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Abstract
Introduction The combination of Positron Emission
Tomography (PET) with magnetic resonance imaging (MRI)
in hybrid PET/MRI scanners offers a number of advantages in
investigating brain structure and function. A critical step of
PET data reconstruction is attenuation correction (AC).
Accounting for bone in attenuation maps (μ-map) was shown
to be important in brain PETstudies. While there are a number
of MRI-based AC methods, no systematic comparison be-
tween them has been performed so far. The aim of this work
was to study the different performance obtained by some of
the recent methods presented in the literature. To perform such
a comparison, we focused on [18F]-Fluorodeoxyglucose-PET/
MRI neurodegenerative dementing disorders, which are
known to exhibit reduced levels of glucose metabolism in
certain brain regions.
Methods Four novel methods were used to calculate μ-maps
from MRI data of 15 patients with Alzheimer’s dementia

(AD). The methods cover two atlas-based methods, a segmen-
tation method, and a hybrid template/segmentation method.
Additionally, the Dixon-based and a UTE-based method, of-
fered by a vendor, were included in the comparison.
Performance was assessed at three levels: tissue identification
accuracy in the μ-map, quantitative accuracy of reconstructed
PET data in specific brain regions, and precision in diagnostic
images at identifying hypometabolic areas.
Results Quantitative regional errors of −20–−10 % were ob-
tained using the vendor’s AC methods, whereas the novel
methods produced errors in a margin of ±5 %. The obtained
precision at identifying areas with abnormally low levels of
glucose uptake, potentially regions affected by AD, were 62.9
and 79.5 % for the two vendor AC methods, the former ig-
noring bone and the latter including bone information. The
precision increased to 87.5–93.3 % in average for the four
new methods, exhibiting similar performances.
Conclusion We confirm that the AC methods based on the
Dixon and UTE sequences provided by the vendor are inferior
to alternative techniques. As a novel finding, there was no
substantial difference between the recently proposed atlas-
based, template-based and segmentation-based methods.
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Introduction

Positron emission tomography (PET) can be used in combi-
nation with [18F]-Fluorodeoxyglucose (FDG) to measure re-
gional glucose metabolism. Early stages of Alzheimer’s de-
mentia (AD) exhibit reduced levels of glucose metabolism in
the parietotemporal cortex, posterior cingulate, and precuneus
regions, spreading to the frontal cortex as the disease evolves.
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Alternative biomarkers, especially β-amyloid biomarkers
such as [11C]-Pittsburgh Compound B or [18F]-Florbetaben,
are under investigation to better diagnose AD at early stages.
Given the different regional levels of binding in various areas
of the brain, and the different sensitivity of particular areas to
the aforementioned radioligands, a robust and accurate quan-
tification in PET is of paramount importance.

The combination of PETwith magnetic resonance imaging
(MRI) can help to differentiate AD from other dementias,
which can show glucose metabolism abnormalities in similar
ways, and has demonstrated higher accuracy at detecting mild
AD than PET or MRI used separately [1, 2]. Simultaneous
PET/MRI potentially provides a number of benefits compared
to two consecutive PET and MRI scans, ranging from motion
correction in PET [3] to anatomically-guided PET image re-
construction [4]. The simultaneous combination of PET and
functional MRI can provide information of two mechanisms
expressing simultaneously two correlated functions, which
would not be observed otherwise. Additionally, for neurolog-
ical studies, a PET/MRI scan increases patient throughput,
patient comfort, and produces perfectly co-registered
anatomical/functional images. On the other hand, the use of
simultaneous PET/MRI poses a number of challenges that
need to be addressed. One of the most important is widely
recognized as attenuation correction (AC), mandatory for
quantitative PET data. Such is the case that AC in PET/MRI
has already been the subject of several reviews [5–8].

