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Abstract Imaging biomarkers derived from MRI or CT de-
scribe functional properties of tumours and normal tissues.
They are finding increasing numbers of applications in diag-
nosis, monitoring of response to treatment and assessment of
progression or recurrence. Imaging biomarkers also provide
scope for assessment of heterogeneity within and between
lesions. A wide variety of functional parameters have been
investigated for use as biomarkers in oncology. Some imaging
techniques are used routinely in clinical applications while
others are currently restricted to clinical trials or preclinical
studies. Apparent diffusion coefficient, magnetization transfer
ratio and native T1 relaxation time provide information about
structure and organization of tissues. Vascular properties may
be described using parameters derived from dynamic contrast-
enhanced MRI, dynamic contrast-enhanced CT, transverse re-
laxation rate (R2*), vessel size index and relative blood vol-
ume, while magnetic resonance spectroscopy may be used to
probe the metabolic profile of tumours. This review describes
the mechanisms of contrast underpinning each technique and
the technical requirements for robust and reproducible imag-
ing. The current status of each biomarker is described in terms
of its validation, qualification and clinical applications,
followed by a discussion of the current limitations and future
perspectives.
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Introduction

The delivery of personalized medicine demands the avail-
ability of robust and reliable biomarkers. Although these
may be genetic, serum or functional imaging parameters,
only the last of these have the capacity to provide infor-
mation on change through the course of the disease and
on disease heterogeneity both among and within lesions.
Thus, imaging biomarkers are invaluable in providing in-
formation not just for diagnostic purposes at the outset,
but also on informing clinical decision-making at various
points in a treatment pathway.

The availability of functional imaging biomarkers has su-
perseded the traditional concept of imaging as a purely mor-
phological tool that provides information on the size or vol-
ume change of a tumour with time and treatment. Aspects of a
tumour such as its changing vascular profile, water content,
degree of apoptosis or necrosis or metabolism are all now
measurable through advanced imaging techniques using mag-
netic resonance imaging (MRI), computed tomography (CT)
and radioisotope studies with SPECT and PET. Techniques
such as dynamic contrast-enhanced (DCE) imaging allow
derivation of semi-quantitative parameters (such as the
enhancement fraction), but pharmacokinetic modelling al-
lows estimation of quantitative parameters such as perme-
ability and wash-out. Likewise, diffusion-weighted MRI
(DW MRI) provides information about the cellularity of
tumours, as well as the change in the extracellular water
compartment in the face of increasing apoptosis or necro-
sis. MR spectroscopy interrogates metabolite levels within
tumours and their relative changes with tumour evolution
and treatment. This review focuses on the functional tech-
niques currently available in the clinic with MRI and CT,
and explores the difficulties and limitations in measure-
ment that need to be addressed for successful implemen-
tation of the imaging biomarker in a clinical setting.
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The tissue organization, vascular and metabolic biomarkers
discussed in this article are summarized in Table 1.

Tissue organization biomarkers

Apparent diffusion coefficient

Mechanisms of contrast DW MRI exploits the incoherent
motion of water molecules within tissues to generate contrast.
Many solid tumours exhibit restricted diffusion of water mol-
ecules compared to many normal tissues, leading to bright
signal on diffusion-weighted images and low values of appar-
ent diffusion coefficient (ADC) [1, 2].

Following the initial radiofrequency (RF) excitation, two or
more diffusion-encoding gradients are applied along a speci-
fied direction, separated by a refocusing RF pulse. The
diffusion-encoding gradients induce a loss of phase coher-
ence, and hence loss of signal, of the protons which have
moved in the direction of the gradient during the diffusion
encoding time (typically a few tens of milliseconds). The
diffusion-weighted images show lower signals from voxels
where the water molecules diffuse freely and higher signals
from voxels where diffusion of water molecules is more
restricted.

The strength of the diffusion-weighting is determined by
the magnitudes and timings of the diffusion-weighting gradi-
ents and is commonly described by a summary parameter
known as the b-value [3]. Estimates of ADC may be derived
from fitting a monoexponential function to the signal (S) mea-
sured at two or more b-values (Eq. 1).

S bð Þ ¼ S0exp −b:ADCð Þ ð1Þ

Restricted diffusion within tumours has been shown to be
related to increased cellularity and reduction in extracellular
space [1, 2, 4]. Increases in necrosis and cell death after treat-
ment increases ADC [1, 2], which has been shown to be pre-
dictive of response to chemotherapy in various tumour sites
[4, 5].

Technical requirements DW MRI can be carried out on most
modern MR scanners and does not require administration of
exogenous contrast agents. Echoplanar imaging (EPI) is usu-
ally employed to reduce sensitivity to motion [3]. EPI is, how-
ever, sensitive to field inhomogeneities and chemical shift
artefacts and optimization of sequence parameters is required
to obtain good quality images [6]. Good B0 homogeneity,
minimal eddy current effects, high signal-to-noise ratio
(SNR) and good fat suppression are required [6]. ADC maps
are provided by the manufacturers’ software. Many studies T
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also use in-house software for definition of regions of interest
(ROIs) and calculation of ADCs.

Va l i d a t i o n , q u a l i f i c a t i o n a n d c l i n i c a l
applications Repeatability studies have shown within-
patient coefficients of variation (wCV) between 4 % and
15 % [7–9]. Multicentre studies of healthy volunteers have
shown significant differences in ADC estimates between
scanners from different manufacturers in some abdominal or-
gans [10] and in grey matter and white matter [11].

