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Abstract Radioembolization (RE) with 90Y microspheres is
a promising catheter-based therapeutic option for patients with
unresectable primary and metastatic liver tumours. Its ratio-
nale arises from the dual blood supply of liver tissue through
the hepatic artery and the portal vein. Metastatic hepatic
tumours measuring >3 mm derive 80 – 100 % of their blood
supply from the arterial rather than the portal hepatic circula-
tion. Typically, an angiographic evaluation combined with
99mTc-macroaggregated albumin (99mTc-MAA) scan precedes
therapy to map the tumour feeding vessels as well as to avoid
the inadvertent deposition of microspheres in organs other
than the liver. Prior to administration of 99mTc-MAA, prophy-
lactic coil embolization of the gastroduodenal artery is recom-
mended to avoid extrahepatic deposition of the microspheres.
SPECT/CT allows direct correlation of anatomic and func-
tional information in patients with unresectable liver disease.
SPECT/CT is recommended to assess intrahepatic distribution
as well as extrahepatic gastrointestinal uptake in these pa-
tients. Pretherapeutic SPECT/CT is an important component
of treatment planning including catheter positioning and dose
finding. A post-therapy bremsstrahlung (BS) scan should
follow RE to verify the distribution of the administered tracer.

BS SPECT/CT imaging enables better localization and defi-
nition of intrahepatic and possible extrahepatic sphere distri-
bution and to a certain degree allows posttreatment dosimetry.
In this paper we address the usefulness and significance of
SPECT/CT in therapy planning and therapy monitoring of
RE.
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Introduction

Radioembolization (RE), also called selective internal radia-
tion therapy (SIRT) or transarterial RE (TARE), is a promising
catheter-based liver-directed therapy for patients with primary
and metastatic liver cancer [1–3]. RE provides several advan-
tages over traditional treatment methods, including a low
toxicity profile [4, 5]. Its rationale arises from the anatomic
and physiological nature of hepatic tumours. The prominent
feature is the dual blood supply of liver tissue, from the
hepatic artery and the portal vein. Approximately 70 % and
30% of hepatic blood is derived from the gastrointestinal (GI)
tract via the portal vein and the systemic circulation via the
hepatic artery, respectively [6]. Metastatic hepatic tumours
measuring >3 mm derive 80 – 100 % of their blood supply
from the arterial rather than the portal hepatic circulation [6].

In addition to RE with 90Y microspheres, various other
radionuclides have also been considered for treatment of liver
tumours including 32P, 188Re and 166Ho [7–10]. In this paper,
however, we focus on glass and resin 90Y microspheres,
which are FDA-approved medical devices. 90Y is a pure β-
emitter, produced by neutron bombardment of 89Y in a reactor,
with a limited tissue penetration (mean 2.5 mm, maximum
11 mm) and a short half-life of 64.2 h, thus making it an ideal
transarterial liver-directed agent [11]. Two 90Y microsphere

Hojjat Ahmadzadehfar and Heying Duan contributed equally to this
work.

H. Ahmadzadehfar
Department of Nuclear Medicine, University Hospital Bonn,
Bonn, Germany

H. Duan :A. R. Haug :M. Hoffmann (*)
Department of Biomedical Imaging und Image-guided Therapy,
Clinical Division of Nuclear Medicine, Medical University of
Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
e-mail: martha.hoffmann@meduniwien.ac.at

S. Walrand
Nuclear Medicine, Université Catholique de Louvain,
Brussels, Belgium

Eur J Nucl Med Mol Imaging (2014) 41 (Suppl 1):S115–S124
DOI 10.1007/s00259-013-2675-5



discussed in detail elsewhere [11].
In the process of selecting patients referred for RE, several

aspects should be considered: Patients eligible for RE should
present with an unresectable hepatic primary or metastatic
cancer, liver-dominant disease, a life expectancy of at least
3 months and an ECOG performance score of ≤2 as well as
preserved liver function [12]. Overall, the incidence of com-
plications of RE of liver malignancies for appropriately se-
lected patients and accurately targeted delivery is very low
[13]. Serious complications have been reported when micro-
spheres were inadvertently deposited in excessive amounts in
organs other than the liver or when exceeding the radiation
tolerance levels of the liver, leading to RE-induced liver
disease (REILD) [14]. Radiation and diminished blood
supply due to embolization and subsequent hypoxia or
possible reflux of 90Y microspheres into the gastroduode-
nal circulation may result in ulceration and even perfora-
tion of the stomach and duodenum [14, 15], that may
subsequently require surgery [16]. Reported complica-
tions include GI ulceration/bleeding, gastritis/duodenitis,
cholecystitis, pancreatitis, radiation pneumonitis and he-
patic decompensation [5, 12, 14–20]. The decision to
perform RE should be based on an interdisciplinary con-
sensus in an adequate tumour board with participation of
specialists in surgery, gastroenterology, oncology, radiol-
ogy, nuclear medicine and radiation therapy.