MRI data is related to tissue proton density, while comput-
ed tomography (CT) data is related to tissue electron density,
which is directly related to photon attenuation in the subject.
Therefore, to obtain an accurate attenuation map (μ-map) with
MRI is not trivial. There exist currently two commercial inte-
grated whole body human PET/MRI systems: the Biograph
mMR (Siemens Healthcare GmbH, Erlangen, Germany) and
the SIGNA PET/MRI (GE Healthcare, Waukesha WI, USA).
AC in the BiographmMR system is currently performed using
aμ-map derived from a 2-point Dixon [9] or a dual Ultra Short
Time Echo (UTE) [10] pulse sequence. In the SIGNA PET/
MRI system the μ-map is based on a head atlas which takes
less than 30 s to calculate for a given patient [11]. With the
growing number of simultaneous PET/MRI systems installed
worldwide (over 60 systems installed) there is a substantial
number of AC methods proposed by different research groups
focused mainly in head studies. This activity was partly trig-
gered by the poor performance obtained by the AC methods
available in the Biograph mMR system [12, 13], where quan-
titative errors of ∼20 % in cortical areas and ∼10–15 % in
subcortical areas were measured. In contrast, an evaluation
of the method in the GE system showed errors of 2.19
±1.40% in eight subjects compared to a μ-map obtained from
a CT scan [11]. Most of the published methods reported the
accuracy of their performance using different figures of merit,
looking into the brain as a whole or in different specific brain

areas. Comparing the performance between methods is diffi-
cult since different groups used different figures of merit and/
or looked into different regions.

AC methods can be broadly classified into atlas/template-
based methods and segmentation-based methods.
Alternatively, attenuation information can be estimated using
maximum-likelihood reconstruction of activity and attenua-
tion [14], and improved including time-of-flight information
in the reconstruction algorithm [15]. However, the feasibility
of the latter approach in neurological studies has not been
investigated yet. An alternative approach that has shown to
provide excellent results is based on MR sequences with spe-
cial k-space sampling strategies, capable of measuring signal
from bone with high quality. Examples of this approach are an
improved k-space sampling for UTE sequences [16], the zero-
time-echo MR sequence [17], and the pointwise encoding
time reduction with radial acquisition MR sequence [18].
Nonetheless, the most common approach for MRI-based AC
is to use MR images acquired from well-established se-
quences without modifying the sampling schemes.

Most of the existing image processing methods are based on
atlases created with different types of datasets. Pairs of CT and
dual UTE [19–21], or CT and T1 weighted [11, 22] are com-
mon choices. Other approaches introduce more information in
the atlas like images from Dixon sequences [23, 24] or T2
weighted images and UTE images [25]. In some cases a new
patient is compared with the atlas using probabilistic measures
[11, 20–23, 25] or pattern recognition approaches [19, 24]. The
method presented by [26] contains several similarities com-
pared to the atlas-based methods, using a preliminary atlas
based on pairs of CT and T1 weighted images, with the impor-
tant difference that this method calculates a template out of the
atlas averaging the registered data sets. The combination of
atlas or template with segmentation of specific tissues was used
in [23, 26] to improve the registration process. Most methods
target only head AC [19–22, 24–26], although some ap-
proaches tackle the more challenging situation of whole body
AC [6, 23]. Atlas and template-based methods generally result
in high quality μ-maps, with significant similarity with typical
CT-based μ-maps (μ-mapCT) in the bone identification and
linear attenuation coefficients (LAC). However, these ap-
proaches tend to require long computational time due to the
large number of datasets to be registered and segmentations to
perform. Besides, patients with brain alterations or deforma-
tions are likely to fail in the process of identifying the different
brain structures with the atlas or template. Additionally, the
application of these methods to children requires the acquisition
of double scans (MRI and CT) to create a database, which can
raise ethical issues due to the radiation exposure.

Alternatively to atlas or template-based methods there is a
significant number of studies based on segmentation of MR
images. The accuracy of the bone representation in the image
to segment is partly the key factor of such approaches. Most
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methods use dual UTE images, combined by calculating the
R2 map [27–29] or similar relations [30, 31], although T1
weighted images have also been used [32]. The accuracy of
the R2 map to extract bone structures was thoroughly analysed
[33], resulting in a significant correct identification of bone
structures but with artefacts in some areas, such as dental
implants, folds of the neck fat, and air-bone interfaces.

There is a growing number of AC approaches, but no quan-
titative comparisons between methods has been yet presented.
Therefore, it is not clear whether there is still room for im-
provement for new AC methods. Moreover, the maximum
allowed quantitative error for the different cerebral cortical
and subcortical regions is not well known. Test-retest studies
suggest that small subcortical structures tend to have larger
variability than large cortical structures. Intra- and inter-
patient test-retest studies of regional cerebral metabolic rate
of glucose consumption (CMRglc) resulted in 5.5±0.5 %, 8.4
± ,0.7 % and 8.0±0.6 % average variability in the hippocam-
pus, parieta, l and temporal regions, respectively [34, 35].