ADC has been shown to be negatively correlated with his-
tological measures of cell density in glioma [12] and in colo-
rectal liver metastases [7]. A negative correlation has also
been shown between ADC and the proportion of collagenous
fibres in pancreatic cancer [13]. A study of 32 patients with
locally advanced gastrooesophageal cancers showed a corre-
lation between the change in ADC estimates after
neaoadjuvant treatment and the tumour regression grade de-
termined from histology [14]. Although an increase in ADC
estimates between pretreatment and posttreatment measure-
ments has been shown to be predictive of response to treat-
ment in many cases, some studies have not demonstrated cor-
relation between change in ADC and response [5].

The use of DW MRI as a biomarker has revolutionized
oncological diagnosis. As it can be used both qualitatively
by viewing the high b-value images and ADC maps as
well as quantitatively to generate mean or median tumour
ADCs, it has been exploited as a diagnostic tool, and as a
prognostic/predictive biomarker as well as for longitudi-
nally monitoring treatment response. In several tumour
types, e.g. liver [15, 16], lung [17], kidney [18], breast
[19], prostate [20] and cervix [21], it is used to differen-
tiate tumour from nontumour tissue (Fig. 1). However, its
quantitative potential has been exploited to predict the
aggressiveness of disease in prostate cancer [22] and his-
tological grade in renal cancer [23] and cervix cancer
[24]. Change in ADC has been shown to be predictive
of therapeutic response in cervix cancer [25], colorectal
liver metastases [26] and ovarian cancer [8] (Fig. 2) as
well as for predicting local recurrence in rectal cancer
[27], endometrial cancer [28] and biochemical recurrence
in prostate cancer [29]. More recently, whole-body DW
MRI has become possible through advances in RF and
gradient coil technology as well as software for integrat-
ing image stacks into a visual representation of the whole
body in a 3D multiplanar reformat. This type of image has
been used for metastases screening, particularly in pa-
tients in whom bone lesions may be the only site of dis-
ease and bone scintigraphy is negative, e.g. multiple my-
eloma [30]. In this whole-body mode it has the advantage
of being able to estimate the total tumour burden for skel-
etal metastases (Fig. 3) and follow their response to treat-
ment, which has hitherto not been possible [31].

Current limitations and future perspectives A major limita-
tion in the validation and qualification of ADC as a biomarker
in oncology is the lack of standardization for data acquisition
and analysis. There are currently no standard sequences which
can be implemented on all platforms which limits the extent to
which data acquisition can be standardized in multicentre pro-
jects [6, 32]. Technical limitations, for example non-
uniformity in ADC estimates, may introduce errors, particu-
larly when employing large fields of view [32]. Software and
methods for analysis are not standardized, leading to variation
in definition of ROIs and calculation of ADCs [33].

The physiological basis of the diffusion-weighted signal is
not fully understood and validation, for example by correla-
tion with histopathology, remains an area of current and future
work. The temporal evolution of ADC in response to treat-
ment may be influenced by factors such as cell swelling, cell
shrinkage, necrosis, fat infiltration and fibrosis [2, 4].
Moreover, attempts to use pretreatment ADC estimates as a
predictive biomarker have yielded mixed results with some
studies showing a correlation between pretreatment ADC
and response to treatment while many other studies have
shown no correlation [5]. A limitation of many studies is that
numbers of patients have been small and meta-analyses have
been impeded by differences between imaging protocols, pa-
tient populations and treatment regimens [5].

Current work is focused on qualification of ADC as a bio-
marker in oncology drug development [4, 34]. Work includes
optimization and standardization of data acquisition, assess-
ment of ADC as a prognostic or diagnostic biomarker in
multicentre studies and histopathological validation [4, 6].

Magnetization transfer ratio

Mechanisms of contrast Magnetization transfer (MT) con-
trast in MRI arises from interactions between protons (hy-
drogen nuclei) in a bound pool, for example protons at-
tached to macromolecules or in hydration layers, and pro-
tons in a free pool, for example mobile water protons
[35]. Bound pool protons do not contribute directly to
the measured signal in most conventional MR imaging
(which measures freely mobile protons) owing to their
short T2 relaxation times (<1 ms) [36, 37]. The presence
of protons in the bound pool may be detected via their
interactions with the free pool by selectively saturating
the broad resonance of the bound protons using an off-
resonance RF pulse. This transfers saturation to the free
pool by exchange of spins between the bound and free
pools, either by chemical exchange or by dipolar cou-
pling, and reduces the longitudinal magnetization avail-
able for imaging. This results in a reduction in signal
intensity, compared to that observed without the off-
resonance saturation pulse. Magnetization transfer ratio
(MTR), which is the difference between the signal

564 Eur J Nucl Med Mol Imaging (2015) 42:562–578



intensity observed without the off-resonance saturation
pulse (M0) and the signal intensity observed after the sat-
uration pulse (MSAT), normalized to M0, is used to quan-
tify the MT effect (Eq. 2).

