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Abstract
Purpose This study aims to determine whether PET tex-
tural features measured with a new dedicated breast PET
scanner reflect biological characteristics of breast tumors.
Methods One hundred and thirty-nine breast tumors from
127 consecutive patients were included in this analysis. All
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of them underwent a 18F-FDG PET scan before treatment.
Well-known PET quantitative parameters such as SUVmax,
SUVmean, metabolically active tumor volume (MATV) and
total lesion glycolysis (TLG) were extracted. Together with
these parameters, local, regional, and global heterogeneity
descriptors, which included five textural features (TF), were
computed. Immunohistochemical classification of breast
cancer considered five subtypes: luminal A like (LA), lumi-
nal B like/HER2− (LB−), luminal B like/HER2+ (LB+),
HER2-positive-non-luminal (HER2pnl), and triple negative
(TN). Associations between PET features and tumor charac-
teristics were assessed using non-parametric hypothesis tests.
Results Along with well-established associations, new cor-
relations were found. HER2-positive tumors had signifi-
cantly higher uptake (p < 0.001, AUCs > 0.70) and
presented different global and regional heterogeneity (p =
0.002, p = 0.016, respectively, AUCs < 0.70). Nine out
of ten analyzed features were significantly associated with
immunohistochemical subtype. Uptake was lower for LA
tumors (p < 0.001) with AUCs ranging from 0.71 to
0.88 for each subgroup comparison. Heterogeneity met-
rics were significantly associated when comparing LA and
LB− (p < 0.01), being regional heterogeneity metrics
more discriminative than any other parameter (AUC = 0.80
compared to AUC = 0.71 for SUV). LB+ and HER2pnl
tumors also showed more regional heterogeneity than LA
tumors (AUCs = 0.79 and 0.84, respectively). After com-
parison with whole-body PET studies, we observed an
overall improvement in the classification ability of both
non-heterogeneity metrics and textural features.
Conclusions PET parameters extracted from high-reso-
lution dedicated breast PET images showed new and
stronger correlations with immunohistochemical factors and
immunohistochemical subtype of breast cancer compared to
whole-body PET.
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Introduction

Decades of observation and research have shown that cancer
is a heterogeneous disease. The phenomenon of intratumor
heterogeneity, i.e., phenotypic and functional variability
among cancer cells within the same tumor, arises as a result
of the genetic instability of cancer cells and tumor microen-
vironment. Continuous mutations lead to different cellular
subpopulations within the same tumor and the spatial dis-
tribution of these populations is complex and dependent on
the tumor microenvironment [1, 2]. These biological fea-
tures have a strong impact on patient treatment and outcome,
for instance in breast cancer [3], making its characterization
essential for treatment planning.

In this context, positron emission tomography (PET) with
18F-fluorodeoxyglucose (18F-FDG) can reflect metabolic
tumor heterogeneity by measuring the variations in meta-
bolism of different tumor regions. Apart from well-known
metrics as SUVs (standardized uptake values) and MATV
(metabolically active tumor volume), texture analysis [4–
6] of 18F-FDG PET images has emerged as a promising
tool for assessing intratumor heterogeneity [7]. The spatial
distribution of SUV values within the tumor is the most
important input of texture analysis since it is essential for an
accurate characterization of metabolic heterogeneity. This
metabolic heterogeneity is expected to reflect biological and
clinical tumor properties and, therefore, most of the stud-
ies were conducted to show this correlation. Performance
of texture analysis was better when predicting outcome or
response to treatment in different types of tumors [8–10]
than when discriminating tumor histology or immunohisto-
chemistry (IHC) [7]. Although outcome and response are
very relevant clinical variables, one would expect to find
significant differences in biologically different tumors, with
different aggressiveness and resistance to treatment. How-
ever, there is little evidence supporting this association [7].
Considering that the distance scales at which variations in
tumor cell types are present range from cellular level (0.01-
100 μm) to macroscopic level (subpopulations larger than
a few mm) [11, 12], and that the spatial resolution of the
most advanced PET systems is about 2–4 mm, it seems clear
that we can only measure heterogeneity directly if it appears
at the macroscopic level and if differences in the radio-
tracer uptake between the different subpopulations of cells
can be effectively measured by PET scanners. Nevertheless,
it is possible that a microscopically heterogeneous popula-
tion of cells presents a macroscopic signature, for instance,
a particular shape, allowing us to measure microscopic
heterogeneity indirectly by correlating texture analysis with
anatomopathological information.

