lucency
measuring less than 2 cm, with central calcification seen
within a radiolucent nidus, especially in larger lesions.

This radiolucent nidus is surrounded by fusiform
osteosclerosis involving one side of a long bone diaphysis.
This reactive sclerosis and cortical thickening may occa-
sionally obscure the nidus [28]. The degree of sclerosis
surrounding the nidus is less in epiphyseal and
metaphyseal lesions than in diaphyseal lesions; medullary
lesions also exhibit less sclerosis than their intracortical
counterparts. Subperiosteal lesions produce minimal scle-
rosis and may appear as soft-tissue lesions adjacent to the
affected bone, which reveals irregular bony resorption
[25]. Plain radiography might fail to depict an osteoid os-
teoma in complex anatomical areas such as the spine, pel-
vis, skull or foot, where superimposed bony structures can
obscure the lesion [29, 30]. Jordan et al., in a meta-analysis
of 223 patients with proven osteoid osteoma, found a de-
tection rate of only 66% by plain radiography [31].

Fig. 3 Osteoid osteoma of the left femur in a 42-year-old man. a The
radiograph shows a small subperiosteal nidus (arrow) and thickening
of the lateral cortex. b, c The early phase planar bone scan images
show slightly increased uptake (arrow) in the anterolateral aspect of
the left femur. d, e The late phase bone scan images show markedly

increased uptake (arrows) in the anterolateral left femur. f, h The
coronal (f) and axial (h) CT images show a subperiosteal nidus
(arrows) and cortical thickening. g, I The coronal (g) and axial (I)
SPECT/CT images show Increased uptake (arrows)
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Computed tomography

CT is far superior to plain radiography for the detection
and characterization of osteoid osteoma [9, 24, 28, 32].
Thin-section CT reconstructed with bone window and lev-
el settings, and reviewed with multiplanar reformats is the
optimum method for the visualization of osteoid osteoma.
The typical lesion is seen as a well-defined round or oval
focal area of soft-tissue attenuation, less dense than, and
surrounded by, variable amounts of osteosclerosis.
Mineralization or calcification of the nidus can be charac-
terized by CT as punctate, amorphous or ring-like.
Osteoid osteomas are frequently surrounded by thin

curvilinear or serpentine low-density grooves in the sur-
rounding bone, the so-called Bvascular groove^ sign. Liu
et al. found that the vascular groove sign has moderate
sensitivity but high specificity in the discrimination of
osteoid osteomas from other radiolucent bone lesions
(Fig. 10a) [33]. CT is superior to plain radiography for
detecting osteoid sarcoma, especially in cases where the
nidus is obscured by surrounding sclerosis on radiography
[24, 34, 35]. CT is especially useful for the detection of
spinal osteoid osteomas, which are seen as low-density
lesions in the posterior elements of the vertebral column
associated with reactive sclerosis of the ipsilateral pedicle,
lamina or transverse process. Several authors have

Fig. 4 Osteoid osteoma in a 23-year-old man with pain in the neck for
several months. a, b The axial (a) and sagittal (b) T2-weighted MR
images show a hypointense nidus (arrows) in the C4 arch with
extensive bone marrow oedema in the adjacent vertebral bodies and
posterior elements. c, d The anterior (c) and posterior (d) early phase
planar bone scan images show no increased uptake. e, f The anterior

(e) and posterior (f) late phase planar bone scan images show
increased focal uptake (arrow) in the left mid-lateral aspect of the
cervical spine. g, j The sagittal (g) and axial (j) CT images show a
small nidus (arrows) in the C4 arch adjacent to the facet joint. h, I, k
The sagittal (h), axial (k) and 3D (I) SPECT/CT images show
increased uptake (arrows) in the osteoid osteoma
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reported a 100% detection rate of osteoid osteoma in the
spine [29, 30] and Jordan et al. found a 96% detection rate
of osteoid osteoma in the foot using CT [31].

Magnetic resonance imaging

Although many studies have shown that CT is superior to
MRI for detecting and characterizing osteoid osteoma
[36–38], MRI occasionally adds incremental value to the

characterization of these lesions. A 35% risk of misdiag-
nosis with MRI as the primary imaging modality has been
reported [31, 36, 37], since in small lesions the nidus and
the surrounding cortex may show similar MRI signal in-
tensity. Gadolinium enhancement might improve the de-
tection of osteoid sarcoma by dynamic MRI since it in-
creases osteoid osteoma conspicuity [39]. The MRI ap-
pearance of osteoid osteoma is variable, commonly
exhibiting low to intermediate T1-weighted signal and
heterogeneous high signal with T2-weighted and STIR
sequences [24, 36, 37]. Central nidus calcifications show
low signal with both T1-weighted and T2-weighted se-
quences [7]. Most osteoid osteomas enhance diffusely af-
ter gadolinium administration as a result of their intrinsic
vascularity. Rim enhancement may be heterogeneous.
Perilesional sclerosis is seen as fusiform low signal with
both T1-weighted and T2-weighted sequences. MRI typi-
cally shows intense surrounding bone marrow and soft-
tissue oedema.

