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Abstract
Introduction For regional quantification of nuclear brain im-
aging data, defining volumes of interest (VOIs) by hand is still
the gold standard. As this procedure is time-consuming and
operator-dependent, a variety of software tools for automated
identification of neuroanatomical structures were developed.
As the quality and performance of those tools are poorly in-
vestigated so far in analyzing amyloid PET data, we compared
in this project four algorithms for automated VOI definition
(HERMES Brass, two PMOD approaches, and FreeSurfer)
against the conventional method. We systematically analyzed
florbetaben brain PETandMRI data of ten patients with prob-
able Alzheimer’s dementia (AD) and ten age-matched healthy
controls (HCs) collected in a previous clinical study.
Methods VOIs were manually defined on the data as well as
through the four automated workflows. Standardized uptake
value ratios (SUVRs) with the cerebellar cortex as a reference
region were obtained for each VOI. SUVR comparisons be-
tween ADs and HCs were carried out using Mann-Whitney-U

tests, and effect sizes (Cohen’s d) were calculated. SUVRs of
automatically generated VOIs were correlated with SUVRs of
conventionally derived VOIs (Pearson’s tests).
Results The composite neocortex SUVRs obtained by manu-
ally defined VOIs were significantly higher for ADs vs. HCs
(p=0.010, d=1.53). This was also the case for the four tested
automated approaches which achieved effect sizes of d=1.38
to d=1.62. SUVRs of automatically generated VOIs correlated
significantly with those of the hand-drawn VOIs in a number
of brain regions, with regional differences in the degree of
these correlations. Best overall correlation was observed in
the lateral temporal VOI for all tested software tools (r=0.82
to r=0.95, p<0.001).
Conclusion Automated VOI definition by the software tools
tested has a great potential to substitute for the current stan-
dard procedure to manually define VOIs in β-amyloid PET
data analysis.

Keywords PET .β-amyloid . Alzheimer’s disease .

Florbetaben . Neuroanatomical

Introduction

For regional quantification of brain PET data, it is still the gold
standard to define the volumes of interest (VOIs) manually on
individual MRIs. This conventional process has to deal, how-
ever, with two problems: It is time-consuming and operator-
dependent [1, 2]. These limitations have stimulated the search
for alternative solutions, which allow identifying brain VOIs
automatically [3–5]. Respective software solutions, which
vary widely in underlying principles and workflows, are
now at a Bready to use^ stage. Underlying essential principals
of these tools are intensity-based segmentation [6] and spatial
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normalization to a template space [7, 8]. Some software tools
combine both approaches generatively with additional statis-
tical classifiers leading to maximum-a-posteriori solutions for
each VOI label. [9, 10].

One desired application of such automated approaches to
delineate anatomical VOIs is in β-amyloid PET imaging.
Recently, three 18F-labeled β-amyloid plaque-targeting PET
tracers ([18F]florbetapir, [18F]florbetaben, [18F]flutemetamol)
were approved for clinical routine use [11]. Inβ-amyloid PET
imaging, especially for supporting standard visual assessment
in borderline cases and for follow-up imaging, quantification
of the PETsignal by anatomical VOI analysis is employed. So
far, however, there is a lack of systematic comparative inves-
tigations of the different software tools available to perform
these quantifications for amyloid PET data.

This situation inspired the present research which dealt
with the question of whether the automated neuroanatomical
VOI definition tools tested are capable of substituting the cur-
rent gold standard approach of manual VOI definition to an-
alyze [18F]florbetaben β-amyloid PET images.

Materials and methods

Study population

The chosen software tools for automated VOI definition were
tested on the data of the European [18F]florbetaben phase 0
proof of mechanism trial [12]. The dataset included ten patients
withmild tomoderate probable Alzheimer’s dementia (AD; 69±
7 yrs; two females; mini–mental state examination (MMSE)
score: 19±7; clinical dementia rating (CDR) score: 1.5±0.5)
and ten sex- and age-matched healthy controls (HCs; 67±
8 years; two females; MMSE score: 29±1; CDR score 0±0).