In this work we present a comparison between four PET/
MRI AC methods: two methods based on an atlas [19, 22],
one method based on a template [26], and one method based
on segmentation [28]. One atlas-based method [22] and the
template-based method rely on pairs of CT and T1 weighted
images, while the other atlas-based method [19] relies on pairs
of CT and dual UTE images. The segmentation-based method
relies uniquely on dual UTE images, which are combined
using the R2 map. The main reason to compare these methods
was their significant quantitative accuracy in reconstructed
PET data. Another reason was that these methods were avail-
able upon request from their authors. The timing performance
was not considered as a critical parameter for the selection of
the methods, although this aspect will be discussed in the
context of clinical routine work flow.

Comparisons were performed first by measuring the lev-
el of agreement between μ-maps for air cavities and bone.
Secondly, looking into reconstructed PET data, the focus
was on brain regions that can potentially experience func-
tional impairments in patients with suspected AD. An im-
portant point considered in this work is the accuracy at
identifying regions showing hypometabolism resulting
from each μ-map in the AC for each patient. One of the
most established analysis tools in clinical routine is the
three-dimensional stereotactic surface projection 3D-SSP/
NEUROSTAT software toolkit [36], where the reconstruct-
ed PET data of each patient is compared with a database
comprised of reconstructed PET data from healthy pa-
tients. This toolkit produces 3D surfaces showing areas
with abnormal levels of FDG uptake compared to the da-
tabase. We processed, with the 3D-SSP/NEUROSTAT
software, the reconstructed PET data produced using all
the studied μ-maps. The μ-mapCT and the reconstructed
PET data using the μ-mapCT were used as reference for

the three comparison levels aforementioned: μ-map, recon-
structed PET data, and diagnostic images.

Materials and methods

PET/MRI device

The PET/MRI scanner used in this work was the Biograph
mMR (Siemens Healthcare GmbH, Erlangen, Germany) with
the software version VB20P. The mMR is a fully integrated
system with a 3 Tesla MRI magnet and a PET ring based on
avalanche photodiode technology. The dimensions of the
magnet are a 60 cm inner diameter with an axial field of view
of 45 cm, and the dimensions of the PET bore are 59.4 cm
diameter per 25.8 cm axially. The spatial resolution in the
centre of the scanner is 4.3 mm and the sensitivity is 15 cps/
MBq [37]. The gradient coil has a gradient field of 45 mT/m
with a switching time of 200 T/m/s. The head/neck coil used
in all the studies presented here was the 16 channels Total
Imaging Matrix (TIM).

Imaging protocol

Fifteen patients (seven female and eight male) with suspected
AD or neurodegenerative disorders were selected for the pres-
ent retrospective study. The average patient age was 58.8
±7.8 years [range 49 to 76 years], and the weight was 76.5
± 18.5 kg [range 50 to 128 kg]. All subjects gave written
informed consent, and all procedures were in accordance with
the ethical standards of the institutional and/or national re-
search committee and with the 1964 Helsinki declaration
and its later amendments or comparable ethical standards.
The patients were scanned in a PET/CT (Biograph mCT;
Siemens Healthcare, Knoxville TN, USA) and in the PET/
MRI. The emission data in the PET/MRI were acquired
42.1 ± 17.6 min [range 30 to 84 min] after administering
183.3±3.4 MBq [range 179 to 190 MBq] of 18F-FDG. The
data were acquired for 15 min in 3D with an energy window
of 430–610 keV, and reconstructed using ordered-subsets ex-
pectation-maximization (three iterations, 21 subsets) filtered
by a Gaussian mask of 5 mm full-width at half-maximum.
Reconstruction was performed with the Siemens off-line e7
tools. Resulting images had 256 × 256 × 127 voxels with
1.40 × 1.40 × 2.03 mm3 dimensions. The PET data recon-
structed in every case was always the PET data acquired from
the mMR (including the one using the μ-mapCT), to avoid
functional discrepancies in the PET data comparison. The
MR acquisition took 36 min to acquire several sequences, to
obtain anatomical and functional information, the Dixon
(19 s) and UTE (100 s) among them.

