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Abstract
Purpose This study investigated the correlations between parameters of 18F-fluorodeoxyglucose (FDG) uptake on positron
emission tomography (PET) scan and indices of genetic properties, heterogeneity index (HI), and tumor mutation burden
(TMB), in patients with lung cancer.
Methods We produced 106 PET indices for each tumor site that underwent genomic analysis in a total of 176 study subjects (age,
62.0 ± 10.0 y; males, 68.2%), comprising 101 adenocarcinoma (ADC), 29 squamous cell carcinoma (SQCC), and 46 small cell
lung cancer (SCLC) patients. We then examined the correlations of the PET parameters with genetic properties of HI and TMB,
according to pathology and tumor site.
Results Comparisons between PET parameters and the genetic properties with false discovery rate (FDR) correction revealed that
the surface standard uptake value (SUV) entropy of SUV statistics had a significant correlation with HI only in patients with
SCLC who underwent a genetic test in lymph nodes (r = 0.592, p = 0.028), whereas PET parameters did not show a significant
correlation with HI or TMB in patients with SCLCwho underwent a genetic test in lung tissue. In patients with ADC and SQCC,
there was no significant correlation between PET parameters and the genetic properties. Although SUVmax showed raw p values
less than 0.05 in correlation with HI (r = 0.315, raw p = 0.048) and TMB (r = 0.206, raw p = 0.043) in ADC, and SUVpeak had a
raw p value less than 0.05 in correlation with HI (r = 0.394, raw p = 0.046) in SQCC, these parameters were not significant when
corrected by FDR.
Conclusions In this study, surface SUVentropy had a significant correlation with HI in SCLC. Regarding other PET parameters
and tumors, no significant correlation with genetic parameters existed.
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Introduction

Imaging genomics, extraction of quantitative features from
medical images and association of these data with genetic
expression, has emerged as an important field in medical im-
age research [1, 2]. By linking a large amount of image data to
genomic data, image features may become a surrogate marker
of genetic alterations and have great potential to advance the
management of patients with cancer. This knowledge may
improve the assessment of heterogeneity and identification
of changes at the molecular level of tumors without invasive
procedures. It may also improve decision making about where
to perform a biopsy [3–5].

Indicators reflect the overall characteristics of the ge-
nome, as well as information on whether each gene has
mutations or not, and can also be useful biomarkers for
cancer treatment. Intra-tumor heterogeneity refers to geno-
mic variations within a tumor, co-existence of primary tu-
mor cells and genetically distinct subclonal populations,
which occur through branched tumor evolution [6].
Heterogeneity probably has a significant role in the pro-
gression and metastasis of a tumor, which affects patient
outcome and poses a significant challenge to personalized
cancer medicine [7–9]. Tumor mutation burden (TMB), a
measurement of the overall number of mutations carried by
tumor cells, has been suggested as a potentially helpful
marker for immunotherapy. A recent study suggested that
a higher TMB predicts a favorable outcome to PD-1/PD-
L1 blockade across diverse tumors [10]. The heterogenetic
index (HI) and TMB are biomarkers that represent the
overall characteristics of tumor genetics and may be useful
for personalized cancer medicine. Finding a surrogate
marker for these indices would be valuable, and image
features may be an appropriate candidate, because they
are alternative indicators that do not require biopsy for
genetic analysis in different lesions.

Although there has been growing interest in imaging geno-
mics in recent years, there are few studies based on 18F-
fluorodeoxyglucose (FDG) positron emission tomography/
computed tomography (PET/CT). FDG PET/CT-derived fea-
tures may be useful in revealing the genetic characteristics of
cancer that fail to be revealed by CT or MRI because these
indices reflect the metabolic status of the tumor, unlike the
conventional image modalities. However, a few studies on
FDG PET/CT have focused on the relationship between
FDG uptake and genetic mutations in patients with lung can-
cer PET genomics [11–13]. The correlations between param-
eters obtained from FDG PET/CT and overall genetic charac-
teristics, such as HI and TMB, have not been fully investigat-
ed. Whether or not PET/CT-derived indices, such as standard
uptake value (SUV) statistics or texture features, can reflect
genetic characteristics, such as heterogeneity of tumors or
TMB, is not well known.