Bone scintigraphy and SPECT/CT

Bone scintigraphy with 99mTc-labelled bisphosphonates
has been used for decades for the diagnosis of osteoid
osteoma, with a reported sensitivity of nearly 100% [40,
41]. The classic bone scintigraphic finding is the
Bdouble density^ sign, where a central focus of very
high activity corresponding to the nidus of the osteoid
osteoma is surrounded by a larger area of less intense
radiopharmaceutical uptake, representing the host bone
tumour response [42]. This sign is very specific for os-
teoid osteoma in the appendicular skeleton; however, it
is less frequently seen in spinal lesions because of less
reactive osteosclerosis in the vertebrae [42, 43]. The
presence of the pathognomonic double density sign al-
lows differentiation of osteoid osteoma from Brodie’s
abscess, stress reaction and metastasis [7, 9]. In compar-
ison with planar imaging, single photon emission com-
puted tomography (SPECT) imaging with three-
dimensional reconstruction techniques has better spatial
resolution and is therefore able to detect smaller lesions
[44, 45]. To further improve the detection and character-
ization of osteoid osteoma, SPECT examinations are typ-
ically followed by a coregistered or stand-alone CT ex-
amination. The fused functional and structural informa-
tion provided by most current SPECT/CT scanners has
led to this modality becoming the one-stop imaging tool
that is able to diagnose osteoid osteoma with the highest
accuracy [46–50]. Sharma et al. retrospectively investi-
gated 31 patients and found significantly higher

Fig. 5 Osteoid osteoma in the skull of a 44-year-old man. a, b The
early phase planar bone scan images show no increased uptake. c, d)
The anterior (c) and posterior (d) late phase planar bone scan images
show increased focal uptake (arrow) in the parietal paramedian skull.
e, f The axial (e) and sagittal (f) CT images show the nidus (arrows)
in the diploë. g, h The axial (g) and sagittal (h) SPECT/CT images
show increased uptake (arrows). A slight mismatch between the
nidus and uptake caused by patient movement is apparent
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sensitivity, specificity and accuracy with SPECT/CT (all
100%) than with CT (77.8%, 92.3% and 83.8%, respec-
tively) or planar bone scintigraphy (100%, 38.4% and
74.1%, respectively) [49].

18F-NaF PET/CT

18F-Labelled sodium fluoride (18F-NaF) is a bone-seeking
radiotracer with uptake characteristics comparable to those
of conventional 99mTc-labelled bisphosphonates used for
Bclassic^ bone scintigraphy [51, 52]. Due to a higher lesion
to background ratio, better spatial resolution, and combi-
nation with diagnostic CT, 18F-NaF PET/CT shows higher
accuracy in the diagnosis of bone metastases than planar
bone scintigraphy, SPECT and SPECT/CT [53, 54]. 18F-
NaF PET/CT has also been used to evaluate benign skeletal

diseases such as spondyloarthropathies/sacroiliitis [55],
foot pain [56], trauma [57], osteonecrosis [58] and insuffi-
ciency fracture [59], and in the assessment of bone grafts
[60]. Reimbursement issues, cost and limited availability
have prevented the widespread use of this tracer in many
countries. 18F-NaF PET/CT is excellent for imaging oste-
oid osteomas because very high uptake in the nidus can be
expected, sometimes accompanied by markedly increased
uptake in the surrounding bone (Fig. 10b). Together with
the exact location of the osteoid osteoma in relation to
joints and the surrounding soft-tissue structures, 18F-NaF
PET/CT provides all relevant diagnostic information and
supports interventional or surgical treatment planning.
Several case reports have demonstrated the potential of
18F-NaF PET/CT to detect osteoid osteomas in children
and adults, for example, in the acetabulum [61], sacrum
[62] (Fig. 11a, b) and femur [63].