The MR sequences simultaneously acquired with the PET
scan included the T1-weighted 3-dimensional magnetization-
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prepared rapidgradient echo (MPRAGE–256×240×160voxels
with 1×1×1 mm3), two UTE (192×192×192 voxels with
1.56×1.56×1.56 mm3) with different echo times (0.07 and
2.46 ms), and a 2-point Dixon (192×126×128 voxels with
2.34×2.34×2.73 mm3). The CT data were acquired in the
PET/CT scanner for each patient at 120 kVp and 21 mA for
low dose, and contained 512 × 512 × 75 voxels with
0.97×0.97×3 mm3 per voxel.

Attenuation correction methods

The two methods to calculate the μ-map available in the
SiemensmMR scanner are based on a 2-point Dixon sequence
(19 s) (μ-mapDX), where bone is ignored, and on a dual UTE
sequence (100 s) (μ-mapUTE), where bone is taken into ac-
count. The entire MR acquisition took 36 min. All the novel
methods studied in this work to create the μ-map for AC are
briefly discussed below. In all cases the algorithms produce a
continuous spectrum of LACs. For details, their references
provide detailed descriptions of the methods.

1. Atlas-based method (μ-mapATL) [22]: This method relies
on an atlas database comprised of paired T1-weighted
MRI and CT data sets. The T1-weighted data set of each
subject is rigidly registered to its corresponding CT data
set. Once a new subject is scanned, all the T1-weighted
MRI data sets from the database are registered to the target
patient T1-weighted data set using a B-splines-based non-
rigid registration. The CT data set for the new patient is
then calculated from averaged weights, obtained using a
similarity measure extracted from the database and the
subject T1-weighted data set. The μ-map is calculated
from the CT data by converting from Hounsfiled units
(HU) to LAC using a bilinear transformation [38].

2. Template-based method (μ-mapTMP) [26]: This method
relies on an atlas database created with paired T1-
weighted MRI (with a gadolinium-based contrast agent)
and CT data sets, in this case to produce a template. All
the operations are performed with the SPM8 toolbox
(Statistical Parametric Mapping, Wellcome Trust
Institute of Neurology, University College London) [39].
To create the template, first all the CT data sets are rigidly
registered to their corresponding T1-weighted MRI data
sets. Subsequently, all the tissue classes of the MRI data
sets are segmented and elastically registered to a common
space. Finally, all the CT data sets are transformed to the
same common space as the registered MRI data sets. The
final CT template is produced by averaging all the regis-
tered CT data sets. To calculate the μ-map for a new
patient, the patient’s T1-weighted MRI is first registered
and segmented using the same procedure as for the atlas.
The template CT is then inversely transformed to the

subject space, and is converted into a μ-map by applying
a bilinear transformation [38] to the CT HU.

3. ANN method (μ-mapANN) [19]: This method relies on a
training database, in this case created with paired UTE
data sets and CT data sets. The UTE data sets and a
template-based AC map (TAC-map) are used as inputs
of a feed forward neural network (FFNN). The method
is based on a 3 layers FFNN algorithm, the aim of which
is to calculate the network weights (training step, TS), in
order to directly produce a μ-map with continuous LACs
(classification step, CS). Patches of one voxel and six
neighbours from both UTE images and the template-
based μ-map [19] are the inputs of TS and CS, which
use a sigmoid activation function for the middle
(hidden) layer and a linear activation function for the out-
put layer. During TS the images of a selected database are
compared with the corresponding μ-mapsCT to determine
the optimal network weights.

4. R2 method (μ-mapR2) [28]: This method relies uniquely
on the dual UTE images, where air, bone, and soft tissue
are segmented. Air cavities are estimated by calculating
the mean and standard deviation from the voxels located
outside the head in the UTE scans, and then identifying
those voxels inside the head that have similar statistical
properties. The bone is estimated using the R2-map [27],
derived from the difference of the logarithms between two
images obtained from two consecutive UTE sequences
acquired at different echo times. After the bone is identi-
fied, the intensity values of the voxels corresponding to
bone are equalized to match the intensity values measured
with CT. Finally, the remaining voxels are set as soft
tissue.

