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Abstract Until recently, PETwas regarded as a luxurious way
of performing myocardial perfusion scintigraphy, with excel-
lent image quality and diagnostic capabilities that hardly justi-
fied the additional cost and procedural effort. Quantitative per-
fusion PETwas considered a major improvement over standard
qualitative imaging, because it allows the measurement of pa-
rameters not otherwise available, but for many years its use was
confined to academic and research settings. In recent years,
however, several factors have contributed to the renewal of
interest in quantitative perfusion PET, which has become a
much more readily accessible technique due to progress in
hardware and the availability of dedicated and user-friendly
platforms and programs. In spite of this evolution and of the

growing evidence that quantitative perfusion PET can play a
role in the clinical setting, there are not yet clear indications for
its clinical use. Therefore, the Cardiovascular Committee of the
European Association of Nuclear Medicine, starting from the
experience of its members, decided to examine the current
literature on quantitative perfusion PET to (1) evaluate the ra-
tionale for its clinical use, (2) identify the main methodological
requirements, (3) identify the remaining technical difficulties,
(4) define themost reliable interpretation criteria, and finally (5)
tentatively delineate currently acceptable and possibly appro-
priate clinical indications. The present position paper must be
considered as a starting point aiming to promote a wider use of
quantitative perfusion PET and to encourage the conception
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and execution of the studies needed to definitely establish its
role in clinical practice.

Keywords Coronary flow reserve .Myocardial blood flow .

Positron emission tomography

Introduction

Clinical interest in myocardial perfusion PET has increased
over the years. The widespread implementation of PET scan-
ners for oncological indications has refuelled interest in cardi-
ac indications. In addition there is a large body of evidence
that shows the clinical value of PET-derived quantitative mea-
surements such as myocardial blood flow (MBF) and coro-
nary flow reserve (CFR). The aim of this narrative review was
to define better the role of quantitative myocardial perfusion
PET in current clinical practice, and to make suggestions for
its correct execution, interpretation and reporting.

Historical perspective

In the history of PET applications, cardiology and neurology
preceded oncology for clinical implementation. As early as the
late 1980s the use of perfusion and metabolic PET, the latter
performed with 18F-FDG, was the most established modality
for the detection of viable hibernating myocardium [1]. At that
time perfusion PET was regarded as an expensive but more ac-
curate alternative to SPECT. Moreover, it had the advantages of
reliable attenuation correction and of short acquisition protocols
[2]. However, while PET in oncology grew exponentially, the use
of myocardial perfusion PET remained confined to a few centres,
mostly because of the need for a radiopharmaceutical department
with an on-site cyclotron for radiopharmaceutical production
(13N-ammonia, 15O-water and 11C-acetate) and for the very high
cost of 82Rb generators. In practice and in terms of reimburse-
ment, the well-shown advantage of higher diagnostic accuracy
was not large enough to justify the effort (and expense) needed to
transfer routine cardiac imaging from SPECT to PET [3].

In recent years, however, various factors, including the
widespread availability of PET scanners, more frequently
combined with an on-site cyclotron, the increased availability
of 82Rb generators, and the expectations aroused by the devel-
opment of 18F-labelled perfusion tracers, which would obviate
the need for an on-site cyclotron, have renewed interest in
PET in cardiology [4]. This renewed interest is supported by
a large body of evidence demonstrating the advantages of
performing MBF quantification, which supports its specific
role mainly in complex heart diseases, for example
multivessel coronary artery disease (CAD) [5].

Advantages of quantitative over qualitative PET
perfusion imaging in the clinical setting

Diagnosis of coronary artery disease

PET perfusion imaging has now reached the level of evidence
for class Ia recommendation in the noninvasive work-up of
CAD in patients with intermediate pretest probability [6, 7]. In
this context, the contribution of quantitative cardiac perfusion
PET is to help define the total ischaemic burden. This is main-
ly relevant in identifying patients with balanced three-vessel
CAD, which could bemissed using relative tracer uptake only,
as done with myocardial perfusion SPECT and qualitative
PET imaging [8]. There are abundant data indicating that the
haemodynamic relevance of an isolated coronary stenosis is
not easily predictable and that there is a wide variability in
perfusion abnormalities for any given stenosis pattern depend-
ing, for example, on variations in the microvascular bed [9,
10]. Various studies have demonstrated that quantitative per-
fusion PET provides significant added value in the evaluation
of multivessel CAD [11–15]. Usually in this setting the most
apparent perfusion defect can be attributed to the Bculprit^
lesion. Conversely, quantitative evaluation allows correct
identification of any perfusion abnormalities in the remaining
coronary perfusion territories [16–18] (Fig. 1).