Breast cancer (BC) is a good example of a heterogeneous
type of tumor [12]. According to [3], BC can be classi-
fied into five IHC subtypes: luminal A like (LA), lumi-
nal B like/HER2− (LB−), luminal B like/HER2+ (LB+),
HER2-positive non-luminal (HER2pnl) and triple negative
(TN). Each of these is associated with a particular molecular
subtype but, although both classifications are largely con-
cordant, there is no exact overlap between IHC subtype and
inherent molecular subtype [13]. Despite this non-perfect
correspondence, IHC subtypes have shown prognostic and
predictive power and are one of the main inputs in treatment
planning [3], showing that this surrogacy encodes most of
the relevant information of genetic analyses. Therefore, the
study of correlations between tumor heterogeneity and IHC
subtypes is valuable in the sense that it may provide the
same information as IHC analyses. Furthermore, given the
high overlap between IHC surrogates and genetic profiles,
a positive correlation between heterogeneity descriptors
and IHC subtypes is likely to imply a positive correla-
tion between these descriptors and tumor genetic profiles.
Although this can only be proven with a dedicated study,
the demonstration of these correlations seems to be the nec-
essary prerequisite before carrying out the more resource-
demanding genetic studies. No previous investigations have
found strong correlations between textural features and IHC
subtype [14–17]. Since a good spatial characterization of
tumor uptake is essential to quantify metabolic hetero-
geneity, an improvement of the spatial resolution of PET
scanners may help to elucidate new associations between
PET features and tumor biology. In the present study, we
used a high-resolution dedicated breast PET (dbPET) scan-
ner (MAMMI-PET, GEM Imaging S.A., Valencia, Spain)
[18]. The aim of this work was to explore possible corre-
lations between tumor biological characteristics and PET
features measured with a high-resolution dbPET scanner.

Materials and methods

dbPET

PET studies were carried out with MAMMI-PET (GEM
Imaging S.A., Valencia, Spain), a dbPET scanner designed
to improve small-lesion detection while reducing received
dose and study time [18]. Patients lie in prone position,
allowing better tumor detection and minimizing breathing
motion compared with a whole-body PET scanner. Our
dbPET scanner consists of 12 continuous LYSO crystals
arranged in a ring with an aperture of 186 mm that provides
an axial field of view of 40 mm. The ring can be moved
by a precise engine along the axial direction so acquisitions
in a step-and-shoot mode can be launched to increase the
axial field of view up to 170 mm. The 3D mode-acquired
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images were reconstructed with a 3D maximum likelihood
expectation maximization (MLEM 3D) algorithm and indi-
vidual beds merged to form a single 3D image. Different
settings can be used in the reconstruction, namely, voxel size
of 0.5×0.5×0.5 or 1×1×1 mm3; random, scatter, decay,
and shape-based attenuation corrections, as well as different
numbers of iterations. Spatial resolutions below 3 mm were
measured in most of the field of view [18] and a compar-
ative study between this dbPET scanner and a whole-body
PET/CT reported better resolution and detectability of the
former [19]. Also, an improvement in visual heterogeneity
assessment was reported [20].