MTR ¼ M 0−MSAT

M0
ð2Þ

Technical requirements MT sequences are available on
most modern MR scanners and do not require additional
hardware or software. MTR maps may be produced using
manufacturers’ software. As with any subtraction tech-
nique, MTR measurements are sensitive to motion and
techniques such as breath-holding or cardiac gating may
be required. Safety considerations, which require the spe-
cific absorption rate to be kept within regulatory limits,
restrict the flip angle of the saturation pulse. Agar and
albumin have been used to provide stable and reproduc-
ible MT phantoms for protocol development [37, 38].

Validation, qualification and clinical applications Unlike
DW MRI, there has been no attempt at standardization
of MTR for use as a biomarker in oncology. However,
validation against histopathology has been reported both
in preclinical studies and in neurological applications in

the clinic. MTR has been correlated with histological
measures of fibrosis in pancreatic tumour models [39]
and with collagen content in meningiomas [40] and with
volume fraction of tumour cell nuclei in astrocytomas [41]
in clinical studies. One multicentre study of the brains of
healthy volunteers showed significant variation in MTR
histogram metrics, which the authors suggested may have
been due to the difference in flip angle of the off-
resonance RF pulses between scanners [42].

Current limitations and future perspectives MTR is still in the
early stages of validation and qualification. MTR depends on
pulse sequence and magnetic field strength [36, 37, 48] and
the lack of standardization ofMTsequences between scanners
may contribute to differences in measurements of MT proper-
ties [42]. Development of MTR as a biomarker therefore also
requires assessment of variability between scanners and stan-
dardization of sequences.

Although many studies have demonstrated the use of
MTR in discriminating between benign and malignant le-
sions and among grades of tumours, further investigation
of MTR is required in assessment of response to treat-
ment. More advanced modelling may be used to extract
other parameters to prove its utility as a response bio-
marker [35].

Fig. 1 Prostate cancer in an 82-
year-old man. a Coronal and b
transverse T2-weighted images
through the prostate apex with c
corresponding transverse ADC
map and d enhanced image 60 s
after gadolinium administration
show an anterior prostate tumour
(arrows). The tumour is difficult
to appreciate in a and b, but easily
identified in c and d. The spatial
mismatch between the regions of
restricted diffusion in c and
contrast enhancement in d is at-
tributed to heterogeneity of the
biological mechanisms
determining these features within
the tumour

Eur J Nucl Med Mol Imaging (2015) 42:562–578 565



In clinical trials, two studies of brain tumours have shown
higher MTR in high-grade astrocytomas than in low-grade
astrocytomas [40] and in high-grade gliomas than in low-
grade gliomas [41]. However, another study has shown that
while tumours, infection and infarction all have significantly
lower MTR than normal grey matter and white matter, the
difference between MTR of high-grade and low-grade glio-
mas is not significant [43]. Clinical studies outside the brain
include breast lesions where MTR has been used to discrim-
inate between benign and malignant histologies [44], parotid
glands [45] and prostate (Fig. 4). A feasibility study of MT
imaging in patients with non-small-cell lung cancer has shown
similar structures in MTR maps and FDG PET images and
showed lower MTR in areas of suspected atelectasis than in
tumours [46].

MTR has also been used in the detection of postradiation
fibrosis. A study of patients with rectal cancer treated with
neoadjuvant chemoradiotherapy showed that the mean MTR
of regions of fibrosis is significantly higher than the MTR of
residual tumour, normal rectal wall or oedematous rectal wall;
comparison with histopathological analysis showed that MTR

diagnosed fibrosis with a sensitivity of 88% and specificity of
90 % [47].

Native T1 relaxation time

Mechanisms of contrast T1 relaxation time is a time constant
for the recovery of longitudinal magnetization following ex-
citation. T1 depends on the molecular environment of water
molecules as well as onmagnetic field strength [49].NativeT1

refers to the longitudinal relaxation time of protons in the
absence of exogenous contrast agents. Changes in native T1

may be indicative of alterations in oedema [50] or release of
paramagnetic ions and proteins during the destruction of cells
and tissues [51].

Technical requirements Inversion recovery and saturation re-
covery methods can be used to estimate T1 but acquisition
times are relatively long [52]. Spoiled gradient-echo se-
quences with two or more flip angles are often used when
faster acquisitions are required [53]. Optimization of flip an-
gles is required for the range of T1 values to be measured [54].

Fig. 2 Ovarian cancer in a 70-
year-old woman. a Transverse T2-
weighted, b diffusion-weighted
(b=1,050 s/mm2) and c ADC
map through the lower pelvis
show irregular soft tissue with
marked diffusion restriction on
the right peritoneal reflection and
serosal surface of the sigmoid
colon (arrows). At a higher level
in the mid pelvis d transverse T2-
weighted, e diffusion-weighted
(b=1,050 s/mm2) and fADCmap
show bilateral peritoneal deposits
(arrows). These are best seen in e
and are quantifiable from f, but
are less conspicuous in d

566 Eur J Nucl Med Mol Imaging (2015) 42:562–578



Inhomogeneities in transmit B1 field can cause errors in T1

estimates values due to errors in flip angles [55].