Therefore, in this study, we investigated the associations
between genetic characteristics, heterogeneity, and mutation
burden and FDG PET/CT features in patients with lung
cancer.

Materials and methods

Subjects

The study candidates were 417 patients with histologically
confirmed lung cancer who were enrolled in a database of
the Samsung Genome Institute and who underwent 18F-FDG
PET/CT. All patients had undergone genomic analysis of their
tumor tissue and had agreed that the data could be used in
other studies. Among these, we excluded 82 patients who
had no HI or TMB data. Of the remaining 335 patients, we
excluded 132 with small tumor volume (less than 10 cm3)
from the analysis. In addition, we excluded 11 patients whose
tumor tissue was obtained for genomic analysis after neoad-
juvant therapy; nine patients with other than adenocarcinoma
(ADC), squamous cell carcinoma (SQCC), or small cell lung
cancer (SCLC); and seven patients whose tumor tissue was
obtained at a site of distant metastases. Therefore, a total of
176 patients were finally included from this collected dataset
and were divided into three groups of ADC, SQCC, and
SCLC for study analysis. The process of subject selection is
illustrated in Fig. 1. This study was approved by the
Institutional Review Board, and the requirement for written
informed consent was waived.

PET/CT imaging

All patients fasted for at least 6 h, and blood glucose was
<200 mg/dl at the time of the FDG injection. PET/CT with-
out intravenous or oral contrast was performed on a GE
Healthcare (Milwaukee, WI, USA) Discovery LS (n = 56)
or Discovery STe (n = 120) scanner. At 60 min after
injecting 225–417 MBq FDG, transmission scans were ac-
quired from the skull base to mid-thigh at 4 min per frame in
2-D mode (Discovery LS) or 2.5 min per frame in 3-D mode
(Discovery STe). Whole-body spiral CT was performed with
an 8-slice helical CT (140 KeV, 40 to 120 mAs adjusted to
body weight; section width = 5 mm) for the Discovery LS
scanner and a 16-slice helical CT (140 KeV, 30 to 170 mAs
with AutomA mode; section width = 3.75 mm) for the STe
scanner. Attenuation-corrected PET images (voxel size =
4.3 × 4.3 × 3.9 mm for Discovery LS, 3.9 × 3.9 × 3.3 mm
for Discovery STe) were reconstructed using CT data and
2-D (28 subsets, two iterations; Discovery LS) or 3-D or-
dered-subset expectation maximization algorithms (20 sub-
sets, two iterations; STe).
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PET image analysis

To investigate the correlations between PET parameters and
genomic characteristics, we performed image analysis on tu-
mors in which tissue biopsy was performed for genomic
analysis.

PET textural analysis was based on a previous study using
the gradient-based segmentation method (‘PET Edge’) of
MIM version 6.4 software (MIM Software Inc., Cleveland,
OH, USA) [14]. The target tumor was identified by an expe-
rienced nuclear medicine physician (S.H.M) who was un-
aware of clinical information except the target tumor site. As
the physician drags the cursor out from the center of the target
tumor to a point near the edge of the lesion, six axes interac-
tively extend out and the length of an axis is restricted when a
large gradient is detected along that axis. Then, the software
automatically outlines a three-dimensional volume of interest
(VOI) on the tumor. After creating a gradient-based segmen-
tation, we created an additional eight intensity-based segments
by changing thresholds based on mediastinal blood pool
(MBP) activity, liver activity, absolute SUV, and fixed per-
centage of maximum SUV (SUVmax).

For thresholds using MBP and liver activities, a VOI
consisting of 5 × 5 × 1 voxels was manually drawn at the

aortic arch and right hepatic lobe at the level of the hepatic
hilum, and the average SUV plus two standard deviations of
each VOI was adopted as the threshold. Absolute SUV thresh-
olds were fixed values of SUV 2.5, 3.0, 3.5, and percentage
thresholds were 20%, 30%, and 40% of SUVmax on the tumor
segmented by a gradient-based method. Therefore, nine dif-
ferent segmentations were automatically generated.