Patient cohort

This study was approved by the local ethics committees
(CEIC-Galicia) and informed consent was obtained from
all participants. The MAMMI-PET project consists of two
different research lines. ARM 1 investigates the power of
MAMMI-PET as a complementary imaging tool compared
to MRI, so every breast cancer patient that was sched-
uled for MRI scan due to at least one of the following
indications, (a) suspected multifocal/multicentric/bilateral
disease, (b) discrepancies between ultrasonography and
mammography, and (c) hidden tumor, was scanned with
MAMMI-PET before any treatment. ARM 2 studies the
power of MAMMI-PET in evaluating neoadjuvant treat-
ment response. Every patient that was scheduled to receive
neoadjuvant therapy was scanned with MAMMI-PET
before treatment beginning. Participants in both ARMs had
no previous breast cancer history. If a patient met the inclu-
sion criteria for ARM 1 and ARM 2, then that patient was
assigned to ARM 2. From July 2014 to February 2017, con-
secutive patients from ARM 1 and ARM 2 that met the
following two imaging criteria, (1) lesions that were fully
contained in the field of view and (2) lesions that were
detectable, so that they could be unambiguously located
by three independent nuclear physicians, were included in
this study. TNM stage was established according to the 7th
American Joint Committee on Cancer (AJCC).

PET protocol

Patients fasted for at least 6 h before the injection of 180
MBq of 18F-FDG. To ensure correct incorporation of the
radiotracer, blood glucose levels were checked and patients
rested in a warm room 30 mins before administration. All
PET images were reconstructed with the settings recom-
mended by the vendor: pixel size of 0.5 mm, 12 iterations
and attenuation, scatter, and randoms correction. The axial
field of view covered by each bed was 40 mm, with an
acquisition time of 3 min and 30 s.

Tumor histology and immunohistochemistry

Core-needle biopsy was used for diagnosis. Histological
grading was performed using the modified SBR system.
Tumors were considered positive for estrogen (ER) or pro-
gesterone (PR) receptors according to the Allred method,
being positive those tumors with a total score (TS) equal
or higher than 3 (TS ≥ 3). Tumors were considered HER2-
positive if a 3+ score was obtained according to HercepTest
criteria. In situ hybridization (FISH) was used to assess pos-
itivity of equivocal (2+) cases. IHC classification followed
the recommendations of the 13th St. Gallen International
Breast Cancer Conference (2013) with a Ki67 threshold of
20% [3].

Texture analysis

Each tumor was manually enclosed in a cropping box by
an experienced nuclear physician. A threshold of 0.45 ×
SUVmax was applied in the cropping box to segment lesions.
All the possible holes of the resulting segmentation were
filled with a 3D flood-fill algorithm. Quantitative analy-
sis was carried out in the segmented tumors. In order to
allow a precise comparison between whole-body PET and
dbPET, we computed the same features as those used in
[16], which include first-order statistics features (FOS) and
textural features (TF), derived from co-occurrence matrix
(CM) [4] and size-zone matrix (SZM) [21]. FOS features
take the frequency histogram of tumor uptake values as the
only input and therefore do not capture any information of
the spatial arrangement of voxels. On the contrary, textu-
ral features quantify the presence of spatial structures at a
local (CM) or regional (SZM) level. Computed FOS fea-
tures were SUVmax, SUVmean, MATV, TLG = SUVmean ×
MATV and CHAUC [22]. The latter is the only FOS fea-
ture designed to quantify global heterogeneity by means of
the area under the curve of the cumulative histogram. TF
were calculated after quantization with 64 grey levels [16,
17, 23–25]. CM was computed by finding a coincidence in
any of the 13 possible directions, instead of averaging 13
features, each one coming from a single matrix for each
direction [25]. The selected features were entropy, homo-
geneity, and dissimilarity from CM [4], and HILAE and ZP
from SZM [21]. All these features have shown robustness
with respect to partial volume effects and segmentation [24],
reconstruction settings [26], and reproducibility [23]. Most
of them were also tested in previous studies, so a compari-
son of performance between dbPET and current whole-body
PET scanners can be carried out. A comprehensive defi-
nition of all of the features is provided in Supplemental
Methods. Algorithms were implemented in Matlab (The
MathWorks, Inc).
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Fig. 1 Diagram showing the number of patients involved the study.
Of the excluded patients from ARM 1 (ARM 2), 11 (31) did not show
FDG uptake and ten (27) were not fully included in the field of view