Validation, qualification and clinical applications Native T1

of tumours has been shown to correlate with decreases in
tumour volume in a TH-MYCN transgenic mouse model of
neuroblastoma treated with cyclophosphamide, a vascular
disrupting agent (ZD6126) or an antiangiogenic agent
(cediranib) [56]. Similar correlations have been observed in
two mouse tumour models treated with an mTOR inhibitor
(everolimus) [51] and in eight tumour models treated with five
different chemotherapeutic agents where 15 – 20% reductions
in native T1 were seen in all cases of successful chemotherapy

compared to controls, but not in drug-resistant models [57].
However, this needs to be considered in the context of repro-
ducibility: a study of patients with metastatic colorectal cancer
found a wCVof 15.8 % for baseline T1 measurements [58].

Only a small number of published studies have assessed
native T1 as a biomarker in the clinic [50]. In a pilot study of
ten patients with metastatic colorectal cancer a reduction in
native T1 was seen in tumours treated with an anti-VEGF
monoclonal antibody (bevacizumab) compared to pretreat-
ment values [58]. Another study of 27 patients with acute
leukaemia showed longer native T1 of vertebral bone marrow
measured at diagnosis, compared with age-matched controls,
and showed a decrease in T1 with treatment in patients who
went on to obtain remission but persistently long T1 in patients
who did not achieve remission [59].

Current limitations and future perspectives The measurement
of native T1 in multicentre trials is limited because good B0

and B1 homogeneity may be difficult to achieve, particularly
over large fields of view or at higher field strengths. There is
not yet a standard method of acquisition or analysis of data for
estimation of native T1 as a biomarker in oncology. Future
studies are required to investigate treatment-induced changes
in T1, assess reproducibility of T1 measurements and validate
observations against histological analysis. Accuracy, precision
and reproducibility of T1 measurements can be assessed using
phantoms containing materials of appropriate size, location
and T1 [55].

Vascular biomarkers

Dynamic contrast-enhanced MRI

Mechanisms of contrast DCE MRI provides information
about the structure and function of the microvasculature [50,
55]. The term DCE MRI is used to refer to T1-weighted DCE
imaging, whereas the term dynamic susceptibility-contrast
(DSC MRI) is used to refer to T2*-weighted or T2-weighted
DCE imaging [60]. DCE MRI uses a bolus injection of a
paramagnetic gadolinium-based contrast agent to reduce the
T1 of nearby protons and increase the signal intensity on a T1-
weighted image. Estimation of T1 at each spatial and temporal
position, combined with estimates of T1 before injection and
knowledge of the relaxivity of the contrast agent, allows esti-
mation of the concentration of gadolinium in each voxel over
time [55]. Analysis of the gadolinium concentration–time
curve using pharmacokinetic models or model-free ap-
proaches allows estimation of parameters related to the deliv-
ery of contrast agent to the tumour volume, the surface area
and permeability of capillaries, the volume of the extracellular
extravascular space (EES) and the blood plasma volume [55].

Fig. 3 Whole-body diffusion-weighted image in a 67-year-old woman
with biopsy-proven multiple myeloma. The coronal plane is
reconstructed from data acquisition in the transverse plane in multiple
stacked volumes and displayed as an inverted grey scale of the b=
1,050 s/mm2 images. Focal areas of restricted diffusion are noted
throughout the skeleton indicative of focal sites of myelomatous
deposits within bone marrow

Eur J Nucl Med Mol Imaging (2015) 42:562–578 567



Technical requirements DCEMRI requires rapid T1-weighted
imaging before injection of a contrast agent, during injection
and for several minutes (>5 min) after injection. Three-
dimensional spoiled gradient-echo sequences are usually
employed to achieve good temporal resolution (approximately
5 – 20 s) [55, 61, 62]. T1 can be estimated from two gradient-
echo images acquired with different flip angles [53]. The larg-
er flip angle is often acquired after injection of the contrast
agent and combined with a low-flip-angle precontrast image
to allow more rapid imaging. A power injector is usually used
to provide reproducible administration of the contrast agent
[55].

Pharmacokinetic models are often used to analyse the gad-
olinium concentration–time curve [60, 63, 64]. Off-line anal-
ysis is required using commercial or in-house software.
Published recommendations state that the Tofts model, or
equivalent, should be used and that the initial area under the
gadolinium concentration–time curve (IAUGC) and the vol-
ume transfer constant (Ktrans) should be reported as primary
end-points [55]. Other parameters, for example volume of
EES per unit volume of tissue (ve) and blood plasma volume
per unit volume of tissue (vp), are also reported in some stud-
ies, as well as model-free parameters, for example enhancing
fraction [50].

Pharmacokinetic models require estimation of the arterial
input function (AIF) whichmay be directly estimated from the
DCE MRI data using an artery present in the images, or

estimated using an additional sequence before the main DCE
sequence using a prebolus of gadolinium; population-based
estimates of AIF have also been applied [55].

Validation, qualification and clinical applications Consensus
recommendations have been published for the use of DCE
MRI in early-stage clinical trials of antivascular and
antiangiogenic therapies [55]. Recommendations for stan-
dardization of nomenclature in DCE MRI models have been
produced [64]. Repeated baseline measurements in clinical
studies have estimated the wCV of Ktrans and IAUGC to be
around 15 – 20 %. [65, 66]. On comparison with histology,
correlations between DCE MRI parameters and microvessel
density have been demonstrated [62].