By using previously identified stress MBF and CFR
thresholds, Johnson et al. have been able to construct a model
that offers a high diagnostic reliability for the objective assess-
ment of CAD burden in an individual patient [16]. The possi-
ble coexistence of CAD and coronary microvascular dysfunc-
tion (CMD) must be taken into account, and this may limit the
specificity of quantitative PET for multivessel epicardial le-
sions as compared to a pure morphological reference standard
[7, 15, 17, 18] (Fig. 2). On the other hand, the persistence of an
abnormal CFR after coronary revascularization implies an
unfavourable outcome, demonstrating the prognostic role of
CMD in patients with CAD [19]. In addition, the presence of
CMD is also one of the reasons for the frequent disagreement
between the intracoronary derived CFR and fractional flow
reserve (FFR) [17]. In contrast, additional signs on PET, such
as transient left ventricular dilation or a decrease in left ven-
tricular ejection fraction after stress, may help differentiate
between three-vessel CAD and diffuse CMD [20].

Quantitative perfusion PET has been used to detect preclin-
ical CAD and to classify the degree of response to risk factor
correction, for instance through life-style changes or drug
therapy. Many of these studies have focused on the demon-
stration of endothelium-related abnormalities in MBF and
CFR elicited by means of the cold pressor test (CPT) [21].
In theory, the detection of an anomalous response to either the
CPTor to maximal pharmacological vasodilation, which is the
standard stress modality for PET studies, could play a role in
guiding primary prevention of CAD [18, 22]. The list of

Eur J Nucl Med Mol Imaging (2016) 43:1530–1545 1531



conditions in which abnormal quantitative PET findings have
been demonstrated is very long [21]. Because perfusion ab-
normalities precede other signs of atherosclerosis, the demon-
stration of an effective reduction in the level of risk factors by
means of life-style changes and/or therapeutic intervention
could be of major value, but large-scale clinical studies are
still lacking [21]. Quantitative perfusion PET has been dem-
onstrated to be advantageous for the following clinical
indications:

1. Atherosclerotic cardiac disease including CAD

(a) Detection of preclinical disease
(b) Definition of the total ischaemic burden
(c) Detection of balanced three-vessel CAD
(d) Prognostic stratification

2. Non-atherosclerotic cardiac diseases

(a) Detection of coronary microvascular dysfunction

– Hypertrophic cardiomyopathy
– Fabry-Anderson disease
– Amyloidosis

(b) Prognostic stratification

– Dilated cardiomyopathy
– Hypertrophic cardiomyopathy

Prognosis

Using the traditional visual (semiquantitative) interpretation,
PET has been found to be superior to SPECT for establishing
the prognosis, even in patients with a normal perfusion pattern
on 201Tl and 99mTc-sestamibi scans [23, 24]. ECG gating of
the PET acquisition further improves the prognostic capabili-
ties of PET imaging [25]. MBF and CFR measured during the
CPT have been shown to have prognostic implications [26].
More importantly, it has been convincingly demonstrated that
MBF and CFR assessed during maximal pharmacological va-
sodilation have remarkable prognostic relevance [27–35].
Quantitative PET is also able to evaluate the relationship be-
tween CFR and left ventricular ejection fraction after myocar-
dial infarction [36]. Most recently, two studies have shown
that the adverse prognostic value of an impaired CFR is inde-
pendent of the angiographic extent and severity of CAD [37,

Fig. 1 Myocardial perfusion
PET with 13N-ammonia in a
patient with severe CAD who had
already undergone multiple
revascularization procedures,
with worsening effort angina and
positive stress testing. The stress
(dipyridamole) and rest images
(from top to bottom: short axis,
vertical long axis and horizontal
long axis), and the stress (top
right) and rest (middle right) polar
maps show an almost normal
resting perfusion with apical
thinning and a limited mild per-
fusion defect involving the apex
and the distal inferior wall. The
results of perfusion quantification
show normal resting MBF, but
decreased maximal hyperaemic
MBF in most ventricular seg-
ments, with a corresponding ab-
normal CFR (<2) in all three cor-
onary artery territories. On coro-
nary angiography, the right coro-
nary artery was found to be
suboccluded, the left anterior de-
scending artery had a 60 % ste-
nosis and the left circumflex ar-
tery had an 80 % stenosis
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38]. Therefore the physiological consequences of coronary
stenoses, and not just their anatomical features, should be
the considered in patient management and in therapeutic
decision-making [17]. Unfortunately, no prospective trials
demonstrating the real value of a (quantitative) PET-guided
revascularization strategy have yet been performed and
published.