An angiographic evaluation combined with 99mTc-mac-
roaggregated albumin (99mTc-MAA) imaging precedes the
therapy session (test angiogram) to map the tumour-
feeding vessels as well as to avoid the complications men-
tioned above. It is well known that the anatomy of the
mesenteric system and the hepatic arterial bed has a high
degree of variation, with the “typical” vascular anatomy
being present in only 60 % of cases [21]. Therefore, 99mTc-
MAA scintigraphy has been primarily used to identify and
calculate excessive liver-to-lung shunt volume. The addi-
tional use of SPECT/CT allows a direct correlation of
anatomic and functional information. This 99mTc-MAA
SPECT/CT scan allows not only assessment of the
intrahepatic microsphere distribution but also detection of
extrahepatic uptake [22–26].

It is also recommended that RE is followed by a
posttherapy bremsstrahlung (BS) scan to verify the distribu-
tion of the administered tracer [27]. Even though the quality of
BS images is low due to the characteristics of BS, BS SPECT/
CT enables better localization and definition of the
intrahepatic and possible extrahepatic distribution of spheres
[28–31]. In this paper, we address the usefulness and signifi-
cance of SPECT/CT imaging in therapy planning and therapy
monitoring of RE.

99mTc-MAA SPECT/CT for treatment planning

In the test angiogram session 150 – 200 MBq of 99mTc-MAA
is injected selectively into the right and/or left hepatic artery or
even into segmental arteries. If required by the specific vas-
cular anatomy, prophylactic coil embolization of the gastro-
duodenal artery and optionally the right gastric artery and its
pancreaticoduodenal branches is recommended prior to
99mTc-MAA administration to avoid extrahepatic deposition
of microspheres according to the vessel anatomy [12]. Of
note, these vessels/organs can revascularize rapidly, and there-
fore the embolization should be performed close to the
intended time of RE. It is necessary to angiographically re-
evaluate vascularity and blood supply during RE to ensure
that such revascularization has not occurred [12]. Prior to the
test angiogram session oral administration of 600 mg perchlo-
rate at least 30 min before 99mTc-MAA administration is
recommended by the German radiation protection commis-
sion [32] in order to avoid nonspecific tracer uptake in the
stomach due to free 99mTc-pertechnetate [33]. The 99mTc-
MAA should be administered slowly without pressure and
the syringe should be gently tilted before injection to agitate
sedimented 99mTc-MAA particles [34].

First, a whole-body scintigraphy scan in the anterior and
posterior projection should be obtained to calculate the per-
centage of potential tracer uptake in the lungs (liver-to-lung
shunt volume). Second, SPECT/CT images should be obtain-
ed. To date there are no definitive recommendations for 99mTc-
MAA SPECT/CT acquisition and reconstruction parameters,
and consequently different protocols are in use. Irrespective of
the variety of acquisition protocols a low-energy high-
resolution (LEHR) collimator should be used with the energy
window set at 140 keV ±10 %. SPECT acquisition should be
performed with a 128×128 or 256×256 matrix with 3° steps
(15 – 30 s per projection). In some centres the acquisition is
performed with fewer steps (6° steps) or a shorter acquisition
time or even a smaller matrix size [35]. A diagnostic contrast-
enhanced CT scan including an arterial phase is required for
evaluating the intrahepatic tumour distribution as well as for
measuring tumour volume, and also to ascertain the vascular
situation. If the contrast-enhanced CT scan precedes the in-
clusion to RE, then the CT part of the SPECT/CT could be
performed with lower-quality settings, such as with 5-mm
slices. In that case it is recommended that the SPECT images
be fused with these previously obtained contrast-enhanced CT
images or magnetic resonance images (MRI).