Changes in DCE MRI parameters with treatment, for ex-
ample reduction in Ktrans but also other changes, have been
reported in a variety of tumours (Figs. 1 and 5) and summa-
rized in several reviews [50, 61, 62, 67]. A large number of
these trials have been in a phase I setting with novel
antiangiogenic agents [68–70] and have been particularly use-
ful in paediatrics where radiation dose is a consideration [71].
In addition to its role in monitoring treatment response, there
is an extensive literature on the utility of DCE MRI to predict
patient outcomes [72–74]; for example, enhancement patterns
predict overall survival (OS) in women with breast cancer
undergoing neoadjuvant chemotherapy [75] and in patients
with renal cell cancer [76].

Fig. 4 Prostate cancer in a 63-
year-old man. a Transverse T2-
weighted image through the mid-
prostate shows a low signal
intensity tumour in the right
peripheral zone (arrow). b
Corresponding T2 map, c ADC
map (calculated from data
acquired at b=0 s/mm2 and 800 s/
mm2) and d magnetization
transfer contrast image
(subtraction of data acquired
without and with a 1,000 Hz off-
resonance pulse) show a short T2
lesion (b, arrow) with restricted
diffusion (c, arrow) and very little
magnetization transfer effect (d,
arrow) compared to the peripheral
zone on the left
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Current limitations and future perspectives Implementation
in multicentre trials is challenging as there are no standardized
protocols for DCE MRI data acquisition [50, 55]. Analysis is
done off-line and a range of models and software packages are
available. Parameters derived from pharmacokinetic models
depend on the choice of AIF [50, 55, 67]. The choice of ROIs
also affects the results, and the methods for defining these are
not standardized [55, 67]. Appropriate strategies for assessing
heterogeneity and motion are also topics of current research
[61].

Modelled parameters are dependent on many physiological
processes, and interpretation is not straightforward [61]. The
optimal timing of examinations relative to treatment is also
unknown and DCE MRI may fail to detect an effect if there
are rapid changes followed by a return to baseline properties
after treatment [50]. Repeatability of DCE MRI parameters
has been reported to be 15 – 20 %, which limits the size of
change that can be detected. Changes in DCEMRI parameters
found in phase I/II trials have not always translated into sig-
nificant differences in progression-free survival or OS in
phase III trials [67]. Going forward, standardization of acqui-
sition and analysis methodology is crucial to successfully in-
corporate this biomarker as a robust imaging read-out in
multicentre response assessment trials [34, 50].

Dynamic contrast-enhanced CT

Mechanisms of contrast DCE CT provides information about
tumour vasculature using rapid imaging before, during and
a f t e r i n j ec t ion of an iod ina t ed con t r a s t agen t .
Pharmacokinetic modelling is used to estimate physiological-
ly based parameters, for example blood flow per unit volume
or mass of tissue (regional blood flow, BF), fraction of tissue
that consists of flowing blood (regional blood volume, BV),
time for the contrast agent to traverse the vasculature (mean
transit time), rate of transfer of contrast agent from intravas-
cular to extravascular space (blood flow extraction product,
FE product) and permeability and surface area of capillary
endothelium (permeability surface area product; Fig. 6) [77].

Technical requirements Consensus guidelines recommend
multislice imaging with high temporal resolution (about 2 s)
[77]. Processing software is provided by the equipment man-
ufacturers and is straightforward to acquire and robust to mod-
el because of the linear relationship between contrast agent
uptake and increase in tissue density.

Validation, qualification and clinical applications Consensus
guidelines have been published for the use of DCE CT in
oncology [77]. Repeatability studies have estimated wCV
16 % and 30 % for DCE CT parameters in preclinical [78]
and clinical studies [66], respectively, which are similar to
those for DCE MRI parameters. A multicentre study using a
flow phantom showed minimal differences between DCE CT
parameters among three institutions using a standardized pro-
tocol, which is a significant advantage for multicentre trials,
but emphasizes that tube current and reconstruction methods
could significantly affect results [79].

DCE CT vascular parameters have been shown to correlate
with histological assessments of hypoxia [80] as well as with
microvessel density [81]. DCE CT therefore has been used
extensively in clinical trials where changes in BF, BV, FE
product, and other parameters, have been used to demonstrate
effects of various drugs in a variety of tumour sites [77, 82].
Key studies have been performed in non-small-cell lung can-
cer treated with sorefanib and erlotinib [83] or with radiother-
apy [84], and in nasopharyngeal carcinoma treated with
pazopanib [85] and cediranib in a phase I setting [66].

Current limitations and future perspectives Radiation dose
may be significant and should be kept as low as reasonably
achievable whilst maintaining acceptable image quality [77].
This is a significant limitation in longitudinal studies. As with
DCE MRI, software for analysis has not been standardized
and there may be variation among results obtained from
postprocessing software from different manufacturers [79,
86]. As withMRI, inclusion of DCE CT in multicentre studies
requires standardization of acquisition protocols, QA proce-
dures and analysis software [86].

Fig. 5 Ktrans map of a large
locally invasive breast cancer
demonstrating radiological
response. a Pretreatment image. b
Posttreatment image shows a
reduction in enhancement after
two cycles of epirubicin and
cyclophosphamide
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Transverse relaxation rate

Mechanisms of contrast Transverse relaxation rate (R2*),
which is the reciprocal of the transverse relaxation time
(R2*=1/T2*), describes the rate of dephasing of transverse
magnetization following excitation. R2* is determined by
spin–spin interactions, inhomogeneities in the applied mag-
netic field (B0) and magnetic susceptibility variations in the
tissue. In tumours R2* may reflect the presence of paramag-
netic species, such as deoxyhaemoglobin, and may be related
to oxygenation levels. It has also been suggested that a de-
crease in R2* in response to carbogen inhalation may reflect
increased oxygenation in tumours which are hypoxic but have
a functional vasculature [87–89]. An example R2* map is
shown in Fig. 7.