Other cardiac diseases

Another major contribution of quantitative myocardial PET is
to allow CMD detection in various conditions beyond CAD
(listed in section Diagnosis of coronary artery disease). The
main application of CMD assessment is in patients with car-
diomyopathies, mainly hypertrophic cardiomyopathy (HCM).
Here, CMD is responsible for the frequently reported anginal
symptoms and has been demonstrated to be a powerful prog-
nostic factor [39–42]. In patients with dilated cardiomyopathy,
the severity of CMD similarly plays a prognostic role [43]. In
a recent study, the adverse prognostic value of an abnormal
CFR has been confirmed in patients with dilated cardiomyop-
athy independently of its origin, ischaemic or non-ischaemic
[44]. Also in patients with Fabry-Anderson disease, CMD is
frequently encountered and implies more severe heart

involvement [45]. Lately, CMD has been found in patients
with cardiac amyloidosis, explaining the symptoms of effort
angina and dyspnoea in these patients [46].

Technical requirements and clinical protocols

Quantitative myocardial perfusion PET requires the highest
technical standard. In this section the issues that are specific
to quantitative studies are emphasized.

PET scanner

In PET the current state-of-the-art is a PET/CT scanner with
three-dimensional (3-D) acquisition capabilities. Quantitative
perfusion PET needs a dynamic acquisition starting with in-
jection of the radiopharmaceutical. The high amounts of ra-
dioactivity can cause difficulties to older bismuth germanate
(BSO) scanners. Here, either improved electronics or two-
dimensional (2-D) imaging (septa in) should be performed
in order to avoid the unwanted increase in randoms and
scattered events together with dead-time related problems
[47]. For the last difficulty, it is also possible to slow the rising
time of the input curve and the related sampling frequency

Fig. 2 Myocardial perfusion
PET with 13N-ammonia in a
patient with a history of previous
radiotherapy and chemotherapy
for lymphoma with mediastinal
involvement, now reporting effort
dyspnoea. Same image
disposition as in Fig. 1. There is
apparently normal perfusion both
under stress and at rest. The
results of perfusion quantification
show normal resting MBF, but
severely and diffusely decreased
maximal hyperaemic MBF
(<1.3 mL/min/g), with a
corresponding severely abnormal
CFR (<1.5) in all three coronary
artery territories. Coronary CT
angiography was then performed
to differentiate between extensive
CAD and CMD, and showed
severe three-vessel disease
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without impairing the quality of the quantitative assessment
[48]. Indeed, the use of older devices, including 2-D scanners
with line source attenuation correction, is still regarded as
acceptable for cardiac studies, but, in quantitative PET, might
have a major effect on MBF measurements [49].

Because of the limited thickness of the ventricular wall,
high spatial resolution is required, and thus the use of iterative
and resolution recovery algorithms, which is nowadays the
standard for most PET scanners, appears most reasonable.
However, various problems specifically related to the use of
iterative methods, resolution recovery algorithms and time-of-
flight (TOF) correction in the setting of quantitative PET have
been reported [50–56]. For instance, three recent studies
showed differences ranging from 5 % to almost 20 % in rest
and stress MBF when 3-D ordered subsets expectation maxi-
mization (OSEM) and TOF plus point spread function model-
ling reconstructions were compared [57–59]. On the other
hand, TOF has been shown to significantly improve image
quality and intraobserver and interobserver reproducibility of
13N-ammonia PET [59]. Further studies are warranted to de-
fine the real impact of these factors on the clinical reliability of
PET measurements.

Radiopharmaceuticals

15O-Water

A diffusible, inert tracer such as 15O-water is ideal for perfu-
sion quantification, and indeed, because of the lack of persis-
tent uptake in the myocardium and very short half-life (125 s),
it can exclusively be used for measurement of MBF [60, 61].
Although the use of factor analysis allows identification of the
heart and definition of volumes of interest (VOI) without the
need for an additional blood pool scan, no true morphological
images are available and gated PET studies are highly de-
manding [18, 62]. Apart from the high extraction fraction,
the other main advantage of 15O-water in the clinical setting
is the ability to perform a tight time schedule and the effec-
tiveness of MBF quantification, as demonstrated by a wide
experience in a few selected centres, mainly in combination
with coronary CT angiography (CCTA) by means of hybrid
imaging [63] (Fig. 3; Table 1).

13N-Ammonia

13N-Ammonia also requires an on-site cyclotron, but its pro-
duction is easier than that of 15O-water. Because of its longer
half-life (9.96 min), the time schedule for a complete rest–
stress study is slightly longer than with 15O-water [60].
Owing to the good myocardial uptake, high-quality images
can be obtained and gated PET is feasible with good results,
although the delay in the acquisition with respect to stress is
slightly longer than with 82Rb [18, 60, 64]. The extraction

fraction is quite high (80 % at rest) and even though a limited
roll-off phenomenon at high MBF might theoretically affect
the analysis, several published studies have demonstrated the
feasibility and reliability of MBF quantification using 13N-
ammonia [65–68] (Table 1).