Image data acquisition

After the i.v. administration of 300±60MBq of [18F]florbetaben,
PET images were acquired in 3-D mode using an ECAT

EXACT HR+ scanner (Siemens, Erlangen, Germany). Brain
MRI data were obtained on a 1.5 T Siemens Magnetom
Symphony scanner. For that project, standardized T1-
weighted volumetric magnetization prepared rapid acqui-
sition with gradient echo (MPRAGE) sequences were
used.

Image data processing

PET data frames in the earliest part of the plateau phase of
tracer accumulation (70-90 min p.i.) were chosen for fur-
ther analysis [13]. The data were corrected as described
elsewhere [12] and iteratively reconstructed (ten iterations,
17 subsets, Gaussian filter with a full-width at half-
maximum cut-off of 7.1 mm). Corresponding PET images
were coregistered to the individual MRIs employing the
normalized mutual information criterion implemented in
the PMOD software [14] (PMOD version 3.3, PMOD
Technologies Ltd., Zurich, Switzerland) using the default
settings.

Conventional VOI definition

The conventional VOI dataset (BLeipzig region map^)
consisted of 25 VOIs (frontal cortex (right/left), lateral
temporal cortex (r/l), mesial temporal cortex (r/l), parietal
cortex (r/l), occipital cortex (r/l), anterior cingulate cortex
(r/l), posterior cingulate cortex and precuneus (r/l), head of
caudate nucleus (r/l), putamen (r/l), thalamus (r/l), white
matter (r/l), cerebellar cortex (r/l), and pons/midbrain)
(Fig. 1). For each subject, the individual 3-D T1
MPRAGE MRI scan was reoriented perpendicular to the
anterior-posterior commissure (AC-PC) line, and the above
VOIs were manually defined by an experienced neurobiol-
ogist in three adjacent transversal slices with a thickness of
2.5 mm per slice using the VOI tool implemented in the
PMOD software.

Fig. 1 Representative individual 3-D T1-weighted MRI data set with
display of the conventional (manually defined) volume of interest
(VOI) set. Five paradigmatic transversal slices reoriented perpendicular
to the anterior commissure-posterior commissure (AC-PC) line. VOIs
were defined for a cerebellar cortex (red) and pons/midbrain (yellow), b

mesial (red) and lateral temporal cortex (blue), c occipital cortex (blue), d
frontal cortex (blue), caudate head (yellow), putamen (green) and
thalamus (turquoise) and e parietal cortex (blue), anterior (purple) and
posterior cingulate cortex/precuneus (yellow) and white matter (pink)
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Automated VOI definition

The automated neuroanatomical VOI definition tools tested in
this project included one PET-based and one MRI-based nor-
malization as well as one volumetric and one spherical hybrid
algorithm. The specifications of the four software tools tested
are displayed in Table 1.

One automated VOI set was created in the HERMES Brass
software (version 2.5, Hermes Medical Solutions, Stockholm,
Sweden) [15–18]. A [18F]florbetaben HERMES BRASS nor-
mal database was created in-house ut i l iz ing the
[18F]florbetaben PET images of 93 β-amyloid PET-negative
healthy subjects. The corresponding anatomical VOI atlas was
created by manual delineation of 25 VOIs on the ICBM152
standard template MRI defining the same brain regions as for
the conventional VOI set.

Furthermore, we tested the PMOD Normalization algo-
rithm, which implements the SPM 5 normalization algorithm
[7] and an adjusted version of Tzourio-Mazoyer’s AAL atlas
[4] edited by PMOD Technologies Ltd. Within the PFUS tool
of PMOD (version 3.308), the subject’s T1 MPRAGE MRI
was spatially normalized to PMOD’s brain template ‘MR T1
HFS’ using the default settings. The same transformation was
applied to the coregistered PET image resulting in the spatially
normalized PET image of the subject.