Technical requirements R2* can be estimated using a
multiecho gradient-echo sequence. A log-linear plot of signal
intensity against echo time has a gradient of −R2*. Good SNR,
shimming and minimal motion between images are required.

Validation, qualification and clinical applications Pre clinical
studies have shown that baseline R2* and carbogen-induced
changes in R2* estimates are correlated with histological as-
sessments of hypoxia [88] and with tumour pO2 measured
using a fibre-optic oxygen sensor [89]. A study carried out
in a Th-MYCN genetically engineered mouse model of neu-
roblastoma showed slower baseline R2*, smaller change in
R2* in response to 100 % oxygen and lower uptake of the
perfusion marker Hoechst 33342 in tumours harbouring the
ALKF1174L mutation, known to be associated with poorer
prognosis in children with neuroblastoma, compared with tu-
mours in the Th-MYCN cohort [90]. Pretreatment estimates of
R2* and carbogen-inducedΔR2* have also been shown to be
predictive of acute response to radiotherapy in two animal
models, which the authors suggested may correspond to oxy-
genation levels of the tumours [91]. In assessment of response
to chemotherapy, one preclinical study showed a decrease in
R2* after treatment with a vascular disrupting agent (ZD6126)

[92] while a study in another model showed increased R2*
after treatment with an antiangiogenic agent (cediranib) but
no change compared with controls in mice treated with either
cyclophosphamide or a vascular disrupting agent (ZD6126)
[56].

Only a small number of studies have demonstrated clinical
applications of R2* as a biomarker in oncology. A study in
breast cancer showed lower R2* in tumours than in normal
breast tissue with an increase in R2* in tumours after neoad-
juvant chemotherapy and a larger increase in responding pa-
tients than in nonresponding patients [93]. As with preclinical
models, human studies have shown conflicting data; a corre-
lation between R2* estimates in prostate tumours and mea-
sures of hypoxia determined by needle electrode oxygen mea-
surements was demonstrated in one study [94] while another
study in hepatocellular carcinoma showed that neither base-
line R2* estimates nor R2* measured after inhalation of 100 %
oxygenwere able to detect microvascular invasion when com-
pared to histopathological analysis [95]. As with DCE CTand

Fig. 6 Maps of a blood flow and
b blood volume calculated from
DCE CT

Fig. 7 R2* map acquired from an orthotopic PC3 prostate cancer
xenograft
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MRI data, wCV of R2* in pelvic tumours is 17.5 % before
treatment [65].

Current limitations and future perspectives R2* has per-
formed poorly compared with other imaging biomarkers.
Changes in R2* between pretreatment and posttreatment mea-
surements have performed worse than DCE MRI and DSC
MRI in prediction of response to neoadjuvant chemotherapy
in patients with breast adenocarcinoma [93]. It has been sug-
gested that the increases and decreases in R2* estimates in
response to treatment result from a combination of vascular
effects; haemorrhage and other pathological changes in the
tumour may contribute to observed changes in R2* and that
estimates of R2* cannot discriminate between these changes
[87, 92].

Vessel size index

Mechanisms of contrast Vessel size index (VSI) is the av-
erage diameters of blood vessels within a voxel. Injection
of a paramagnetic or superparamagnetic contrast agent
causes different changes in R2 and R2*, and the ratio
ΔR2*/ΔR2 has been shown to be related to vessel sizes
in tumours and normal tissues [96]. Analytical expres-
sions have been derived relating VSI to ΔR2*/ΔR2, the
change in magnetic susceptibility of blood due to the con-
trast agent (Δχ) and ADC [97, 98]. An example VSI map
is shown in Fig. 8.

Technical requirements ΔR2 and ΔR2* can be measured
using spin-echo and gradient-echo sequences, respectively.
Pre clinical experiments have used steady-state experiments
using ultrasmall paramagnetic iron oxide (USPIO) contrast
agents, which are assumed to remain in the blood pool [96].
Estimates ofΔχ can be obtained from ex vivo measurements
[97].ΔR2* andΔR2 have also been estimated using first-pass
dynamic sequences with gadolinium-based contrast agents in
clinical and preclinical studies [99–101].

Validation, qualification and clinical applications Although
correlation has been shown between VSI estimated fromMRI
and histological analysis, MRI overestimates VSI compared
to histology [102], two-photon laser scanning microscopy
[103], intravital microscopy [104] and micro-CT [105].
Conversely, other studies have shown good agreement be-
tween VSI estimates from in vivo MRI and ex vivo measure-
ments of vascular casts using micro-CT [106]. Pre clinical
studies have shown increases in mean VSI in tumours treated
with antivascular agents, attributed to loss of small functional
vessels; histological analysis have shown similar relative
changes despite the discrepancy in absolute values [107,
108]. Other studies, however, have shown a decrease in VSI
after treatment [109].