The textural analysis was performed using the Chang-
Gung Image Texture Analysis toolbox (CGITA, http://code.
google.com/p/cigita); this is an open-source software package
implemented in MATLAB (version 2012a; MathWorks Inc.,
Natick, MA, USA) [15]. A total of 86 PET parameters avail-
able in CGITA were measured on the nine segments
(Supplemental Table 1). Consequently, 774 PET parameters
were generated per one measured target tumor lesion. The
reason for obtaining the PET parameters through the nine
different segmentation methods, consisting of one gradient-
based method and an additional eight intensity-based
methods, was to identify relatively robust indicators less af-
fected by the image segmentation. Based on our experience,
the additional intensity-based methods have been chosen from
among commonly used methods. Details for selecting robust
indicators are described in the BStatistical analysis^. The met-
abolic tumor volume, obtained through the gradient-based

Fig. 1 Flow diagram of patient inclusion, with reason for exclusion and total study population
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segmentation method, was used as a volume indicator to de-
termine whether or not the measured target tumor was includ-
ed in the subject enrollment process (Fig. 1).

Measurement of tumor heterogeneity and tumor
mutation burden

Details of DNA extraction, library preparation, and sequenc-
ing were described in a previous study [16]. Genomic DNA
was extracted using QIAamp DNA mini kits (Qiagen,
Valencia, CA, USA), Promega Maxwell 16 CSC DNA
FFPE kit , or a QIAamp DNA FFPE Tissue ki t .
Concentration, purity, and degradation of DNA were mea-
sured using a Nanodrop 8000 UV-Vis spectrometer
(Thermo Scientific, Waltham, MA, USA), Qubit 2.0
Fluorometer (Life Technologies, Grand Island, NY, USA),
and a 200 TapeStation Instrument (Agilent Technologies,
Santa Clara, CA, USA), respectively. Target capture was per-
formed using the SureSelect XT Reagent Kit, HSQ (Agilent
Technologies), and a paired-end sequencing library was con-
structed with a barcode. Sequencing was performed on a
HiSeq 2500 with 100-bp reads (Illumina, San Diego, CA,
USA).

Heterogeneity measurement was based on Shannon’s in-
dex, which is a popular index to measure species diversity
[17]. For the set of variant allele frequency (VAF) of mutated
loci in each tumor, VAFs I [0, 100] were obtained and
assigned to one of bins (bin size = 10), and then Shannon’s
index was calculated with the distribution of probabilities of
belonging to the bins.

TMB is the total number of non-synonymous mutations in
a DNA coding region. We used the somatic nucleotide variant
results of the CancerSCAN panel sequencing platform to cal-
culate TMB [16]. To obtain only non-synonymous mutations,
we performed filtering processes. First, non-coding alterations
were excluded. Then germline variants were removed using
public data such as ExAC and KRGDB. Lastly, truncation
mutations were excluded since CancerSCAN includes genes
that are already known to function in cancer. The number of
filtered mutations was divided by the length of the target cod-
ing region to produce the TMB.

Statistical analysis

Statistical analysis was performed using SAS version 9.4
(SAS Institute, Cary, NC, USA) and R 3.0.2 (Vienna,
Austria; http://www.R-project.org/).

Comparison of HI, TMB, and metabolic tumor volume
according to histology was performed using the Kruskal-
Wallis test. Rank transformation of these parameters was
done, and Tukey’s test was used over these ranks for post-
hoc analysis.

The coefficient of variance (CV) in PET parameters from
the nine segmentations of target tumor was calculated in en-
rolled subjects. The variables with a mean CV less than 0.1
were defined as robust variables that were less affected by the
segmentation method. Among the 86 PET variables obtained
using gradient-based segmentation, the robust variables were
enrolled for further analysis to assess the correlations of PET
parameters with HI and TMB. Pearson’s correlation coeffi-
cient was used when both PET and genomic parameters were
normally distributed; otherwise, Spearman’s correlation coef-
ficient was used.

When we conducted comparisons between PET and geno-
mic variables, false discovery rate (FDR), a statistical ap-
proach for multiple comparisons, was used to correct random
events that falsely appear significant.

A heat map was generated from PET texture metrics to
reflect the different correlations with HI and TMB under sev-
eral conditions.

All tests were two-sided, and p values less than 0.05 were
considered statistically significant.