82Rubidium

The main advantage of 82Rb is that it is a generator-produced
tracer with an established clinical track record [18, 60, 64].
Image quality is lower than with 13N-ammonia due the wide
positron range [60]. Because of the lower extraction fraction
(65 % at rest) and the ensuing roll-off phenomenon, 82Rb is
not ideal for MBF quantification [18, 60]. Nevertheless, quite
reliable methods have been developed to use this tracer for MBF
quantification [69–71]. However, the reproducibility of MBF
measurements appears lower than those with 15O-water and
13N-ammonia [18]. Additional specific problems of quantitative
PET must be kept in mind, such as infusion rate capabilities of
the generator, their changes related to the generator’s life time,
dose balance to avoid saturation and dead-time losses during the
dynamic phase without impairing the quality of later frames [64,
72–74]. Moreover, 82Rb is the only radionuclide used for perfu-
sion PET for which the presence of prompt gammas have some
relevance, with possible increases in dead-time, particularly in 3-
D imaging [75]. Prompt gamma correction can improve qualita-
tive 82Rb perfusion PET, but its importance in quantitative PET
has not been established [76] (Table 1).

Examination procedure

Generally, the acquisition of a quantitative PETstudy does not
greatly differ from that of a standard qualitative cardiac PET
scan.

Patient preparation

The patient should abstain from caffeine-containing food and
drinks for at least 12 h and should have fasted overnight or for
at least 6 h. Washout of cardioeffective drugs should be consid-
ered in selected cases, according to the study indications and the
advice of the referring cardiologist. Theophylline-containing
medications must be stopped at least 48 h before the scan.

Rest and stress study

Using the currently available PET perfusion tracers the entire
study (rest and stress) can be completed during one single
session, with the standard approach to perform the rest study
first [64]. However, various data suggest that stress MBF
could be effective for ruling out CAD without the need for
CFR assessment and thus for restingMBF, so the execution of
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stress-only scans could be considered, at least in selected pa-
tients [12, 77, 78]. The main drawback of this approach is the
required immediate processing of the stress study in order to
decide on the subsequent strategy. The time needed for this
could interfere with patient throughput, and this delay could
be longer if quantitative measurements are obtained. In the
future, the use of 18F-flurpiridaz or other fluorinated com-
pounds, which require a longer interval between the two stud-
ies, might make the stress-first (and possibly stress-only) ap-
proach much more reasonable [60].

To quantify MBF various framing schemes (i.e. number
and duration) have been proposed for the dynamic acquisition.
Predefined frames are now less frequently used, whilst
postprocessing of list-mode acquisitions is most likely the best
choice [64, 78]. Ultimately, the number and duration of frames
should be based on the software and model that will be used
for MBF quantification. By definition, in case of quantitative
perfusion PET, the patient must be injected inside the scanner
and thus pharmacological testing with coronary vasodilators is
probably the only appropriate option. The only type of stress
that mimics some kind of physical stimulation is the CPT,
which has been reported to cause endothelium-dependent

MBF activation [27]. However, despite several interesting re-
ports of its value, the CPT is not yet widely used in clinical
routine.

Traditionally, as with SPECTMPI, dipyridamole and aden-
osine are clinically the most used pharmacological stressors
for quantitative perfusion PET. Most recently, the use of
regadenoson has been reported for PET imaging, where it
offers particular advantages of improved applicability and
practicability, mainly with regard to the time line of applica-
tion, compared to the two Btraditional^ stressors [79–81].
However, the delay in radiopharmaceutical injection after ad-
ministration of regadenoson could affect the degree of
hyperaemia achievable, although the clinical consequences
of these differences are uncertain [82, 83].

Combination with ECG-gated PET

The acquisition of ECG-gated PET images with 15O-water
PET is technically very challenging and only very limited data
are available yet on this subject. Most likely extrapolation of
these data to clinical practice will take some time. However,
acquisition of gated PET images with the other perfusion

Fig. 3 Fused 15O-water PET and
coronary CTangiography in a 47-
year-old man with multiple risk
factors, atypical left hand pain
during exertion and ischaemic
ECG changes. CT reconstructions
show significant stenoses in the
left anterior descending and left
circumflex arteries. The right
coronary artery shows no steno-
sis. Stress myocardial perfusion is
reduced (blue) in the areas sup-
plied by the left anterior descend-
ing and left circumflex arteries.
Image courtesy of Prof. J. Knuuti,
MD, PhD, Turku, Finland

Eur J Nucl Med Mol Imaging (2016) 43:1530–1545 1535



tracers is readily available. In order to combine the dynamic
study needed for MBF and the gated acquisition, it is better to
perform a list-mode acquisition. The data can later be properly
rebinned to obtain the two datasets. Alternatively, in the case
of 13N-ammonia the dynamic acquisition can be followed by a
second gated acquisition. With 82Rb, due to its very short half-
life, this option might require a second tracer injection [64].
The reliability of gated PET measurements as compared to
measurements with other established modalities and the role
of functional changes between the rest and stress studies for
diagnosis and prognosis have been convincingly demonstrat-
ed [20, 84].