Furthermore, VOI datasets were created in PMOD (version
3.403 beta) using the ‘Maximum Probability’ workflow inte-
grated in PNEURO. This workflow is based on the SPM5
segmentation and normalization algorithm [9] and resulted
in VOIs of the Hammers N30R83 Maximum Probability atlas
[19]. Parameter settings were: ‘MNI T1’ – template, no
cropping, mask threshold of 0.3 (default) for intersection of
the atlas regions with the gray matter probability map,
masking of basal nuclei, ‘Individual – MR’ as result space.

Another automated anatomical VOI definition was
achieved by using the open source software FreeSurfer (ver-
sion v5.1.0, Athinoula A. Martinos Center for Biomedical
Imaging, Charlestown, Massachusetts, USA) [20–22]. After
import of every subject’s MRI into the the FreeSurfer environ-
ment, the fully automated ‘autorecon’ –workflow (command:
‘recon-all -all’) was applied. The resulting output aparc.annot
files which refer to parcellations of the Desikan-Killiany [23]
atlas were used for further analysis.

VOI data post-processing

For all the conventional and automated anatomical VOI defi-
nition approaches, regional tracer uptake values were obtain-
ed. VOIs which were not fully covered by the PET camera
field of view were not considered. Three of the tested auto-
mated atlases contained more VOIs than the conventional
VOI dataset (PMOD Normalization, PMOD Maximum
Probability, FreeSurfer). To correct for that, several VOIs were

pooled by the experienced neurobiologist calculating the
volume-weighted tracer uptake averages. All regional uptake
values were divided by the cerebellar cortex uptake values,
which resulted in regional standardized uptake value ratios
(SUVRs). Furthermore, composite SUVRs were calculated for
every subject in slide modification from the method published
by Rowe et al. [24] by calculating the volume-weighted mean
value of the SUVRs from the frontal, parietal, lateral temporal,
anterior and posterior cingulate, and occipital cortices.

Statistics

Statistical analyses were performed using the IBM SPSS
Statistics software (version 20.0, IBM Corp., Armonk, NY,
USA) and SigmaPlot software (version 9.01, Systat Software
GmbH, Erkrath, Germany). Hemispherical SUVR differences
within identical VOIs were evaluated with the Wilcoxon test
and Bonferroni correction for multiple comparisons. Group dif-
ferences in SUVR data were tested for significance using the
Mann-Whitney U test. Effect sizes of the SUVR differences
between groups were expressed as Cohen’s d. Correlations be-
tween manual and automated VOI datasets were calculated with
linear regression analysis and Pearson’s test. Inter-rater reliabil-
ity was expressed as Cohen’s kappa. Unless stated, data are
mean value ±1 standard deviation. Due to the explorative nature
of this study, no further corrections for multiple comparisons
were made. A p value of <0.05 was considered significant.

Results

Paired comparisons of SUVRs obtained for the left and the
right hemisphere revealed significant interhemispherical dif-
ferences in five regions for the PMOD Normalization method
(parietal, occipital, anterior cingulate, posterior cingulate cor-
tex, and caudate nucleus), in two regions for the HERMES
Brass method (occipital cortex, thalamus) and for one pair
using the PMOD Maximum Probability tool (anterior cingu-
late cortex). No significant interhemispherical differences in
tracer uptake were obtained by the FreeSurfer algorithm and
by the conventional VOI definition method.

For the conventional as well as for all tested automated
anatomical VOI definition methods, SUVRs were significant-
ly higher in the AD patients as compared to the HCs in a
number of brain regions (Table 2).

The regional distribution of the SUVR effect sizes for the
group discrimination between the AD patients and HCs for all
anatomical VOI definition methods is illustrated in Fig. 2. It
becomes evident that, in a number of neocortical VOIs, group
discrimination was better by different automated methods as
compared to the conventional method (Fig. 2). On a regional
level, best group discrimination was achieved by the PMOD
Maximum Probability method for the left lateral temporal
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cortex SUVRs (Cohen’s d=1.68). Also of interest, for three
brain VOIs in which the conventional method did not reveal
significant SUVR differences between the AD patients and
HCs, different automated anatomical VOI definition methods
resulted in significant group differences: left occipital cortex
(HERMES Brass, PMOD Maximum Probability), left mesial
temporal cortex (PMOD Normalization, FreeSurfer), and left
thalamus (PMOD Normalization) (Table 2). In keeping with
that, the effect sizes of the composite SUVRs were higher for
the PMOD Maximum Probability than for the conventional
method (Fig. 3).