Tissues classification evaluation

The first level to evaluate the different methods to estimate the
μ-map was focused on studying the accuracy of each method
to determine to which tissue (soft, bone, or air) each voxel
corresponded in the μ-map. The μ-mapCT was used as refer-
ence. Since the μ-mapCT was acquired with the Biograph
mCT scanner and all the other μ-maps were derived from
MR images from the Biograph mMR, the μ-mapCT was rig-
idly registered to the MRI-derived μ-maps using the Syngo
Multimodality Workplace (Siemens Healthcare GmbH,
Erlangen, Germany) application. The registered μ-mapCT
was later used for AC correction in the image reconstruction
step for further quantitative PET analysis.

The figures of merit used to evaluate the level of agreement
between μ-maps were the sensitivity and precision defined as

TP
TPþFN and TP

TPþFP; respectively, where TPs are true positives,

FNs are false negatives, and FPs are false positives. For this
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purpose all the μ-maps were binarized using the same thresh-
olds: 500 HU (0.1165 cm−1) and −300 HU (0.03 cm−1) for
bone and air, respectively. Once thresholded, the sensitivity
and precision were calculated.

Regions close to air interfaces, nasopharyngeal cavities,
within the folds of the neck fat, and where dental implants
were present, were usually problematic for AC based on
UTE sequences [33]. Moreover, the neck is a challenging
region to analyse, since the rigid registration between the ref-
erence μ-mapCTand the MRI-derived μ-maps fails. The tissue
classification evaluation was performed for the entire head
(including neck) and also only for the part of the head where
the brain is enclosed by applying a manually generated mask.
Hence, potential mismatches produced in the areas enumerat-
ed above were not present in the brain-region tissue analysis.

Quantitative comparison

Eachmethod was additionally compared by using eachμ-map
for AC and reconstructing the PET data as explained above.
The resulting reconstructed PET data were analysed with
SPM8. First, the MPRAGE dataset of each patient was rigidly
registered to the common coordinate space of the μ-maps and
PET images. Then, the T1 (MPRAGE)Montreal Neurological
Institute (MNI) template was elastically registered to the
MPRAGE data set of each patient. TheMNI template contains
a voxel atlas holding 116 anatomical predefined regions based
on the automated anatomical labeling atlas. Once the MNI
template was in the same coordinate space as the MPRAGE
data, it was used to extract the quantitative information from
the PET data. Finally, the mean was extracted from all the
anatomical predefined regions in the template. The figure of
merit used for the comparison between methods was the nor-
malized error (En), defined as

En %ð Þ ¼ AX−ACT

ACT

� 100; ð1Þ

using the μ-mapCT corrected PET images as reference. ĀCT

and ĀX are the mean activities measured in a given region of
interest (RoI) of the PET data reconstructed using the μ-
mapCT for AC and the alternative μ-maps. For this study we
analysed only those regions related to different stages of AD.

Quantitative evaluation in diagnostic images

For the clinical evaluation we analysed the results obtained
after processing each reconstructed PET patient data obtained
with the different μ-maps under study, with the 3D-SSP/
Neurostat software toolkit, which is a tool used in clinical
routine in our institution. The 3D-SSP/Neurostat software cal-
culates statistical Z-scores from a patient, comparing with a
database of normal controls that has μ-maps obtained from

CT scans. The aim is to determine areas with abnormal levels
of CMRglc using FDG normalized to a reference, which can
be the global count, pons, cerebellum, or thalamus. Increased
and decreased levels of CMRglc are separately produced. In
this study we focused on reduced levels of CMRglc compared
to the database. The 3D-SSP/Neurostat software extracts in-
formation of the metabolic activity projected onto surfaces;
hence, it can be displayed from different views: superior, in-
ferior, anterior, posterior, right, left, and medial. For more
details about the 3D-SSP/Neurostat software, we refer the
reader to the work of S. Minoshima et al. [36].

The amount of information generated for visual inspection
for each patient and each different μ-map was substantial
(eight views × four references × 15 patients × five μ-maps).
To simplify the comparison, to reduce the amount of informa-
tion to present, and to perform a systematic analysis, we de-
fined two parameters. First, we focused our study on data
normalized by the FDG signal in the thalamus, as suggested
in [36], where larger differences between methods were ob-
tained. This effect can be attributed to the fact that the refer-
ence regions can be under or overestimated in the same range
as the analysed regions of interest. Secondly, we analysed the
data using a range of thresholds of 1–3σ, to classify whether a
cerebral region exhibits abnormal metabolic uptake. By ap-
plying the threshold to every view, for each reconstructed PET
data from each patient and μ-map, we produced binary maps
with a value of ‘0’ assigned to voxels corresponding to healthy
tissue and ‘1’ to voxels corresponding to tissue with abnormal
glucose uptake. Using the binary map obtained from the re-
constructed PET data obtained with the μ-mapCT as ground
truth, we calculated the precision at identifying regions with
reduced CMRglc obtained with each of the μ-maps under
study.