Hybrid imaging

Because of the widespread availability of PET combined with
fully diagnostic CT scanners, it is also reasonable to consider
the possibility of hybrid imaging for quantitative PET. With
regard to the combination of diagnostic CT and cardiac PET,
either for coronary calcium scoring or for CCTA, there are no
specific technical problems related to the choice of performing
quantitative PET. Indeed, there are some very interesting re-
ports on the reliability of such a hybrid solution in the case of
15O-water PET [63]. This approach, however, requires a state-
of-the-art CT scanner with at least 64 slices, increases the
radiation burden and prolongs the PET/CTscanner occupation
time [64]. On the other hand, off-line image fusion may be an
interesting alternative. The combination of qualitative myo-
cardial perfusion and CCTA has been suggested for optimal
identification of the vascular territories in the individual pa-
tient, but most recently the true diagnostic impact of this

procedure has been questioned [85, 86]. On the other hand,
most interesting results have been reported using the combi-
nation of CCTAwith MBF parametric images, which have so
far mainly been developed for 15O-water, so that the real effect
on perfusion of each obstruction can be assessed.
Nevertheless, the possibility of obtaining these parametric im-
ages has recently also been demonstrated for 13N-ammonia
(Fig. 4) [63, 87].

Sources of error

Attenuation correction

Attenuation correction itself can cause artefacts if not properly
performed, and therefore the possibility of differences be-
tween emission images acquired during normal breathing
and CT should be taken into account [73, 88–90]. The possi-
bility of minor misalignment should always be considered
even in the absence of overt patient motion. Whilst CT pro-
vides a Bfrozen^ image of a specific phase of breathing, PET
data are acquired during the full cycle of normal respiratory
motion [73]. The evaluation of minor differences between CT
and PET images can be particularly challenging in dynamic
studies, because of the poor quality of PET images.

Patient motion

Ensuring that the patient is in the most comfortable position
possible during cardiac PETshould avoid motion affecting the
acquisition, particularly because the patient should have arms

Table 1 Comparison of the available tracers for quantitative perfusion PET

Advantages Disadvantages Threshold values for CAD detection

15O-Water 1. Freely diffusible (linear relationship with MBF)
2. Robust and reliable compartmental modelling
3. Intrinsically quantitative
4. Tight time schedule
5. Wide experience, particularly with hybrid

imaging

1. Cyclotron product
2. Very short half-life (complex

tracer handling)
3. Absence of morphological

myocardial images
4. Complex VOI definition
5. Conventional gated PET impossible

Maximal MBF <2.3 mL/min/g,
CFR <2.5

13N-Ammonia 1. Short positron range
2. Reliable compartmental modelling
3. High-quality myocardial images
4. High-quality gated PET
5. Wide experience

1. Cyclotron product
2. Nonlinear extraction fraction
3. Metabolic interferences
4. Prolonged patient schedule

Maximal MBF <1.85 mL/min/g,
CFR <2

82Rb 1. Generator product
2. Very tight time schedule
3. Gated PET possible
4. Wide experience, but largely with

qualitative imaging

1. Wide positron range
2. Dose-related dead-time losses

(3-D imaging)
3. Prompt gamma interference

(3-D imaging)
4. Suboptimal extraction fraction
5. Complex compartmental modelling
6. Higher variability of estimated

parameters

Maximal MBF <1.4 mL/min/g,
CFR <1.7
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above the head during the acquisition. Patient motion, partic-
ularly irregular breathing, may affect the frame sequence from
which the time–activity curves will be extracted. The patient
should therefore be requested to breathe normally and not to
speak during the few minutes of the dynamic phase.
Respiratory gating is desirable and respiratory correction from
dynamic data has recently been reported, but this is so far not
yet routinely implemented in cardiac studies [91, 92]. It is thus
important to have the option to correct the position of abnor-
mal frame(s) before proceeding with MBF measurements
[73].

Cardiac contraction

As already mentioned, gating of dynamic sequences is cur-
rently not possible. Moreover, the possible adverse influence
on the noise ratio of reducing the counts of every single time-
frame by splitting it according to the cardiac cycle should be
considered. However, myocardial contraction remains a major
limitation in optimizing the spatial resolution of cardiac stud-
ies [93].

Image processing and MBF measurement

Image reconstruction

Because high resolution is needed, in general the most ad-
vanced reconstruction methods are desirable. The main issues
related to the relationship between the reconstruction proce-
dure and the subsequent MBF quantification are dealt with
above. A thorough examination of many of these problems
with the main focus on 82Rb has recently been published [49].
In the clinical practice of quantitative PET, these issues must

be kept in mind in order to choose the best possible compro-
mise given the characteristics of the scanner used.