To investigate the potential of individual composite
SUVRs as obtained by the different VOI definition
methods to discriminate between the AD patients and the
HCs, respective cut-off values were defined by receiver
operating characteristic (ROC) analyses. The resulting dis-
crimination parameters are provided in Table 3: For all
automated VOI definition methods, sensitivities (80 %

for all analyses), specificities (range: 80 % - 100 %), and
the area under the ROC curve (AUC) (range: 0.79 – 0.83)
were similar to those of the conventional method.

The inter-rater results between the different automated and
the conventional VOI definition method are also provided in
Table 3. Here, very high inter-rater reliability (Cohen’s kappa
≥ 0.8) was observed for all methods.

The regional SUVRs of most VOIs as obtained by the dif-
ferent automated anatomical VOI definition methods were
strongly correlated with those of the conventional VOI defini-
tion method (Electronic Supplementary Material 1). The
SUVRs as obtained by PMODMaximum Probability correlat-
ed significantly with those obtained by the conventional meth-
od in 95 % of the VOIs analyzed. For FreeSurfer, HERMES
Brass and PMOD Normalization these portions were 92 %,
88 %, and 76 % (Electronic Supplementary Material 1).
Closest SUVR correlations with the values of the conventional
method were observed in the frontal cortex (Pearson’s r=0.96;

Table 2 Discriminative power of
the conventional and the tested
automated neuroanatomical
volume of interest definition
approaches to separate on a
[18F]florbetaben PET
standardized uptake value ratio
base between patients with
Alzheimer’s disease and healthy
controls