Statistical analysis

For descriptive statistics, medians±standard deviations
were used. Correlations between features were evaluated
using the Spearman rho. Associations between PET fea-
tures and clinical, histopathological, and IHC factors were
computed using a two-sided Wilcoxon rank-sum test. Asso-
ciations between PET features and molecular subtype
were assessed using a Kruskal–Wallis test. All these tests
were corrected for multiple testing using the Benjamini–
Hochberg method [27] and a further Tukey–Kramer test was
applied when evaluating the pairs of molecular groups that
are statistically different. The significance level used in the
test was the standard α = 0.05. ANCOVA analysis was used
to adjust for covariates. Discriminative power was quanti-
fied with the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve. All of the analyses
were computed with Matlab (The MathWorks, Inc).

Results

Patient population characteristics

A total of 179 patients participated in ARM 1 and ARM
2, resulting in 127 patients (median age 52±12 years) that

fulfilled imaging criteria described in Section “Patient
cohort” (Fig. 1). Overall, nine were diagnosed with stage
I BC, 74 with stage II, 41 with stage III, and three with
stage IV. Multifocal/multicentric disease with more than
one biopsied lesion that fulfilled the inclusion criteria was
present in ten patients. A total number of 139 tumors were
analyzed. Tumor number for each molecular subtype was
36 LA, 50 LB−, 25 LB+, 16 HER2pnl, and 11 TN. Some
examples of PET images from these tumors are presented in
Fig 2. Patient and tumor characteristics are listed in Table 1.

Correlations between PET features

Correlations between SUVmax and FOS features ranged
from 0.24 for MATV to 0.99 for SUVmean (0.37 for CHAUC

and 0.63 for TLG). TF were less correlated with SUVmax

than FOS: −0.30 for dissimilarity, 0.03 for entropy, 0.24 for
homogeneity, 0.53 for HILAE and −0.34 for ZP. Correla-
tions between MATV and FOS features were low (−0.24
for CHAUC) except for TLG (0.89), as expected. Stronger
correlations were found between MATV and TF: −0.86 for
dissimilarity, 0.64 for entropy, 0.83 for homogeneity, 0.64
for HILAE, and −0.85 for ZP. Dissimilarity was strongly
correlated with TLG (0.80), entropy (0.82), homogeneity
(0.88), and ZP (0.97) (Supplementary Table 1).

Relation between PET features and clinical,
histological, and immunohistochemical factors

Associations between features and tumor characteristics
are summarized in Table 2. Clinical T stage was associ-
ated with MATV and TLG, as expected. CHAUC and TF,
with the exception of HILAE, were also correlated with
T stage. No association between clinical N stage and PET
features reached statistical significance after multiple tests
correction.

Ductal carcinoma had significantly higher uptake than
lobular carcinoma (p = 0.0022). None of the heterogeneity
metrics was significantly associated with histology. Grade

Fig. 2 Examples of some of the analyzed tumors. SUV scale is depicted on the right of each image. a T1, HER2pnl tumor, b T3, LB− tumor, c
multifocal tumor
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Table 1 Patient and tumor classification

Number of lesions (%), N = 139

T stage (N=127)

T1 19 (15)

T2 67 (54)

T3 21 (16)

T4 19 (15)

Not assessable 1 (<1)

N stage (N=127)

N0 81 (64)

N1 24 (19)

N2 19 (15)

N3 3 (2)

Histology

Invasive ductal 108 (78)

Lobular 12 (8)

Others 19 (14)

Histologic gradea

1 16 (12)

2 67 (48)

3 55 (40)

Not specified 1 (<1)

Estrogen receptor status

Positive 111 (79)

Negative 28 (21)

Progesterone receptor status

Positive 94 (68)

Negative 45 (32)

HER2 status

Positive 41 (29)

Negative 97 (71)

Not specified 1 (<1)

Molecular subtype

Luminal A like 36 (26)

Luminal B like/HER2− 50 (36)

Luminal B like/HER2+ 25 (18)

HER2pnl 16 (12)

Triple negative 11 (8)

Not specified 1 (<1)

aHistologic grade was determined using the modified Scarff–Bloom–
Richardson method.