Processing software

PET scanner vendors are becoming aware of the potential
importance of cardiac PET. As a consequence, dedicated pro-
cessing packages are now available, sometimes associated
with additional costs [94]. Some of these packages include
the same capabilities as SPECT cameras, with qualitative per-
fusion analysis, possibly offering comparison with a normal
database, and gated image quantification, including ventricu-
lar volumes and ejection fractions. Other packages, however,
already consider the possibility of performing MBF measure-
ments [94]. Alternatively, various platforms are available for
off-line processing of dynamic studies, usually exported as
DICOM files [94].

Image preparation

Before processing, some programs allow correction for patient
motion affecting the frame sequence. These platforms and the
programs already implemented in the scanner software usual-
ly allow reorientation of the heart along its axes, and identifi-
cation of the right and left ventricular VOIs and the myocar-
dial VOI from which the tracer time-activity curves will be
extracted. With most programs an automatic procedure is
available, with some degree of operator interaction to correct
for reorientation and VOI definition mistakes.

Compartmental models

There are different approaches to MBF quantification, mainly
based on compartmental models of tracer kinetics [95]. They

Fig. 4 Off-line fusion of 13NH3

PETand coronary CTangiography
in the patient described in Fig. 2.
In the left panel the standard stress
13NH3 uptake image shows a
limited perfusion defect in the
distal left anterior descending
artery territory in spite of multiple
obstructions in both the left
anterior descending and the left
circumflex arteries (arrows).
However, as shown in the right
panel, using parametric 13NH3

MBF images, a severe diffuse
reduction in maximal MBF is
demonstrated in almost the whole
anterolateral wall (orange-yellow
maximum of the image scale, set
to 1.5 mL/min/g)
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are generally based on the fitting of the time–activity curves to
derive the parameters for the input function and for the myo-
cardial tracer uptake. These parameters will afterwards be in-
cluded in the equation of the selected model to derive the
kinetic parameter that best depicts MBF. Various correction
factors are usually considered, for example for activity spill-
over from blood into the myocardium, as well as for partial
volume effect and system resolution [96–98].

Several studies have demonstrated a high intraobserver and
interobserver reproducibility of quantitative PET [99–108].
Other studies have compared the reliability of the different
models used for quantification of MBF, and have shown differ-
ent degrees of agreement, and that there are methodological
inequalities that must be taken into account if the results from
different laboratories have to be compared [95, 109–117]. In
general, however, the reproducibility of MBF calculated using
the samemodel but different platforms is good-to-excellent [112,
114, 115, 117]. Moreover, CFR is often more reliable for com-
parisons because, as the ratio between stress and rest MBF, it is
less affected by possible differences between platforms [116,
118]. Most importantly, there is a wide consensus that PETmea-
surements are quite robust and compare well with other quanti-
tative parameters in terms of test–retest variability [17].

Interpretation and reporting of results

Which parameters should be considered?

The parameters that can be derived from quantitative PET are
resting and maximal MBF and their ratio, usually identified as
CFR or MBF reserve. These parameters are generally calculat-
ed for the whole left ventricular myocardium and usually for
the coronary territories and/or the ventricular walls. In studies
performedwith 15O-water, anatomical images are not available,
but can be derived from MBF parametric images. Conversely,
both 13N-ammonia and 82Rb allow direct visual evaluation of
perfusion images and their qualitative assessment [119]. A
semiautomatic procedure based on comparison with a normal
database can sometimes be used [120]. Additionally, gated PET
can be analysed by means of various programs, mostly those
already extensively employed for gated SPECT [20, 31, 84].

Which criteria should be applied?

In the literature a wide array of criteria have been proposed for
classifying quantitative perfusion PET results as normal or ab-
normal. The tracer used is the main variable. Furthermore, in
order to obtain a correct CFR value, it is important to correct the
baseline MBF for the resting rate pressure product, which can
sometimes be abnormally high, for instance in anxious subjects
[121]. With 15O-water previous studies have shown that a CFR
threshold of 2.5 is the most effective for identifying patients

with CAD defined as lumen narrowing of >50 % on coronary
angiography plus FFR <0.8 [63, 104]. However, more recent
studies have suggested that stress MBF can be as effective as
CFR for detecting CAD (and possibly more effective), with the
potential advantage with high values of making the resting
study unnecessary [77, 122]. In a large study to identify the
best possible thresholds, a stress MBF cut-off of 2.3 mL/min/g
had a diagnostic accuracy of 86 % at the per-patient level and
85 % at the per-vessel level, and in the same population a CFR
cut-off of 2.5 had a diagnostic accuracy of 78 % at the per-
patient level and 81 % at the per-vessel level [77]. Moreover,
MBF parametric images produced with 15O-water have been
used to examine the possibility of assessing the difference in
MBF between the endocardial and epicardial layers [123]. The
transmural perfusion gradient has not so far been shown to add
significantly to the diagnostic performance of quantitative PET
[124]. However, this particular approach could become of in-
creasing importance in other conditions in which MBF is im-
paired because of CMD, in particular HCM [87, 125].