Results

Characteristics of subjects

The characteristics of the study patients are summarized in
Table 1. They had a mean age (± standard deviation) of
62.0 ± 10 years (range 28 to 87 years), and the majority had
ADC (57.4%). Among the total of 176 tumor lesions onwhich
PET parameter measurements and genomic analysis were per-
formed, all had TMB, and 113 had both TMB and HI (64.2%,
113/176). The remaining 63 lesions had only TMBwithout HI
(35.8%, 63/176). The mean HI was 1.4 ± 0.3 (median 1.4;
range 0.4 to 1.9), and mean TMB was 8.1 ± 4.9 (median 7.3;
range 0.0 to 29.4).

Genetic parameters in ADC were lower than those of other
lung cancers. The HI of the ADC group was significantly
lower than that of the SQCC, SCLC (lung), and SCLC (lymph
node) groups (p = 0.016, < 0.001, < 0.001, respectively). The
TMB of the ADC group was also significantly lower than that
of the SQCC group (p = 0.012). There was no significant dif-
ference between HI and TMB in the other groups. Tumor
volume in this study was different according to pathology
and biopsy site. The SCLC tumors obtained from the lung
had a larger volume than ADC, SQCC, and SCLC tumors of
the lymph node (p < 0.001, 0.010, < 0.001, respectively).
Details of the HI, TMB, and metabolic tumor volume are
presented in Table 2.

A total of 149 tumor lesions were from lung tissue (84.7%,
149/176), and 27 lesions were from lymph nodes (15.3%, 27/
176). In the 149 lung tissue lesions, 101 were obtained by
surgical resection (67.8%, 101/149) or percutaneous needle
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biopsy (10.1%, 15/149), and the other 33 were obtained by
bronchoscopy biopsy (22.1%, 33/149). All lymph node le-
sions were obtained by fine needle aspiration biopsy. In
ADC and SQCC,most tumors were obtained from lung tissue,
whereas in SCLC, half were obtained from lung tissue, and the

other half were obtained from lymph nodes. Details of tumor
tissue according to histology are given in Table 3.

Variance of PET parameters

The PET parameters of this study consisted of 55 texture fea-
tures and 31 non-texture features (SUV and intensity histo-
gram, 25; texture spectrum, two; geometry, four). Of the 55
texture features, 16 had a mean CV with a value less than 0.1,
these included short run emphasis, short-zone emphasis, nor-
malized contrast, normalized entropy, normalized homogene-
ity, normalized dissimilarity, normalized inverse, difference
moment, correlation, mean convergence, second angular mo-
ment, contrast, entropy, intensity, inverse difference moment,
code entropy, and small number emphasis (Supplemental
Table 1). Of the 31 SUV statistics features, 11 showed a mean
CV less than 0.1, these included SUVmax, SUV SD, SUV
bias-corrected kurtosis, entropy, peak SUV normalized by
lean body mass (SULpeak), surface area, surface SUVentropy,
surface SUV SD, SUVmax prod surface area, entropy prod
surface area, and SULpeak prod surface area. Consequently, a
total of 27 parameters were selected as robust variables and
enrolled for further analysis. Supplemental Figure 1 shows the
CVof PET parameters according to size.

Correlation of PET parameters with HI and TMB

We assessed the correlation of PET parameters with HI and
TMB according to pathology and biopsy site. Among SCLC,
surface SUV entropy of SUV statistics showed a significant
correlation with HI even after FDR correction in the lymph
node group in which tissues for genetic analysis were taken
from a lymph node (Table 2). Surface SUV entropy was ob-
tained by calculating the entropy from the histogram which
was created from the intensities of the contour pixels in the
target tumor. Texture features of PET had no significant cor-
relation with HI or TMB. Although entropy of SUV statistics
and a small number emphasis of the neighboring gray level
dependence (NGLD) matrix showed raw p values less than
0.05 in correlation with HI (r = 0.471, raw p = 0.020, r =
0.438, raw p = 0.042, respectively), they were not significant

Table 1 Characteristics of study patients (n = 176)

Characteristics n (%)

Age, years (range) 62.0 ± 10 (28–87)

Male 120 (68.2%)

Smoking Smoker 059 (33.5%)
Ex-smoker 054 (30.7%)

Never-smoker 059 (33.5%)

N/A 004 (02.3%)

ECOG Performance status 0 019 (10.8%)

1 118 (67.0%)

2 007 (04.0%)

N/A 032 (18.2%)

Pathology ADC 101 (57.4%)

SQCC 029 (16.5%)