Conventional HERMES
Brass

PMOD
Normalization

PMOD Maximum
Probability

FreeSurfer

d p d p d p d p d p

FC - r 1.46 0.016 1.26 0.011 1.34 0.023 1.54 0.019 1.63 0.010

FC - l 1.45 0.016 1.29 0.014 1.46 0.016 1.57 0.013 1.62 0.013

LTC - r 1.66 0.010 1.50 0.014 1.54 0.007 1.67 0.005 1.43 0.010

LTC - l 1.57 0.013 1.30 0.014 1.24 0.023 1.68 0.010 1.29 0.049

MTC - r 0.74 0.112 0.87 0.070 −0.83 0.199 0.20 0.762 0.10 0.880

MTC - l 0.21 0.762 0.68 0.173 −1.52 0.010 −0.44 0.290 −1.12 0.016

PC - r 1.26 0.008 0.96 0.054 1.13 0.028 1.49 0.016 1.21 0.028

PC - l 1.33 0.023 0.90 0.096 0.74 0.257 1.40 0.016 1.20 0.034

OC - r 1.20 0.049 1.02 0.049 1.21 0.028 1.49 0.010 0.83 0.096

OC - l 0.95 0.096 0.97 0.017 1.05 0.070 1.62 0.013 0.76 0.096

GCA - r 1.57 0.007 1.43 0.010 1.42 0.013 1.52 0.013 1.58 0.019

GCA - l 1.13 0.034 1.42 0.007 1.50 0.010 1.27 0.023 1.40 0.010

GCP - r 1.38 0.016 1.31 0.013 1.21 0.034 1.46 0.013 1.60 0.028

GCP - l 1.42 0.028 1.34 0.010 1.18 0.041 1.37 0.023 1.43 0.041

CN - r 1.36 0.010 −0.48 0.496 −1.01 0.082 0.36 0.597 1.31 0.023

CN - l 1.78 0.004 −0.71 0.150 −1.45 0.010 0.97 0.174 0.83 0.112

PUT - r 0.89 0.174 0.69 0.226 0.77 0.199 1.21 0.019 1.02 0.112

PUT - l 1.22 0.034 1.11 0.021 1.24 0.028 1.41 0.016 1.47 0.008

THA - r 0.65 0.226 −0.15 0.970 −0.80 0.174 0.03 1.000 0.36 0.131

THA - l 0.23 0.762 −0.55 0.406 −1.41 0.008 −0.82 0.112 −0.29 0.545

WM - r −0.62 0.326 −0.55 0.406 - - - - 0.47 0.326

WM - l −0.94 0.096 −0.70 0.290 - - - - 0.43 0.290

Pons −0.93 0.082 −0.32 0.427 - - −0.40 0.597 −0.54 0.545

Composite 1.53 0.010 1.47 0.013 1.38 0.023 1.62 0.023 1.49 0.028

d: Cohen’s d effect size. p values: Mann-Whitney-U test. FC: Frontal cortex, LTC: Lateral temporal cortex,MTC:
Mesial temporal cortex, PC: Parietal cortex, OC: Occipital cortex, GCA: Anterior cingulate cortex, GCP: Pos-
terior cingulate cortex, CN: Caudate nucleus, PUT: Putamen, THA: Thalamus, WM: Cortical white matter, - r:
Right hemisphere, - l: Left hemisphere
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p<0.0001 (l) / r=0.93; p<0.0001 (r); PMOD Maximum
Probability), posterior cingulate cortex (r=0.95; p<0.0001 (l)
/ r=0.94; p<0.0001 (r); FreeSurfer) and lateral temporal cortex
(r=0.95; p<0.0001 (r) / r=0.92; p<0.0001 (l); PMOD
Maximum Probability). The SUVRs in these VOIs together
with those SUVRs of the anterior cingulate cortex (r/l), parietal
cortex (r/l), occipital cortex (r/l), and putamen (r/l) consistently
showed significant correlations with those obtained by the con-
ventional method in all automated analysis methods. This was
also the case for the composite SUVRs (Fig. 4).

Associating the regional SUVRs as obtained by the differ-
ent automatic VOI definition methods with those of the con-
ventional method separately for the AD patients and the HCs
revealed an additional feature: When comparing the Pearson’s
r values between the two groups on a VOI leveI, the correla-
tion with SUVRs as obtained with the conventional method
was better in AD patients than in HCs in the majority of
regions (Table 4): For the PMOD Maximum Probability tool
this was true for 82 % of the tested VOIs. The respective
portions for the HERMES Brass, FreeSurfer, and PMOD

Fig. 2 Effect sizes of [18F]florbetaben PET standardized uptake value
ratio differences between patients with Alzheimer’s disease and healthy
controls displayed as color-coded Cohen’s d for every analyzed brain
region (representative axial slices on hippocampus level (top), level of
the basal ganglia (middle) and level of the corpus callosum (bottom)) for

the five tested neuroanatomical volume of interest definition approaches.
d: Cohen’s d, CC: Cerebellar cortex, LTC: Lateral temporal cortex, MTC:
Mesial temporal cortex, OC: Occipital cortex, FC: Frontal cortex, PC:
Parietal cortex, BG: Basal ganglia, GCA: Anterior cingulate cortex,
GCP: Posterior cingulate cortex

Fig. 3 Composite
[18F]florbetaben PET
standardized uptake value ratios
(SUVRs) of patients with
Alzheimer’s disease (AD) and
healthy controls (HC) obtained by
the conventional manual and four
tested automated procedures. Box
plots (median, 25 % and 75 %
quartile) with whiskers at highest/
lowest value within the1.5 * inter-
quartile range of the closest
quartile and points for identified
outliers. p: p value in Mann-
Whitney U test, d: Cohen’s d

1082 Eur J Nucl Med Mol Imaging (2016) 43:1077–1087



Normalization algorithms were 75%, 75%, and 67%, respec-
tively. The absolute amount of VOIs in which the automati-
cally obtained SUVRs were significantly correlated to the
conventional SUVRs was higher in AD patients compared
to HCs for the three algorithms HERMES Brass, PMOD
Maximum Probability and FreeSurfer, the opposite was the
case for the PMOD Normalization algorithm.