For 13N-ammonia, the first proposed thresholds were
1.52 mL/min/g for stress MBF and 2.74 for CFR, with a slight
superiority of the latter for detecting a significant coronary ste-
nosis [126]. Later, different thresholds were proposed (1.85 mL/
min/g for stress MBF and 2 for CFR), but in this study, stress
MBF appeared more effective than CFR [12]. The CFR thresh-
old of 2 was later confirmed in another study [13]. A lower
threshold of 1.44 has also been proposed for CFR, but this was
based on a different approach to MBF quantification using a
graphic method [109, 127].

Surprisingly, for the most used perfusion tracer, 82Rb, the
thresholds are less well defined. Anagnostopoulos et al. sug-
gested 1.7 for CFR and 1.4 mL/min/g for stress MBF as pos-
sible thresholds for differentiating patients with >50 % steno-
sis on coronary angiography [128]. More recently, in a very
large patient population, Johnson et al. identified a similar
threshold for CFR (1.74), but a very low stressMBF threshold
(0.91 mL/min/g) for identifying patients with ischaemia as
defined by typical angina or diagnostic electrocardiographic
changes during dipyridamole infusion [16].

No data on the clinical reliability of 18F-flurpiridaz for MBF
quantification have been published as this tracer has not yet been
clinically approved. However, the feasibility of quantitative per-
fusion imagingwith this radiotracer has been demonstrated [129].

Indications for PET perfusion imaging

So far there are no specific guidelines for the use of quantita-
tive PET. The current guidelines of ACC/AHA/ASNC for the
use of radionuclide imaging suggest the use of PET as an
alternative to SPECT, without mentioning the role of quanti-
tative PET [6]. Even in guidelines on advanced imaging, the
specific role of quantitative PET is only mentioned in passing

1538 Eur J Nucl Med Mol Imaging (2016) 43:1530–1545



[130]. Similarly, the more recent appropriateness guidelines
suggest equality between PET and SPECT in the context of
(qualitative) MPI [131]. The Japanese guidelines on cardiac
nuclear medicine mention the value of quantitative PET for
assessing the severity of ischaemia and CMD, and for detect-
ing preclinical disease and determining treatment effects
[132]. In Europe, the possible role of PET, but not specifically
of quantitative PET, has been explored more recently in the
setting of hybrid imaging [133, 134], and finally considered
specifically for risk stratification in stable coronary disease
[135]. Similarly, PET is broadly reported as an alternative to
other noninvasive techniques in the European guidelines on
coronary revascularization [136].

Therefore any attempt to present clinical indications for
quantitative perfusion PET remains somehow arbitrary and is
open to criticism. Nevertheless, given the accumulated evi-
dence of the added value of MBF and CFR over standard
visual evaluation of PET images, it seems reasonable to define
some specific clinical scenarios in which the use of quantita-
tive PET appears most valuable. In addition, the use of PET is
associated with a lower radiation burden than other diagnostic
modalities such as SPECT and CCTA, and fulfils the current
necessity for dose reduction [4, 137–143]. Thus, independent-
ly of quantification, myocardial PET perfusion is preferred in
younger patients, and especially women.

Diagnosis, assessment and prognostication of CAD

For diagnostic purposes, MPI is in general indicated only in
patents with intermediate pretest probability of CAD. In this
scenario, however, particularly when there are reasons to sus-
pect multivessel disease, the use of quantitative PETwould be
advantageous. Quantitative PET can be used to establish the
diagnosis and simultaneously define the total ischaemic bur-
den, thereby better stratifying patients for coronary revascu-
larization [7, 17].

The practical usefulness of the detection of abnormalities in
MBF as a sign of preclinical atherosclerosis in patients with
low pretest probability has not yet been demonstrated. More
realistically, the use of quantitative PET could be considered
in the increasing number of patients in whom the results of
CCTA, or even those of intracoronary angiography (ICA), are
inconclusive because of the presence of intermediate lesions
or of other signs suggestive of atherosclerosis [7, 144, 145].
Similarly, in patients without significant coronary lesions but
with anginal symptoms, the use of quantitative PETwould be
reasonable to evaluate the haemodynamic consequences of
minimal obstructions or to make a diagnosis of CMD [146].
Patients with known anomalous coronary artery anatomy, fis-
tulas or bridging, especially patients with chest pain, are a
particular group eligible for quantitative myocardial perfusion
PET [147, 148].