SCLC 046 (26.7%)

AJCC TNM staging 7th

T 1 26 (14.8%)

2 80 (45.5%)

3 39 (22.2%)

4 21 (11.9%)

N/A 10 (05.6%)

N 0 59 (33.5%)

1 24 (13.6%)

2 47 (26.7%)

3 39 (22.2%)

N/A 07 (04.0%)

M 0 110 (62.5%)

1a 010 (05.7%)

1b 028 (15.9%)

N/A 028 (15.9%)

ECOG, Eastern Cooperative Oncology Group; N/A, not applicable;
ADC, adenocarcinoma; SQCC, squamous cell carcinoma; SCLC, small
cell lung cancer; AJCC, American Joint Committee on Cancer; T, tumor;
N, node; M, metastasis

Table 2 Comparison of genetic characteristics and metabolic tumor volume according to pathology

Variables ADC SQCC SCLC P – value*

Lung LN

Heterogeneity index (n = 113) 1.18 ± 0.27 (n = 40) 1.36 ± 0.07 (n = 27) 1.53 ± 0.19 (n = 24) 1.53 ± 0.20 (n = 22) < 0.001

Tumor mutation burden (n = 176) 7.35 ± 5.18 (n = 101) 9.87 ± 4.46 (n = 29) 8.68 ± 4.02 (n = 24) 9.02 ± 4.34 (n = 22) 0.007

Metabolic tumor volume (n = 176) 50.86 ± 75.19 (n = 101) 74.29 ± 90.00 (n = 29) 132.89 ± 95.04 (n = 24) 38.30 ± 29.35 (n = 22) < 0.001

*Kruskal-Wallis test
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when they were corrected by the FDR method. In ADC and
SQCC, there was no significant correlation between PET pa-
rameters, HI, and TMB (Table 3). SUVmax had raw p values
less than 0.05 in correlation with HI (r = 0.315, raw p = 0.048)
and TMB (r = 0.206, raw p = 0.043) in patients with ADC,
and SUVpeak also had raw p values less than 0.05 in correla-
tion with HI (r = 0.394, raw p = 0.046) in patients with SQCC.
However, these parameters were not significant after FDR
correction. Correlations of PET parameters and the genetic
properties in different tumors are visualized in Supplemental
Figure 2.

Discussion

There have been continued attempts to extract quantitative
features from medical images and relate them to tumor genet-
ics. Finding a link between these two pieces of information
was expected to be a discovery that could advance precision
medicine in patients with cancer [1, 2]. Extensive genetic het-
erogeneity caused by genomic instability exists between and
within tumors and affects key cancer pathways, disease pro-
gression, and treatment response [7, 18]. Wide and extensive
genetic testing of intra- and inter-genetic heterogeneity is re-
quired to identify the overall genetic variation of the tumor.
Although biopsy is the gold standard for determining tumor
genetics, it has the disadvantage that the diagnosis may be
delayed due to the surgical planning and preparation process
[19]. In addition, all tumors could not be sampled for genetic
testing, and it is difficult to repeat the biopsy each time a
recurrence is suspected. Even if a patient has a single tumor
lesion, generally only a part of the tumor is used for the test.
Consequently, it is difficult to identify genetic properties
throughout the whole tumor in the clinic. Thus, it would assist
decision making about when or where to perform a biopsy if it
is possible to approximate the overall genetic characteristics of

the tumor. Image genomics has the potential to provide such
information without the need to obtain tumor tissues from
multiple sites.

The genetic properties of tumors, such as HI and TMB, can
influence the course of treatment and clinical outcomes.
Cancer cells can have considerable heterogeneity, which is
likely to play a fundamental role in the phenotypic diversity
observed in lung cancer, renal cell cancer, breast cancer, colo-
rectal cancer, bladder cancer, prostate cancer, and glioma
[7–9]. Previous research supports that intra-tumor heterogene-
ity has a significant prognostic value and impacts our under-
standing and management of cancer [6–9]. TMB has emerged
as a sensitive marker in predicting response to immune check-
point inhibitors and is more closely related to the response to
PD-1 and PD-L1 blockade immunotherapy than PD-1 or PD-
L1 expression measured by immunohistochemistry in patient
with metastatic urothelial carcinoma [20]. Investigating the
association of image features with HI and TMB is meaningful
in finding a potential surrogate marker.