Discussion

This work aimed at evaluating different software tools for
au toma t ed neu roana tomica l VOI de f i n i t i on o f
[18F]florbetaben amyloid PET data. Discriminative power of
the resulting SUVRs to differentiate AD patients from age-
matched healthy controls was compared with that of the cur-
rent gold standard manual VOI definition approach.

Automated neuroanatomical VOI definition approaches
have been broadly applied in prior β-amyloid PET research
projects [25–29]. However, there is a lack of studies system-
atically evaluating a set of fundamentally different software
algorithms against the standard method of conventional VOI
definition on the same data. To our knowledge, comparative

studies in the field of β-amyloid PET imaging included only a
maximum of two basically different automated analysis
methods so far [25, 29, 30]. A subset of recently published
studies evaluated automated analysis methods against other
automated algorithms [28, 31] and against visual read [32],
but not against the current gold-standard approach of manual
VOI definition.

In general, relevant differences in tracer uptake between the
two groups (in favor of the AD patients) and high agreement
between manually and automatically derived SUVRs were
reported. With regard to the different software tools currently
available for neuroanatomical VOI definition, in prior partly
non-amyloid-related nuclear brain imaging research, good to
excellent accordance between automatically and manually
generated VOIs was reported for SPM-based procedures
[26, 27, 33], FreeSurfer applications [23, 34, 35] and
HERMES Brass [18, 36, 37]. In accordance with that, we
observed reliable group discrimination between AD patients
and HCs and significant correlation between the automatically
and conventionally derived SUVRs for all software tools test-
ed for the composite and for most regional SUVRs. The com-
posite SUVR effect sizes were in three of the four tested au-
tomated approaches only slightly lower than that of manual

Table 3 Post-hoc receiver
operator characteristic curve
analysis for [18F]florbetaben PET
composite standardized uptake
value ratio group discrimination
between patients with
Alzheimer’s disease and healthy
controls

AUC Sensitivity Specificity IRR with conventional SUVR analysis

Conventional SUVR analysis 0.84 80 % 100 % -

HERMES Brass 0.83 80 % 90 % 0.90

PMOD Normalization 0.80 80 % 80 % 0.80

PMOD Maximum Probability 0.80 80 % 100 % 1.00

FreeSurfer 0.79 80 % 80 % 0.80

AUC:Area under the receiver operator characteristic curve, IRR: Interrater reliability expressed as Cohen’s kappa

Fig. 4 Correlations of the
composite [18F]florbetaben PET
standardized uptake value ratios
(SUVRs) between different
automated neuroanatomical
definition methods and the
conventional standard method for
Alzheimer’s disease (AD)
patients and healthy controls
(HC). Grey lines represent
regression lines with 95 %
confidence interval. Correlation
coefficients are expressed as
Pearson’s r with its respective
p values
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VOI definition approach, while they were even higher for the
PMOD Maximum Probability tool. As one promising result,
we showed one automated algorithm (PMOD Maximum
Probability) to reach 100 % classificational accord and equal
diagnostic accuracy compared tomanual VOI definition of the
tested dataset.

Also, in concordance with the findings in the literature, our
testing revealed high or very high degrees of correlation
between the SUVRs obtained by manual and automatic pro-
cedures in the majority of brain regions. Most of the cited
studies, however, compared either with a partly automatically
generated conventional VOI set [34] or worked with a large
volume or limited VOI set [33, 35]. Lastly, some of the report-
ed studies involved an excessive parameter setting refinement
[18, 36]. As we aimed to compare automatically generated

VOIs against conventional native-space VOIs in a clinical
routine default parameter environment this could explain
eventual lower degrees of correlation in our testing.