Although in general imaging for risk-stratifying patients is
underutilized, the excellent prognostic value of quantitative
perfusion PET-derived parameters make it an ideal tool for
this purpose.

Use of quantitative PET in other heart diseases

A completely normal quantitative perfusion PET scan would
reasonably exclude the presence of haemodynamically signif-
icant CAD in patients with anginal chest pain but with possi-
ble non-atherosclerotic heart disease. Much more importantly,
there is enough evidence to emphasize the importance of an
accurate assessment of MBF for identifying the presence of
CMD in patients with cardiomyopathies, in particular HCM
[41]. Less certain, but undoubtedly promising, is the use of
quantitative PET for the assessment of therapeutic responses
in these patients [18, 149].

Quantitative PET in comparison with other imaging
modalities

The general advantages of PET as compared to SPECT have
already been mentioned, and MBF quantification is one of the
most important. However, the new gamma cameras with
cadmium-zinc-telluride (CZT) technology could potentially
be used in quantitative assessment even with single-photon
tracers, although there is as yet no definitive demonstration of
their reliability [150]. The differences between the physiologi-
cal approach to CAD as compared to the anatomical one based
on CCTA or ICA have also been described [17]. The measure-
ment of FFR during ICA can certainly improve the evaluation
of the haemodynamic significance of any single obstruction,
but there remain important differences between this approach
and CFR calculation [17]. There have also been attempts to add
flowmeasurement capabilities to CCTA, but they are still in the
developmental phase, and have the additional problems of the
radiation burden and contrast medium-related concerns [151].
Possibly more promising, because no ionizing radiation is used,
is the measurement of MBF by means of magnetic resonance
imaging (MRI) [152]. Good correlations between MRI PET
measurements have been reported [127]. However, the possible
concerns about paramagnetic contrast media and the contrain-
dications to MRI in cardiac patients with implanted devices
must be taken into account [153]. Finally, the availability of
dedicated MRI scanners with appropriate software and ade-
quately trained personnel is relatively limited.

Future perspectives

Together with further improvements in PET technology such as
solid-state scanners, improved gating capabilities and
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implementation of advanced reconstruction algorithms, the im-
minent availability of the 18F-labelled tracer 18F-flurpiridaz is
the most exciting development in quantitative perfusion PET
[60]. However, this anticipated advance should not prevent the
use of quantitative PET wherever possible. In particular, in
centres that have already made the great investment necessary
for changing to 82Rb PET for a large part of their MPI routine
should consider performing MBF quantification in at least all
patients with the indications listed above. Similarly, all groups
with an on-site cyclotron, particularly if some initial experience
with 13N-ammonia qualitative PET is available, should also be
encouraged to perform quantitative PET. Because of its more
demanding methodology it is less likely that new centres will
consider performing 15O-water studies.

In recent years, radiopharmaceutical production systems that
deliver a single patient dose of a few PET radioisotopes and
biomarkers have been developed. Due to their small footprint
and self-shielding, these Bbaby cyclotron^ systems offer the ad-
vantage of being easily incorporated into an existing clinical
setting, just close to, for example, a PET scanner. At present,
the only featured target is 18O, thus leading to a unique 18O(p,
n)18F nuclear reaction, and the production cycle of a single dose
of 18F takes no less than 35 min. Because of the limited beam
current (<5 μA), and the suboptimal peak proton energy
(7.5 MeV), the 9.96 min decay half-life of 13N would make the
16O(p,α)13N reaction practically unfeasible. The only exception
to this rule seems to be a 13N-only dedicated superconducting
mini-cyclotron system (Ionetix ION-12sc). However, because of
the declared technical characteristics (as low as 10 μA beam
current and 12MeVpeak proton energy,while themajor reaction
efficiency for 13N production is at 8 MeV), and the absence of
scientific papers demonstrating its capabilities, there are major
doubts as to the reliability of such a system.

In such a scenario of augmented awareness of the merits of
quantitative perfusion PET and of increasing confidence in its
feasibility, the effective introduction of an 18F-labelled radio-
pharmaceutical would permit quantitative PET imaging to be
performed in all patients in whom this technology could have
major clinical benefit. In turn this would probably further en-
courage the vendors to implement the platforms and programs
needed for MBF measurement, making their use much easier
for the clinician. An increasing number of patients could be
studied with exercise qualitative PET, a modality so far never
utilized and in which the impossibility of MBF quantification
could be at least partly compensated for by the more physio-
logical stimulation of the coronary reserve. However, what
still remains to be accomplished is the planning and execution
of dedicated trials that would finally define the clinical role of
quantitative perfusion PET as a specific imaging modality.
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