3 lesions were associated with higher uptake compared to
grade 1 and 2 lesions and higher TLG. HILAE was also
associated with histologic grade (p < 0.001). CHAUC and
ZP did not reach statistical significance after multiple tests
correction.

Estrogen positivity was only associated with SUVmax and
SUVmean. Progesterone receptor status was significantly
associated with SUVmax and SUVmean. TLG, CHAUC and

HILAE were also significantly associated. HER2 status was
significantly correlated with SUVmax and SUVmean (p <

0.001). This result remained significant after correcting by
histologic grade (p = 0.011 and p = 0.006, respectively).
CHAUC and HILAE were also associated with HER2 status
(Fig. 3) (p = 0.002 and p = 0.016, respectively).

All features were significantly associated with molecu-
lar subtype after multiple tests correction, although entropy
did not reach significance after a further Tukey–Kramer
test to determine which pairs of groups were different. Box
plots of each feature are presented in Fig. 4. Most of the
significant associations involved LA tumors. SUVmax and
SUVmean were lower for LA tumors (p < 0.001) than for
the other subtypes. The discriminative power ranged from
AUC = 0.717 for LB− to AUC = 0.880 for HER2pnl (Sup-
plementary Figure 1). MATV showed relation p = 0.023
between LA and LB− with an AUC = 0.712 (Supplemen-
tal Figure 1b). TLG was significantly different (p < 0.001)
for LA when compared to LB−, HER2pnl and TN. CHAUC

was discriminative when comparing LA vs. HER2pnl and
LB− vs. HER2pnl (p = 0.022). Among TF, dissimilarity,
homogeneity, HILAE, and ZP were significantly differ-
ent when comparing LA and LB− and AUCs were 0.768,
0.712, 0.797 (Supplemental Figure 1b) and 0.789, respec-
tively. HILAE was also significantly correlated for LA vs.
LB+ and LA vs. HER2pnl (Supplemental Figure 1a).

Comparison with previous studies

In order to evaluate the performance of dbPET with respect
to whole-body PET, we performed a subanalysis to compare
results with [16] and [17].

In [16], patients were classified into three IHC groups:
TN, ER+/HER2−, and HER2+. Associations between PET
features and IHC classification from [16] are summarized
in Supplementary Table 2. Only SUVmax, SUVmean, and
CHAUC were significantly associated with the IHC groups
(p < 0.001 for SUV, p = 0.001 for CHAUC). AUCs were
computed using the criteria of [16], comparing each group
against the other two together. Discriminative power was
better for ER+/HER2− and HER2+ groups than for TN.

In [17], only ER+ tumors were included in the analysis.
Significant correlations after multiple tests correction were
found for SUVmax and SUVmean when discriminating tumor
grade (p < 0.001, AUCs of 0.758 and 0.760, respectively)
and HER2 status (p = 0.001 and p < 0.001, respec-
tively). HER2 status remained significant after correcting
by histologic grade (p = 0.017) and p = 0.014, respec-
tively. TLG and HILAE remained significant (p = 0.009
and p = 0.012) for tumor grade, although AUCs were mod-
est (<0.7). T stage associations had low p values (0.006)
but were not enough to pass multiple tests correction. These
results are listed in Table 3.
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Fig. 3 Box plots showing significantly associated features with HER2
status. The center mark indicates the median, and the bottom and top
edges of the box indicate the 25th and 75th percentiles, respectively.