Only a small number of clinical studies have used VSI in a
clinical trial setting. One study in gliomas showed a correla-
tion betweenΔR2*/ΔR2 and tumour grade [99] whilst anoth-
er study of 16 patients with glioblastoma usedmaps of relative
tumour vessel size to show reduction in tumour vessel size in
patients treated with a pan-VEGF receptor tyrosine kinase
inhibitor as part of a phase II trial [100].

Current limitations and future perspectives Early develop-
ment of USPIOs for clinical use was halted but the use of
ferumoxytol has recently been reported in DSC MRI [110].
Motion may also affect estimates of VSI, particularly in extra-
cranial applications. Overestimation of VSI, due to simplify-
ing assumptions in the model [98] or inability to detect vessels
that are not perfused by the contrast agent [102], may limit
VSI to relative rather than absolute measurements. Therefore,
although relative changes in VSI have shown promise in pre-
clinical measurements, validation of quantitative results is
required.

Relative blood volume

Mechanisms of contrast Relative blood volume (rBV) is the
proportion of a voxel that is composed of blood. Injection of a
paramagnetic or superparamagnetic contrast agent causes a
change in R2* which is dependent on the vascular architec-
ture. Analytical expressions have been derived relating rBV to
ΔR2* and Δχ [97]. An example rBV map is shown in Fig. 9.

Technical requirements R2* can be measured using gradient-
echo sequences. In pre clinical experiments involving steady-
state experiments USPIO contrast agents have been used
which can be assumed to remain in the blood pool [97]. In
clinical studies DSC MRI has been used with injection of
gadolinium-chelate contrast agents or, more recently, the
USPIO ferumoxytol [110].

Validation, qualification and clinical applications Reductions
in rBV have been shown in preclinical studies of tumoursFig. 8 VSI map acquired from a murine B16 melanoma xenograft
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treated with antiangiogenic [107] and vascular disrupting
agents [109] in good agreement with histology results, which
have shown reduction in perfusion in the treated tumours. In
vivo MRI has been shown to overestimate rBV compared
with ex vivo micro-CT [105] or two-photon laser scanning
microscopy [103]. Some preclinical studies have shown good
agreement between estimates of rBV from MRI and histolog-
ical measurements of blood volume [111] although other stud-
ies have shown that estimates of rBV fromMRI are larger than
estimates from histology [102].

In clinical studies, wCV of rBV in pelvic tumours was
19.7 %, similar to DCE MRI parameters [65]. rBV has been
shown to be able to distinguish between types and grades of
brain tumours [112] and to distinguish recurrence or progres-
sion from posttreatment radiation effects, necrosis and
pseudoprogression [110, 113]. rBV has also been shown to
be predictive of time to progression or OS in gliomas [114]. A
small number of studies of rBV have been carried out in ex-
tracranial tumours [115]. One pilot study in ten patients with
renal cell carcinoma showed a decrease in rBVafter treatment
with sunitinib [116]. A study in 37 patients with breast cancer
treated with neoadjuvant chemotherapy showed that the
change in rBV between pretreatment and posttreatment scans
was correlated with clinical and pathological response [117].
A study of 20 patients with prostate cancer showed a decrease
in rBV 1 month after starting androgen deprivation therapy
[118].

Current limitations and future perspectives Although rBV
has been used in many clinical studies for the assessment of

brain tumours, only a small number of studies have investi-
gated extracranial tumours. As with other vascular bio-
markers, standardized methods for acquisition or analysis of
rBV estimates from DSC MRI or steady-state measurements
are lacking, which precludes implementation of this biomark-
er in a multicentre setting. As applications in brain tumours
have far exceeded extracranial applications for this biomarker,
attempts at standardization in brain protocols is currently un-
derway. Further biological validation, however, is urgently
needed [115].

Metabolic biomarkers

Magnetic resonance spectroscopy Magnetic resonance spec-
troscopy (MRS) uses largely the same hardware as MRI, but
instead of acquiring high-resolution images of water and lipid
distribution and their properties, it acquires signals from com-
pounds of low molecular weight in tissue that have concen-
trations of a few millimoles. MRS can therefore probe bio-
chemistry and metabolism in tissue. In addition to tissue char-
acterization, it can also be used to help evaluate response and
recurrence, and aid treatment planning. Example 1HMR spec-
tra are shown in Fig. 10.

Technical requirements Signals are acquired either from a
single specified voxel or from a 2D or 3D array of voxels
using some form of MRS imaging. The minimum useful
voxel size depends on magnetic field strength, RF coil
design, scan duration and the question being addressed,
and is typically about 10 – 20 mm. Methods are well-
described in the literature [119]. Manufacturers provide
some software for spectral data processing, display and
fitting, but many users will also process data off-line
using specialized spectral processing packages such
LCModel [120, 121] and jMRUI [122–124]. Results are
commonly expressed as ratios of peak areas within the
spectrum, or relative to signal from tissue water (for 1H
MRS). Calculation of metabolite concentrations is possi-
ble if values for the T1 and T2 relaxation time constants of
the metabolites are known, and where the RF transmit and
receive fields are either uniform or amenable to calcula-
tion. To acquire MRS signals from magnetic nuclei other
than 1H requires a RF system (coils, amplifiers, detectors
etc.) that operate at the appropriate MR frequency.