Results

Attenuation maps evaluation

Figure 1 shows a 3D rendering of the bone structure from the
μ-map of one of the patients considered in this study, obtained
with CTand the new fourmethods under study:μ-mapANN,μ-
mapR2, μ-mapTMP, and μ-mapATL. All sagittal, coronal, and
transversal views for the μ-mapCT, μ-mapDX, μ-mapUTE, μ-
mapANN, μ-mapR2, μ-mapTMP, and μ-mapATL are shown in
supplemental Fig. 1. The En (defined as Eq. (1) but applied
to the μ-maps) obtained with the μ-mapUTE, μ-mapANN, μ-
mapR2, μ-mapTMP, and μ-mapATL, compared to the μ-mapCT,
is shown in supplemental Fig. 2. Relatively high errors are
visible, mainly where bone and air cavities are present, and
around the head, which were partly attributed to a mild mis-
match between the μ-mapCT and the rest of the μ-maps due to
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small inaccuracies in the rigid registration performed with the
Syngo Multimodality Workplace.

The sensitivity and precision for bone and air cavities, for
the entire head and the brain area, are shown in Fig. 2. The
results represent the mean calculated among the 15 patients.
The error bars are the standard deviation computed between
all patients and hemispheres. The numerical values for the true
positives, false negatives, and false positives, from which
sensitivity and precision were calculated, are shown in
supplemental Tables 1 and 2.

In the case of the sensitivity analysis in the brain, compar-
ing the different methods, the bone sensitivity for μ-mapUTE
was 57.8±9.2 %, while for the other four methods, it was
78.5–86.0±4.3–11.3 %. For air cavities, the μ-mapUTE ob-
tained the best sensitivity with 92.0±4.2 %, whereas the other
four methods obtained a sensitivity of 77.9–85.3 ± 6.6–
14.8 %. The four novel methods performed similarly, while
the μ-mapUTE showed better results for air cavities and worse
results for bone. Similar conclusions were extracted in general

from the analysis in the head but with lower sensitivity, espe-
cially in the case of the μ-mapUTE.

Regarding precision in bone, μ-mapANN slightly
underperformed (62.1 ± 10.1 %) compared to the other
methods, especially in the entire head analysis. The other
four methods obtained similar performance (74.0–76.9
± 8.2–9.7 %). In the air cavities, the μ-mapUTE obtained
a precision of 40.7 ± 8.7 %, worse than the other four
methods that resulted in a precision of 53.8–60.3 ± 9.3–
12.3 %. Comparing the analysis in head and brain, as with
sensitivity, the analysis in the entire head reduced the
precision compared to the brain analysis, also reducing
the differences between methods. For completeness we
also calculated the Jaccard index for bone and air at dif-
ferent thresholds between the μ-mapCT and the μ-maps
under evaluation (supplemental Fig. 3). Results consis-
tently showed a higher Jaccard index obtained with the
μ-maps obtained with the four assessed methods com-
pared to μ-mapUTE, especially for bone.

Fig. 2 Sensitivity (a and c) and
precision (b and d) for bone and
air cavities in the brain (top) and
the entire head area (bottom), for
the different μ-maps assessed
using the μ-mapCT as reference

Eur J Nucl Med Mol Imaging (2016) 43:2190–2200 2195

Fig. 1 3-D rendering of the bone structure of the μ-mapCT (a), μ-mapTMP (b), μ-mapATL (c), μ-mapR2 (d), and μ-mapANN (e) of a patient



In summary, μ-mapUTE produced high precision but with
low sensitivity (less bone is identified but it is correctly iden-
tified), while the other four methods performed similarly, with
μ-mapANN producing slightly lower precision, especially in
bone tissue. Results obtained considering only the brain area
showed that the sensitivity increased compared to the entire
head, especially for the air cavities. Interestingly, the differ-
ences between methods were reduced considering only the
brain region, which meant that the main differences were
due to the nasopharyngeal cavities and neck. The precision
also slightly increased for the brain analysis but still showing
the same differences between methods as those observed for
the head analysis.