The whiskers extend to the most extreme data points not considered
outliers, and the outliers are plotted individually using the + symbol

Discussion

As a heterogeneous disease, differences in histology and
clinical outcome of breast cancer have served as the basis
for tumor classification but, recently, this classification has
been refined and at times replaced by molecular classifica-
tions, which have the ability to combine biological features
with clinical outcome. In this context, the primary aim of
texture analysis is to non-invasively characterize tumors by

medical imaging. Although correlations with response and
outcome were found in other tumors and imaging modali-
ties [8–10, 28], poor associations were found with biological
features of breast cancer [14–17]. A possible reason for this
failure was pointed out in [29], where it was found that tex-
ture analysis with current PET resolutions in tumor volumes
below 45 cm3 may lead to inaccurate heterogeneity quan-
tification. This issue is specially problematic in BC, since
most of the tumors are smaller than this limit [14–17]. In this
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Table 3 Associations (p values) between PET features and IHC factors with a subsample of 111 ER+ tumors, as studied in [17]. When significant,
AUCs comparing each group are presented in parentheses

Feature T stage 1-2 vs. 3 Histology ductal vs. Lobular Histologic grade 1–2 vs. 3 Progesterone receptor HER2 status

SUVmax 0.18 0.008* <0.001 (0.758) 0.006* 0.001 (0.717)

SUVmean 0.30 0.007* <0.001 (0.760) 0.005* <0.001 (0.718)

MATV 0.040* 0.99 0.39 0.77 0.31

TLG 0.056 0.25 0.009 (0.657) 0.16 0.43

CHAUC 0.033* 0.037* 0.068 0.038* 0.085

Dissimilarity 0.015* 0.67 0.11 0.56 0.77

Entropy 0.006* 0.37 0.98 0.64 0.50

Homogeneity 0.006* 0.99 0.22 0.62 0.98

HILAE 0.51 0.13 0.012 (0.652) 0.042* 0.090

ZP 0.010* 0.58 0.059 0.50 0.88

*Not significant after multiple tests correction

study, we have measured five FOS and five TF in a cohort
of 139 different breast tumors using a dbPET scanner. All
these features were previously studied in [16] and most of
them in [15, 17].

Our results indicate that HER2-positive tumors show
higher metabolism than negative ones, contrary to what was
found before by several studies [16, 17, 30–32]. This result
remains when considering only ER+ tumors so no influence
of ER status is altering our measurement. A possible rea-
son to explain the inability of whole-body PET to detect
this association might be its lower spatial resolution, thus
yielding a less accurate SUVmax measurement for a given
HER2-positive tumor than the one measured by our dbPET
scanner. Although a recent study has found this associa-
tion using whole-body PET [33], the authors claim that their
finding is only based on the histopathological nature of their
patient sample. In any case, further investigation is needed
to clarify the origin of the discrepancies among studies.

HILAE, a regional heterogeneity measure, was the only
TF that showed correlation with IHC factors. Significant
associations with tumor grade, progesterone status, and
HER2 status were found. Furthermore, HILAE was the most
discriminative feature of the four that were significantly
associated with IHC subtype and it was moderately corre-
lated with SUVmax (rho=0.53) and MATV (rho=0.64), being
TLG its most correlated feature (rho=0.76). Its better dis-
crimination power with respect to SUV when comparing
LA to LB−, the two most similar IHC groups in terms
of uptake, and the fact that the rest of TF also showed
better discrimination than SUVs when comparing these
two groups (Fig. 4), may indicate that the role of tumor
uptake is minimized while heterogeneity information cap-
tured by dbPET becomes more relevant in characterizing
LA and LB- tumors. Figure 5 depicts the differences in

uptake distribution for these two types of tumors, having
both very similar SUV and MATV. HILAE also showed
good discrimination power (AUC >0.75) differentiating LA
vs. LB+ and LA vs. HER2pnl. This connects with the
above discussion concerning HER2-positive tumors: if such
tumors present metabolic heterogeneity at small distance
scales, HILAE might be reflecting this characteristic, since
LB+ and HER2pnl define our population of HER2-positive
tumors.