Two general tendencies related to the quality of automated
neuroanatomical VOI identification were observed in our pro-
ject: (1) Overall correlation to the SUVRs obtained by manual
VOI definition was better in AD patients than in HC in all
tested tools. (2) In deep brain structures the two algorithms
with higher computational effort (PMOD Maximum
Probability and FreeSurfer), which include segmentation tech-
niques, showed higher correlation to the results of manual
VOI definition than the algorithms which rely only on nor-
malization to spatial space. Statistically significant correlation
to conventionally derived SUVRs (p<0.01) was found in cau-
date nucleus, thalamus and putamen of both hemispheres for

Table 4 Association between
subgroup-specific regional
SUVRs as obtained by the
different automated
neuroanatomical VOI definition
approaches against the standard
manual approach

HERMES Brass PMOD Normalization PMOD Maximum Probability FreeSurfer

r - AD r -HC r - AD r -HC r - AD r –HC r - AD r -HC

FC - r .821** .285 .936** .695* .967** .740* .820** .723*

FC - l .891** .476 .938** .657* .964** .769* .704* .571

LTC - r .742* .619 .955** .757* .935** .768* .818** .651*

LTC – l .798* .717* .766* .809** .872** .790* .739* .678*

MTC - r .366 .295 .450 .696* .848** .634* .842** .720*

MTC - l .523 .372 .185 .585 .547 .388 .312 .534

PC - r .605 .551 .591 .289 .887** .864** .480 .783*

PC - l .812** .234 .563 .729* .841** .907** .474 .762*

OC - r .654* .485 .849** .635* .913** .628 .777* .481

OC - l .581 .281 .555 .681* .812** .646* .539 .436

GCA - r .777* .761* .862** .725* .910** .741* .860** .706*

GCA - l .645* .650* .810** .255 .885** .470 .890** .385

GCP - r .548 .673* .837** .721* .791* .669* .954** .671*

GCP - l .708* .566 .879** .661* .850** .653* .948** .688*

CN - r .309 .566 .246 .629 .830** .857** .434 .390

CN - l .373 .243 .090 .069 .920** .697* .746* .330

PUT - r .823** .739* .942** .638* .934** .639* .923** .681*

PUT - l .778* .707* .909** .685* .948** .587 .966** .771*

THA - r .526 .575 .497 .752* .800** .602 .762* .755*

THA - l .838** .189 .709* .590 .711* .756* .581 .718*

WM - r .575 .740* .508 .525

WM - l .537 .606 .777* .513

Pons .677* .450 .320 .636* .424 .743*

Composite .860** .689* .848** .781* .932** .833** .769* .726*

Distribution of Pearson’s r correlation coefficients for the correlation between the regional [18 F]florbetaben PET
standardized uptake value ratios (SUVRs) – separately analyzed for the healthy controls (HCs) and the
Alzheimer’s disease (AD) patients - as obtained by the different automated against the conventional reference
method. Higher correlation coefficients in direct comparison between AD and HC group per VOI and per
program are printed bold. **: significant correlation with r≥0.8, *: significant correlation with r<0.8, VOI:
Volume of interest, FC: Frontal cortex, LTC: Lateral temporal cortex, MTC: Mesial temporal cortex, PC: Parietal
cortex, OC: Occipital cortex, GCA: Anterior cingulate cortex, GCP: Posterior cingulate cortex, CN: Caudate
nucleus, PUT: Putamen, THA: Thalamus, WM: Cortical white matter, - r: Right hemisphere, - l: Left hemisphere
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the PMOD Maximum Probability and FreeSurfer algorithms.
In contrast, no statistically significant correlation with SUVRs
as obtained with the conventional method could be demon-
strated for caudate nucleus (r/l, PMOD Normalization,
HERMES Brass) and thalamus (r, PMOD Normalization)
using the normalization-based algorithms (Electronic
Supplementary Material 1). Of interest, in cortical VOIs which
are commonly used in β-amyloid PET data quantification, the
correlation to conventionally derived SUVRs was less affected
by the underlying algorithm than in deep brain structures.