Fig. 6 Osteoid osteoma on the lateral border of the talus in a 29-year-
old man with pain for 2 years. a, b The radiographs show no
abnormality. c, d The sagittal STIR MR image (c) and coronal T1-
weighted image (d) show the nidus (arrows) and surrounding bone
marrow oedema. e, f The planar bone scan images (e early phase, f

late phase) show increased focal uptake (arrows) at the border of the
talus. g, j The coronal (g) and sagittal (j) CT images show the nidus
(arrows). h, I The coronal (h) and sagittal (I) SPECT/CT images
show corresponding increased uptake (arrows)
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18F-FDG PET/CT

18F-FDG is the most frequently used PET tracer world-
wide. Since FDG accumulates in proliferating cancer cells,
the vast majority of FDG PET/CT applications are related
to the imaging of malignant tumours. Although bone-
seeking tracers are recommended for imaging osteoid os-
teoma, FDG may intensely accumulate in osteoid osteoma
as shown in several case reports. Lim et al. reported the
case of a patient showing intense FDG uptake in an osteoid
osteoma in the distal metaphysis of the tibia [64]. Imperiale
et al. reported the cases of three patients with osteoid oste-
oma in the femur, spine (Fig. 12), and talus with high focal
FDG uptake [65]. The authors also utilized FDG PET/CT
to monitor response to therapy. They found significant de-
creases in FDG uptake after successful radiofrequency ab-
lation (RFA). In contrast to these results, FDG PET/CT
may also produce false-negative results in the detection
of osteoid osteoma. Aoki et al. compared FDG uptake in

benign and malignant bone tumours and found that the
osteoid osteoma in two patients did not show significant
FDG uptake (standardized uptake value <2.0) [66]
(Fig. 13). It currently remains unclear which cells are re-
sponsible for FDG uptake in osteoid osteoma since auto-
radiography studies have not yet been performed. Since
osteoblasts and activated inflammatory cells are present
in osteoid osteoma, both could be the reason for positive
FDG imaging. FDG uptake may correlate with pain or
Bactivity^ of osteoid osteomas, and therefore could direct
treatment so that optimal treatment is more likely to be
achieved in FDG-positive than in FDG-negative osteoid
osteoma lesions. However, further evaluation of this pos-
sible relationship is needed.

Osteoid osteoma mimickers

Some skeletal lesions can mimic the radiological and clin-
ical appearance of osteoid osteoma, the most common
being Brodie’s abscess. However, unlike osteoid osteoma,
in Brodie’s abscess the sequestrum is often irregular in
shape and the inner margin of the area of lucency is not
smooth [7, 67]. Other bone lesions mimicking osteoid
osteoma include chondroblastoma, osteoblastoma, stress
fracture, osteofibrous dysplasia and adamantinoma.
Chondroblastomas are epiphyseal and intramedullary in
location, whereas osteoid osteomas are generally diaphy-
seal and intracortical [7, 68]. Osteoblastomas are fre-
quently located in the axial skeleton (particularly the
spine and mandible), are generally larger than osteoid os-
teomas, can be locally aggressive and expansile, and have
less-reactive perilesional sclerosis than osteoid osteomas
[7]. Additionally, pain in osteoblastoma is usually not
worse at night and is less likely to be relieved by
NSAIDs [69]. Stress fractures in the lower extremities
produce focal cortical thickening similar to osteoid osteo-
ma and can be difficult to distinguish on plain radiogra-
phy. Cross-sectional imaging techniques such as CT are
helpful for separating osteoid osteoma from stress frac-
ture, since the latter presents with a discrete fracture in-
stead of a central nidus. Features of osteoid osteoma and
the differential diagnoses of osteoid osteoma by various
imaging modalities are summarized in Tables 1 and 2.

Management

Some osteoid osteomas show a self-limited course with
spontaneous resolution of symptoms [70]. Medical or

Fig. 7 Common and less common sites of osteoid osteoma in the
skeleton
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Fig. 9 Classification scheme with
regard to the location of osteoid
osteomas within the long bones

Fig. 8 Osteoid osteoma of the left proximal femur in a 42-year-old man. a
The radiograph shows a small cortical nidus (arrow). b, c The T1-
weighted axial (b) MR image shows an intracortical nidus (arrow) and
the coronal fat-saturated T1-weighted image (c) shows the nidus (arrow)
with contrast enhancement of the surrounding bone marrow and adjacent
soft tissue. d–f The posterior planar bone scan images (d early phase, e