To compare our results with [16], we used the same
IHC classification as that study. We found that SUVs and
CHAUC were associated with IHC subtype. In [16], SUVs
and TLG were significantly associated. The discriminative
power of SUV for TN tumors was lower in our study, but an
increase (>0.05) in discriminative power was observed for
ER+/HER2− tumors, and a substantial increase (>0.15) for
HER2+ tumors. Due to differences in patient population (54
TN in [16] vs. 11 TN in our study) it is not possible to estab-
lish a direct comparison of performance between dbPET and
whole-body PET. However, we have shown that regrouping
the initial five groups into three can spoil any heterogeneity
characterization. We must bear in mind that two molecular
subtypes are biologically different entities, with completely
different gene expressions even when they are differentiated
just by a single IHC factor (for instance LA and LB−, which
basically differ in Ki67 index) [3, 34]. In this sense, IHC
factors act as surrogates to classify different genetic enti-
ties, so any molecular classification based only on few of
these factors is going to contain a heterogeneous mixture of
different biological profiles in each group. Our results sug-
gest that heterogeneity can be captured with dbPET if the
more modern five-group IHC classification is used but, as
pointed out in [16], this is still pending work in whole-body
PET.
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Fig. 5 Example of uptake distributions of LA and LB− tumors with very similar SUV and MATV values but different HILAE, along with
resulting segmentations. a LA with SUVmax = 13.8, MATV = 1.1 cm3 and HILAE = 2951. b LB− with SUVmax = 13.8 and MATV = 1.2 cm3

and HILAE = 6716

Restricting the analysis to ER+ tumors, as in [17], our
main results remained unchanged. HER2-positive tumors
showed, again, higher uptake values. Apart from correla-
tions of TLG and HILAE with histologic grade, we obtained
very low p values for SUV associations with histology and
PR status. Taking into account that our patient sample was
very similar to the one used in [17], this comparison suggest
that MAMMI-PET significantly improves the performance
of whole-body PET in quantifying tumor characteristics.

Our study had some limitations. Although we found a
positive relation between TF and IHC subtypes, the relation
between TF and molecular subtype by means of genomic
analyses must be explored, which are the most accurate
descriptors of tumor biology and aggressiveness. The results
of this work suggest that the existence of this relation is
probable. We included stage I and IV patients, making our
sample slightly different from the samples studied in [16,
17]. Our segmentation algorithm was chosen due to its sim-
plicity but was different from the algorithms used in [16,
17]. This should not represent a serious problem since the
chosen TF demonstrated robustness against the segmenta-
tion algorithm [24]. Ki-67 index is a measure with high
degree of variation between laboratories and therefore it
is important to follow the recommendations from [35] to
achieve fully reproducible results.

The results of this work suggest that the direction that
must be followed to achieve a complete heterogeneity char-
acterization is two-fold. On one hand, and even though this
study may indicate that TF provide additional information,
it is essential to have a better understanding of TF, its cor-
relations, and how they behave when measuring complex
uptake distributions to determine the biological mechanisms

behind different heterogeneity scores. This will allow to
select the set of features that contain complementary and
relevant information, a crucial step in order to design a
machine-learning algorithm that will reliably classify tumor
molecular subtypes in a non-invasive way. It should be noted
that this methodology can be extended to the prediction of
other relevant variables such as clinical outcome or response
to treatment, providing that enough data are available and
a good selection of input features was performed. On the
other hand, an improvement in the quality of PET images,
in terms of resolution and noise, may make emerge new
and strong associations that are currently disguised, as we
have shown in this study. Bearing in mind these strategies,
it would be desirable, from a theoretical point of view, to
collect more evidence linking heterogeneity in PET images
with the expected pathological manifestations such as axil-
lary nodal involvement. In our opinion, these are the guides
that should be followed in future studies.

Conclusions

Our study suggests that dedicated breast PET resolution
improvement enables a more precise heterogeneity charac-
terization. Thus, TFs were able to discriminate IHC sub-
groups, showing its best performance when comparing LA
and LB−, the two subgroups with most similar uptake lev-
els. Due to the low correlation of TF with SUV, this result
suggests that there is an actual metabolic difference in the
uptake distribution of both types of tumors. Additionally,
HER2+ tumors showed increased SUV, a result that was not
reported before.
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