One aspect which could explain the better correlation
with manually derived SUVRs in AD patients might be a
wider spreading of uptake values compared to the HC sub-
jects. As the finding of better correlation in AD patients
than in HCs was most prominent for the PMOD Maximum
Probability tool, this algorithm might be the method of
choice in case of deviations from standard neuroanatomy
on the regional level. However, we identified all four
automated procedures to work reliably even under the
pathological anatomical conditions encountered in AD, at
least for neocortical brain structures.

Several constraints of the automated procedures were
observed during the conduct of this study, which require con-
sideration for future application: (1) We observed unexpected
statistically significant differences in tracer uptake between
the left and right hemisphere in three of four software tools,
which were not observed in manual SUVR analysis. This
finding was more prominent in the two tools based on spatial
normalization (PMOD Normalization and HERMES Brass)
compared to the more computational effort requiring tools
(FreeSurfer and PMOD Maximum Probability). However,
no hemispherical predominance was observed rendering this
finding coincidental. Furthermore, (2) brain regions with
highest and lowest SUVR correlation with the results of the
manual analysis were not totally consistent across and within
the software tools. Although multiple-region-conjunct analy-
sis offered stable correlation to manual uptake values, our
work showed single-region comparisons to be still more prone
to software-inherent deviations. From this, it is evident that
future implementation of automated procedures as routine
procedure will need continued careful evaluation against gold
standard methods.

As a limitation of this study, the sample size analyzed was
limited. We decided to not extend the sample size in this pro-
ject, as in the subsequent florbetaben trials following the phase
0 study of which the data were used in this investigation, since
the PETacquisition time-point was modified (from 70-90 min
p.i. to 90-110 min p.i.). As known from investigating tracer
dynamics [13], we cannot exclude an influence on the study
results by this modification. However, more work with PET
and MRI data of other clinical trials and/or as obtained in
clinical routine, potentially also including other amyloid
tracers and other-quality MRI data, is required to fully

uncover the potential of the available automated neuroana-
tomical VOI definition approaches in this context.

Regarding the clinical usability, the tool with highest im-
pact on time saving, economic effectiveness, and analyzer
convenience might be the modality of choice. Keeping this
in mind, automated analysis of β-amyloid PET images with-
out the need of acquiring additional MR images would be able
to provide faster and cheaper diagnosis than double-modality
workflows given that diagnostic accuracy would not be se-
verely affected. Prior research has addressed this topic by
comparing the performance of MRI templates and PET tem-
plates in automated image analysis. Even though MRI-based
approaches were reported to be advantageous in terms of qual-
ity in small region comparisons [30], a subset of studies indi-
cated reliable performance of tracer-specific PET templates
[28, 31, 33, 38–40]. These findings are in good agreement
with the results of this work: Composite SUVR analysis with
the PET-based tool HERMESBrass had onlyminimally lower
diagnostic accuracy than both conventional SUVR analysis
and the best performing automated program. The correlations
between the data obtained by the HERMES Brass software
with those of the manual VOI definition approach were slight-
ly less strong than the correlations for the other algorithms.
However, this MR-less normalization algorithm tool showed
accurate AD vs. HC group discrimination, rendering it an
interesting solution, at least in cases in which individual
MRI data are not available.

Conclusion

In this [18F]florbetaben PET analysis of AD patient and age-
matched HC data, all tested software tools for automated neu-
roanatomical VOI definition revealed results very similar to
those of the current gold standard, the manual approach.
While the diagnostic potential of the composite SUVRs was
to main parts not dependent on the particular software ap-
proach employed, slight differences in the AD vs HC discrim-
ination by the obtained regional SUVRs as well as in the
degree of correlation between the SUVRs of the automatic
and manual approaches were observed. Taken together, re-
gardless of whether individual MRI data are available, there
is a great potential for automated neuroanatomical VOI defi-
nition tools to simplify and objectivize regional and global β-
amyloid PET quantification.
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