Evaluation of reconstructed PET data

The PET data from each of the 15 patients were reconstructed
using the μ-mapCT, μ-mapDX, μ-mapUTE, μ-mapANN, μ-
mapR2, μ-mapTMP, and μ-mapATL for AC. The reconstructed
PET data using μ-mapCT for AC was used as reference to
calculate the En. The average En measured in those regions
related to AD is shown in Fig. 3, together with the regions that
were analysed. The variability was calculated as the standard
deviation between patients and brain hemispheres. The area
between ±5 % error is indicated in Fig. 3. The numerical
values are shown in supplemental Table 3.

The analysis showed that μ-mapDX produced the most in-
accurate results, compared to all the other methods, including
the μ-mapUTE also available in the scanner [7, 8, 28], with an
average En of -14.9 %, compared to −8.9 %measured with the

μ-mapUTE. Among the four new methods compared in this
study, the average errors in the analysed regions were 2.13,
1.04, −1.36, and −0.21 % for the μ-mapANN, μ-mapR2, μ-
mapTMP and μ-mapATL, respectively, which means that the
average FDG uptake was slightly overestimated with μ-
mapANN and μ-mapR2 and slightly underestimated with
mapTMP and μ-mapATL. The positive sign of the first two
methods can be interpreted as an overestimation of the amount
or density of the bone structure. The ANN-based method pro-
duced slightly higher errors than the other methods in the
parietal region and the precuneus regions, in particular the
parietal superior showed an En>5 %, which was over the limit
considered as acceptable in this study. For completeness we
show in supplemental Fig. 4 the absolute error measured in the
same AD-related regions, and their numerical values in sup-
plemental Table 4. The average absolute error with μ-mapDX
and μ-mapUTE was below −1.0 kBq/mL, while the four new
methods resulted in average errors of −0.04–0.24 kBq/mL.

Quantitative comparison in diagnostic images

The reconstructed PET data of each patient were analysed
with the 3D-SSP/Neurostat software toolkit. The Z-scores of
the right lateral, left lateral, right medial, and left medial views
normalized by the FDG signal in the thalamus, of the recon-
structed PET data obtained with all the μ-maps for one exem-
plar patient are shown in supplemental Fig. 5. The En (defined
as in (1) but used for the Z-score views) in Z-score calculated
using the reconstructed PET data obtained with the μmapCTas
reference for one patient is shown in Fig. 4.
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Fig. 3 En measured from the reconstructed PET data (a) using the different μ-maps, compared to the reconstructed PET data obtained using μ-mapCT,
from some AD-related regions (b)



The mean precision and standard deviation (uncertainty) at
identifying hypometbolic regions, for the 15 patients and the
eight views analysed by the 3D-SSP/Neurostat toolkit are
shown in Fig. 5. Figure 5a shows the different precisions
obtained for a range of 1–3σ thresholds, demonstrating the
precision drop as the σ threshold increases for μ-mapDX,
while the other methods show similar performance for all
the thresholds. Figure 5b shows the precision at a threshold
of 2σwith the different background colors indicating different
ranges of precision (0–50 % in red, 50–80 % in blue and 80–
100% in green). Visually, results obtained with μ-mapANN, μ-
mapR2, μ-mapTMP, and μ-mapATL are in the green area, and μ-
mapUTE and μ-mapDX are in the blue area. From Fig. 5b, the

most precise approach was the method based on the template
to calculate the μ-map (93.3 % in average), closely followed
by the R2-based method (91.9 % in average), the atlas-based
method (91.3 % in average), and the ANN-based method
(87.5 % in average). The method based on the UTE resulted
in a precision of 79.5 % in average. Finally, the precision
obtained with the Dixon-based method was 62.9 % in aver-
age. The uncertainty measured with the template-based, atlas-
based, and R2-based methods resulted in an uncertainty of
5.5–5.7 %, whereas the uncertainty measured with the
ANN-based, UTE-based, and Dixon-based methods was in a
range of 9.3–15.4 %. The numerical values of Fig. 5b are in
supplemental Table 5.