Proton MRS and its clinical applications Most MRS studies
use signals acquired from 1H nuclei of compounds in tissue,
since 1H nuclei provide the largest signals, and this requires no
hardware modification to the scanner. 1H MR spectra of nor-
mal brain are dominated by choline, creatine, and N-acetyl
aspartate (Fig. 10). Brain tumours are characterized by re-
duced N-acetyl aspartate, and often by elevated total choline

Fig. 9 rBV map acquired from a 786-O RCC xenograft using
susceptibility-contrast MRI with USPIO particles
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(wh i ch i n c l ude s cho l i n e , pho sphocho l i n e and
glycerophosphocholine), lipid or lactate. Elevated choline is
attributed to increased proliferation and demand for mem-
brane synthesis, while lactate may be caused by a combination
of increased lactate production owing to the Warburg effect
[125] together with inadequate perfusion to remove it.
Different brain tumours have different metabolic fingerprints,
yielding the possibility of using 1H MRS for differential diag-
nosis [126] (Fig. 10). Regions ofmetabolic abnormality some-
times extend beyond regions of imaging abnormality [127],
demonstrating that MRS can detect regions of tumour not
detected by standard MRI.

Elevated choline is characteristic of tumours in other tis-
sues also, such as breast [128] and prostate [129]. Prostate
tumours also have reduced citrate and spermine [129]. Some
tumours exhibit high levels of lipids, in particular high-grade
glioma and metastases in the brain [126]. These signals arise
from cytoplasmic lipid droplets rather than from the mem-
branes of cells and organelles, as lipids in bilayers are relative-
ly immobile and produce signals that are too broad to be
detected using standard MRS methods. They are associated
with proliferation, inflammation, malignancy, necrosis and
apoptosis [130, 131]. In tissues such as breast and prostate

care is required to ensure that signals acquired are not contam-
inated by those of surrounding lipid.

Nonproton MRS and its clinical applications 31P MRS gives
lower signals than 1H MRS but is useful for probing energy
metabolism (phosphocreatine, ATP, NADH) and some com-
pounds involved in membrane synthesis and breakdown, in
particular phosphomonoesters (PME) such as phosphoryl
c h o l i n e , a n d pho s phod i e s t e r s ( PDE ) s u c h a s
glycerophosphorylcholine. Cancers tend to be characterized
by elevated PME and PDE, but relatively normal ATP.
Many studies have demonstrated a reduction in PME in re-
sponse to treatment [132, 133]. In non-Hodgkin’s lymphoma a
multicentre trial has also demonstrated that 31P MR spectra
acquired before treatment contain prognostic information; tu-
mours with an initially lower PME/NTP ratio are more likely
to respond than those with a high PME/NTP [134]. 31P MRS
can also be used to measure intracellular pH [135, 136].
Applying this method to tumours has yielded the surprising
result that tumours generally tend to maintain a slightly alka-
line intracellular pH in spite of the Warburg effect [137].
Measurement of intracellular pH in vivo would be useful in
assessing the effects of anticancer strategies that are

Fig. 10 Means and standard deviations (vertical lines) of normalized
STEAM (echo time 30 ms) spectra: normal (parietal) white matter (N=
6), meningioma (N=8), metastases (N=6), astrocytoma grade II (N=5),

anaplastic astrocytoma (N=7), glioblastoma (N=13). Reproduced from
Howe et al. [126]
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anticipated to alter pH, such as inhibitors of monocarboxylate
transporters [138].

19FMRS yields signals almost as strong as 1HMRS.While
there is little MR-visible 19F in the body, 19F MRS has been
used to follow the distribution and metabolism of anticancer
drugs such as 5-fluorouracil [139] and to study hypoxia using
perfluorocarbons [140] and fluorinated nitroimidazoles [141].

Current limitations and future perspectives Magnetic reso-
nance spectroscopy has great potential for probing metabo-
lism and biochemistry of tissues in vivo, but is often limited
by the relatively low SNR. Dynamic nuclear polarization is a
new method in which atomic nuclei of compounds with large
longitudinal relaxation time constants can be prepolarized to
yield signals 10,000-fold larger than the normal polarization.
The first-in-human trial of this method has recently demon-
strated potential for imaging highly elevated pyruvate-to-
lactate conversion in prostate tumours [142]. However, the
full potential of this technique in providing information on
metabolic pathways and thus monitoring enzyme kinetics re-
mains to be exploited.

Conclusion

A range of biomarkers providing information on tissue orga-
nization, vascular properties and metabolism are available
with MRI supported by vascular biomarkers with CT. Their
potential for delivering information not only for response as-
sessment, which has traditionally been the case, but also to
predict disease aggressiveness, treatment response and out-
comes of therapy offers rich avenues for exploration. Even
in response assessment, it is expected that these biomarkers
will deliver information on how the tumour is responding
much earlier than has hitherto been possible, thus sparing
the patient the morbidity of ineffective therapy and the oppor-
tunity to switch to a more effective treatment regimen earlier.
As we uncover information on the heterogeneity of these bio-
markers, it will also become clear which biomarker combina-
tions are most informative, as it is unlikely that a single pa-
rameter will contain the depth of information required.
Finally, in order to exploit these biomarkers fully in large
multicentre trials, it is imperative that we achieve standardiza-
tion with consensus on acquisition and analysis protocols that
optimizes reproducibility of the measurements and allows
pooling of multisite data.
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