Computing textural features of FDG PET/CT might be
useful in the quantification of heterogeneity [21] and may
have an association with the genetic alteration of tumors.
However, a few FDG PET/CT studies have reported the rela-
tionship between FDG uptake expressed in SUV statistics and
genetic mutations in patients with lung cancer [12, 13].
Correlation between texture features of PET and tumor muta-
tion in lung cancer has not yet been revealed. Above all, over-
all properties of tumor genes such as heterogeneity and muta-
tion burden have not been investigated in terms of image
genomics with FDG PET/CT.

In this study, associations of PET parameters with HI and
TMB are different according to tumor pathology and site. In
SCLC, surface SUVentropy, the entropy over the pixel inten-
sities on the contour of target lesion, of the lymph group
showed significant correlation with HI, whereas surface
SUV entropy of the lung group did not. Moreover, the

Table 3 Correlation between genetic characteristics and metabolic texture features

Pathology Matrix Feature Names Heterogeneity index Tumor Mutation Burden

Correlation coefficient, raw p-value, FDR p
value

Correlation coefficient, raw p value, FDR p
value

ADC Lung (n = 36) Lung + LN (n = 40) Lung (n = 97) Lung + LN (n = 101)

SUV statistics SUVmax 0.330 0.049 0.883 0.315 0.048 0.891 0.206 0.043 0.871 0.188 0.060 0.873

SQCC Lung (n = 26) Lung + LN (n = 27) Lung (n = 28) Lung + LN (n = 29)

SUV statistics SULpeak 0.379 0.062 0.777 0.394 0.046 0.663 −0.029 0.886 0.954 0.044 0.824 0.989

SCLC Lung (n = 24) Lung (n = 24) Lung (n = 24) LN (n = 22)

SUV statistics Entropy −0.137 0.522 0.990 0.491 0.020 0.123 −0.021 0.921 0.997 −0.162 0.471 0.967

SUV statistics Surface SUVentropy −0.012 0.956 0.990 0.592 0.004 0.028 0.001 0.997 0.997 −0.168 0.456 0.967

NGLD Small number emphasis 0.162 0.450 0.990 0.438 0.042 0.209 0.257 0.226 0.931 0.022 0.922 0.967

Consisted only of features showing significant correlation in raw p-value; ADC, adenocarcinoma; LN, lymph node; SQCC, squamous cell carcinoma;
SCLC, small cell lung cancer; NGLD, neighboring gray level dependence
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directions of the correlation of these two groups were opposite
(Table 3). We could not observe a difference in other cancers
because the number of subjects in the lymph node group was
too small. The discrepancy in the result with the same tumor
pathology may be due to the different tissues where the tumor
was involved. Cancer cells that invade lymph nodes may be a
different subpopulation than cells that invade lung tissue, even
though they are both identified as SCLC. Furthermore, tech-
nical issues are also likely to be involved in this result. In
SCLC, the tumor volume and biopsy methods were signifi-
cantly different between the lung group and lymph node
group. The lymph node group had a smaller mean tumor vol-
ume than the lung group, and the tumor tissue was obtained
for genetic testing by fine needle aspiration biopsy, unlike in
the lung group. Tumor size affects the measurement of PET
parameters [22–25], and the tumor volume and biopsymethod
may also affect the result of the genetic properties because the
proportion of cancer cells for testing the whole tumor was
determined by these factors.

The degree of FDG uptake, represented as SUVmax or
SUVpeak, failed to show a significant correlation with HI or
TMB in this study. FDG uptake in primary lung cancer is
related with tumor cell proliferation, prognosis, and histopath-
ological features of aggressiveness [26, 27]. It is generally
accepted that tumors with a high FDG uptake have a higher
likelihood of aggressiveness than those with a low FDG up-
take [26]. As the genetic heterogeneity and mutation rate in-
crease, the phenotypic features related to aggressiveness
might become more prominent [6–9]. Based on this, we as-
sumed that SUV, which is known to be associated with ag-
gressiveness, might be related to HI and TMB. The results did
not satisfy the initial assumption, which may be a sign that the
hypothesis is not valid. However, this should be confirmed by
further studies. SUVmax and SUVpeak showed raw p values
less than 0.05 in correlation with the genetic properties, and
the number of subjects enrolled in the study was not large. In
particular, the small number of patients with HI did not have
sufficient verification ability. In addition, the entropy of SUV
statistics and the small number emphasis of the NGLD matrix
in patients with SCLC also showed a raw p value less than
0.05 in correlation with HI. SUVmax, SUVpeak, the entropy of
SUV statistics, and the small number emphasis of the NGLD
are potential candidates to show significant associations with
genetic properties in large-scale studies.