late phase) and the MIP image (f) of the pelvis show increased focal
uptake (arrows) in the proximal left femur. g–I The axial (g), coronal
(h) and sagittal (i) CT images show an intracortical nidus (arrows) with
adjacent periosteal reaction. j–l The axial (j), coronal (k) and sagittal (l)
SPECT/CT images show corresponding increased uptake (arrows)
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Fig. 10 aAxial CT in the same patient from b shows a thin curvilinear or
serpentine low-density groove leading to the nidus, the so called
Bvascular groove^ sign. b Osteoid osteoma of the left proximal femur
in an 18-year-old man. a The axial contrast-enhanced T1-weighted MR
image shows an enhancing nidus (arrow) in the cortex of the proximal

femoral diaphysis. b The 18F-NaF PET/CT MIP image shows markedly
increased focal uptake (arrow) with slightly increased uptake in the
thickened surrounding cortex. c, d The axial CT image (c) and fused
PET/CT image (d) show the cortical nidus (arrows). e CT-guided drill
excision was performed for therapy
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Fig. 11 Osteoid osteoma of the left sacrum in an 18-year-old man. a The
oblique coronal T1-weighted MR image shows a hardly detectable nidus
(arrow). c The T2-weighted oblique coronal image shows the nidus
(arrow) and surrounding bone marrow oedema. b The axial contrast-
enhanced T1-weighted image shows enhancement of the nidus (arrow) and
the surrounding bone marrow. d, e The oblique coronal (d) and axial (e) CT
images show the easily detectable nidus (arrows). f–h The fused coronal (f)
and axial (g) 18F-NaF PET/CT images and 3D MIP image (h) show intense

focal uptake (arrows) in the osteoid osteoma. i CT-guided radiofrequency
ablation was performed; note the probe (arrow) in the nidus. j–m The
coronal (j) and axial (k) CT images and MR images (l, m) show a small
residual or recurrent nidus (arrows) with oedema and contrast enhancement.
n, o Because of persistent pain 4 months after radiofrequency ablation, open
resection was performed and the coronal (n) and axial (o) CT images show
the resection defect (arrows) and complete removal of the nidus
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conservative management with NSAIDs can be the initial
treatment [10, 71]. However, long-term NSAID therapy
may not be tolerated by patients because of undesirable
side effects. If conservative treatment fails, surgical or
minimally invasive percutaneous treatments, with the

aim of destroying the nidus completely, are indicated.
Surgical treatment with open en-bloc resection or curet-
tage has high success rates but is invasive and has poten-
tial disadvantages including the risks of general anaesthe-
sia, difficulty in locating the lesion intraoperatively,

Fig. 12 Osteoid osteoma in a 28-year-old woman with pain in the lumbar
spine. a, b The CT image (a) shows osteoid osteoma (arrow) in the right
L5 pedicle and the fused PET/CT image (b) shows increased FDG uptake
(arrow). c, d After radiofrequency ablation, the CT image (c) shows

destruction of the nidus (arrow) and the fused PET/CT image (d) shows
absence of FDG uptake (arrow). Image courtesy of Dr. Alessio Imperiale,
Nuclear Medicine, University Hospital Strasbourg, France
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prolonged hospitalization and rehabilitation, and insuffi-
ciency fractures at the resection site [10, 24, 72]. More
recently, various minimally invasive procedures have
been developed. Two common techniques used are
image-guided drill excision and RFA [73–76]. RFA has
been increasingly used in recent years with success rates
greater than 90% [73, 74, 76]. During the RFA procedure,
the osteoid osteoma is located with CT guidance and an
electrode is advanced into the nidus of the lesion. Thermal
heating is then applied at a targeted temperature of 90 °C
to destroy the nidus. Other minimally invasive techniques
include cryoablation, arthroscopic excision, ethanol

injection, laser photocoagulation, microwave ablation
and MR-guided focused ultrasound [77, 78].

Conclusion

Osteoid osteomas are benign, often painful bone tumours that
are frequently challenging to detect and characterize on plain
radiography and even MRI, especially in complex anatomical
regions such as the spine, pelvis, wrist and foot. Hybrid im-
aging (SPECT/CT with 99mTc-labelled bisphosphonates or
PET/CT with 18F-NaF) is highly accurate and provides all

Fig. 13 Osteoid osteoma of the left tibia in a 37-year-old man with pain
for 3 months. a The early phase planar bone scan image shows no
increased uptake. b The late phase planar bone scan image shows focal
increased uptake (arrow). c–e The FDG PET/CT MIP image (c) and the

axial PET image (d) do not show increased uptake, but the axial CT image
(e) shows a typical nidus (arrow) of a cortical osteoid osteoma. Image
courtesy of Dr. JoachimMüller, Nuclear Medicine, Cantonal Hospital St.
Gallen, Switzerland
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the necessary functional information for diagnosis, as well as
morphological information to guide treatment.
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