Fig. 4 En of the Z-scores obtain-
ed with the 3D-SSP/Neurostat for
the right lateral (first column), left
lateral (second column), right
medial (third column), and left
medial (fourth column) views, for
the reconstructed PET data ob-
tained with the μ-mapCT as refer-
ence compared to the μ-mapDX
(a), μ-mapUTE (b), μ-mapANN (c),
μ-mapR2 (d), μ-mapTMP (e), and
μ-mapATL (f) for an exemplar
patient

Fig. 5 Precision measured for each view from the projected surface of the Z-scores for a range of σ thresholds from 1 to 3 (a) and at a 2σ threshold (b),
obtained with each of the different μ-maps
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Discussion

Different methods to calculate the μ-map derived from MRI
data were analysed. Out of all the studied methods, the atlas/
template methods, the most extended approach in the litera-
ture, produced visually the most CT-like μ-maps. However,
looking at the quantitative analysis and the precision obtained
at identifying hypometabolic regions, the results obtainedwith
the atlas, template, and R2 approaches were similar, and slight-
ly better compared to the ANN method.

For the quantitative analysis, the four analysed methods
produced errors in the range of −3.2–4.1%, with the exception
of the parietal inferior region for the ANN-based method that
resulted in an error of 6.4 %. In contrast, the two vendor’s AC
methods produced errors between −5.9 and −10 %, when
bone was included in the μ-map, and −10.2–−18.8 % when
bone was completely ignored. The atlas-based and template-
based methods slightly obtained underestimated results, while
the ANN-based and R2-based methods obtained slightly
overestimated PET uptake, in agreement with their original
works (19, 22, 26, 28). This observations indicated that the
former methods slightly underestimated, and the latter
overestimated, the amount or density of bone tissue, while
the consistently negative normalized error obtained with the
vendor methods indicated that bone was underestimated.
Insignificant differences were observed in the uncertainty be-
tween methods.

In the case of diagnostic images, the precision at identify-
ing hypometabolic regions was 87.5–93.3 % in average,
among views for the four AC methods under investigation.
These results demonstrate that there are small differences be-
tween the four methods, and reveal that sophisticated (and
computationally demanding) methods are not strictly required
to obtain high precision diagnostic images. Among the
analysed methods, negligible differences were observed be-
tween the atlas-based, template-based, and R2-based methods
regarding PET quantitative and precision performance, while
the ANN-based method performed marginally worse. The un-
certainty obtained with the atlas/template-based and the R2-
based method was within a range of 4.5–5.7 %, increasing to
9.3 % for the ANN-based method, and finally 12 % and
15.4 % for the UTE-based and Dixon-based methods,
respectively.

It is worth noting that atlas/template methods can fail for
patients with significant alterations in the brain that deviate
too much from the atlas/template, while patient specific μ-
maps are less likely to fail in these cases. On the contrary,
methods based on the dual UTE sequence are susceptible to
produce artefacts where there are dental implants, as shown in
supplemental Fig. 6, where the μ-mapCT, μ-mapR2, and μ-
mapTMP of a dementing patient with a dental implant are
shown. However, there are methods to correct for such arte-
facts [40].

Regarding the computing time required to calculate eachμ-
map, the μ-mapATL required 2 h, the μ-mapTMP required
30 min, the μ-mapANN required 5 min and the μ-mapR2 re-
quired 5 s on a standard computer. The implementation of
these methods could be accelerated, but that has not been the
purpose of these projects so far. It is important to highlight that
there are currently no hard constraints about the time required
to calculate the μ-map. However, if high throughput is re-
quired, and given that patient scans are read by physicians
the same day they are taken, the computational burden to
calculate the μ-map can represent a bottle-neck which may
potentially hinder a smooth work-flow in clinical routine.
Therefore, the time required to calculate the μ-map is depen-
dent on the number of patients and nature of studies
performed.

Conclusion

Four different AC methods were evaluated, and compared
with the methods provided by the vendor. Results showed that
the four new methods performed in a range of ±5 % quantita-
tive En in AD-related brain regions, and showed a precision in
the range of 87.5–93.3 % at identifying hypometabolic re-
gions, compared to the 3D-SSP/Neurostat database. This
study showed that a range of methods for AC with different
levels of sophistication produced similar quantitative and di-
agnostic images, as opposed to methods that ignore the bone
structure or that calculate the bone structure in too simplistic
ways.
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