Several technical issues involving PET parameters are ob-
stacles to generalizing the findings of this study and should be
mentioned. First, metabolic tumor volume affects the mea-
surement of PET parameters [22]. Heterogeneity of FDG up-
take observed between diverse tumor volumes may not desig-
nate actual biologic differences between those tumors [23]. A
previous study has shown that a minimum tumor volume of
45 cm3 is appropriate for texture analysis of FDG PET [23].
However, a larger scaled study with a greater number of

parameters suggested that the minimum metabolic tumor vol-
ume can be much smaller, approximately 10 cm3 [28]. In
addition, certain PET parameters such as entropy and first-
order statistical parameters are unaffected by tumor volume
and provide reproducible values [24, 29]. In this study, tumors
with more than 10 cm3 of metabolic volume were enrolled,
and textural features of PET were obtained.

PET parameters are affected by the tumor segmentation
method. Many algorithms based on either fixed or adaptively
selected thresholds have been used to delineate target tumors
in PET images. Advanced algorithms to perform semi-
automated delineation are also proposed [30]. However, the
difference of the measured values according to the used algo-
rithm is not small, and the results of published validation
studies are insufficient or inconsistent [30], which makes it
difficult to use a certain algorithm as a standard. In this study,
variance of the PET parameters, according to segmentation
method, was evaluated and, among a total of 86 parameters,
27 that were unlikely to be affected by the segmentation meth-
od were selected for analysis. This inevitably limited the pa-
rameters to be evaluated, but probably minimized the errors
caused by the segmentation method.

Textural features of PET also depend on the conditions of
image acquisition. Even though there was a difference in de-
gree, the features exhibited variations due to different acqui-
sition modes and reconstruction parameters [21, 31, 32].
Therefore, unless the parameters are obtained under the same
acquisition modes and reconstruction parameters, a study
could not be considered to have a supreme quality.
Unfortunately, texture features of this study were obtained
from two different scanners (Discovery STe and Discovery
LS). The proportion of SQCC was higher in the STe group
than in the LS group (21.7 vs 5.4%, p = 0.005). Otherwise,
there was no significant difference in the characteristics in-
cluding age, gender, smoking history, performance, and stag-
ing between the two groups (Data not shown). The images
acquisition with different scanners would inevitably have re-
duced the quality of this study.

Along with challenges including technical issues and need
for standardization [5], the fundamental challenge of PET im-
age genomics should be considered. In general, it is difficult to
be certain that the results of the genome analysis fully reflect
the genetic characteristics of the entire tumor, since only a
small subset of the entire tumor is used for genetic testing.
On the other hand, the indicators obtained from the image
analysis reflect the characteristics of the whole tumor.
Therefore, assessment of the correlation between PET param-
eters and genetic properties may be inappropriate if genetic
analysis is not performed on multiple regions within the tu-
mor. Image genomics in relation to multiregional genetic test-
ing should be confirmed in further studies.

This study has several limitations. First, the relatively small
and clinically heterogeneous subjects provide suboptimal
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statistical power for robust analysis. Also, the heterogeneity of
study subjects including the scanner, reconstruction method,
tumor volume, and biopsy method may restrict generalization
of the study results. Additional studies with large-scaled ho-
mogeneous subjects may thus be warranted to confirm the
findings of this study.

In conclusion, significant correlation existed only in a small
proportion of the total subjects in this study. Except the corre-
lation between surface SUVentropy and genetic heterogeneity
only in SCLC, no significant correlation was found in other
PET parameters and tumors. However, challenges with meta-
bolic genomics, including the reproducibility and reliability of
the features, and limitations of the present study have ham-
pered the ability to generalize the results. Further large-scale
studies are needed to verify the findings of this study and to
evaluate whether PET parameters have the potential as a sur-
rogate marker for genetic heterogeneity and mutation burden
of tumors.
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