Evaluation of extrahepatic tracer deposition

Using only planar images for detecting hot-spots in other
organs besides the liver is of limited value due to the limited
spatial resolution. Extrahepatic spots indirectly mark the
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possible locations of microspheres misplaced during therapy;
however, planar image analysis can be difficult and lead to
misinterpretation of possible extrahepatic locations. Further-
more, especially in the upper abdomen, the localization of
several different organs within a relatively small region de-
mands the analysis of tomographic images to differentiate the
99mTc-MAA accumulation in the liver from that in an adjacent
organ [22]. In this regard, 99mTc-MAA SPECT/CT imaging
has been shown to provide more valuable information than
planar and SPECT images, and is therefore the imaging mo-
dality of choice (Fig. 1a, b) [22–25, 36]. In comparison to
planar and SPECT imaging, the use of SPECT/CT can in-
crease the sensitivity of a 99mTc-MAA scan in the diagnosis of
abdominal extrahepatic shunting up to 100 %, thus leading to
a change in approach and therapy [22, 24].

RE may cause GI ulcers in up to 4.8 % patients [37].
Radiation-induced ulcers are difficult to treat [37]. The two
major causes thought to be responsible for gastroduodenal
ulcers are digestive shunting via an aberrant gastroduodenal
vessel that receives the microsphere injection, and microsphere

reflux during injection [23]. In addition, focally increased GI
uptake has been reported in up to 31% of patients [22–26]. Free
99mTc uptake of the gastric mucosa may be seen as low to
moderately diffuse gastric uptake in SPECT/CT images. There-
fore, visual distinction between gastric concentration of free
99mTc and true gastric 99mTc-MAA shunting may be challeng-
ing, and this considerably reduce diagnostic quality/clinical
confidence [33]. In this situation, perchlorate administration
prior to the test angiogram is helpful in avoiding any misinter-
pretation of gastric uptake.

Radiation cholecystitis is usually subclinical, but it is asso-
ciated with postprocedural morbidity and requires surgical
intervention in about 1 % of patients [38]. 99mTc-MAA accu-
mulation in the gallbladder is seen in 8 – 12 % of patients
[22–24]. In these patients subsequent RE is considered con-
troversial with regard to the need for changes in the therapy
plan involving prophylactic antibiotic therapy or choelcystectomy
(Fig. 1c, d) [22–24]. One strategy to prevent the spheres from
reaching the gallbladder resulting in radiation-induced
cholecystitis may be the placement of the catheter distal

Fig. 1 Extrahepatic tracer
accumulation. a, b 99mTc-MAA
scan in a patient with HCC
scheduled for RE of the left liver
lobe showing tracer accumulation
in the stomach (b yellow arrow),
not distinguishable from
intrahepatic accumulation on the
planar scan without SPECT/CT
imaging (a red arrow). c, dTracer
accumulation in the gallbladder
wall (yellow arrows) in a patient
with colorectal carcinoma. e, f
Planar image (e) shows 99mTc-
MAA deposition in the anterior
abdominal wall, indicating a
patent hepatic falciform artery;
coronal 99mTc-MAA SPECT/CT
image in the same patient (f)
localizes the tracer accumulation
along the hepatic falciform
ligament (arrows)
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to the cystic artery. We recommend this approach provid-
ing it does not lead to inadequate target distribution of
microspheres. An alternative approach is the prophylactic
embolization of the proximal cystic artery with either ab-
sorbable gelatine sponge pledgets or fibred microcoils
immediately before RE, which has been shown to be safe
and feasible [39].

99mTc-MAA uptake in the anterior abdominal wall has
been described as a sign of a patent hepatic falciform artery
(HFA) [40] with a reported incidence of up to 13 % [23,
41–44]. The HFA arises as a terminal branch of the middle
or left hepatic artery and runs within the hepatic falciform
ligament with the umbilical vein, provides partial blood sup-
ply around the umbilicus, and communicates with branches of
the internal thoracic and superior epigastric arteries [45]. It is
known that influx of chemoembolic agents into the HFA can
cause a supraumbilical skin rash, epigastric pain and skin
necrosis. Normally, a patent HFA appears on planar 99mTc-
MAA scans as elongated tracer accumulation in the mid-
abdomen, which is more correctly localized by SPECT/CT
(Fig. 1e, f) [23, 42]. Usually, 99mTc-MAA uptake via the HFA
is easily recognized and does not lead to diagnostic problems
except in patients with umbilical hernia [23]. As for all other
extrahepatic arteries, prophylactic embolization of the HFA is
recommended, yet it is not always possible to delineate and
catheterize this small vessel.

Several papers report that RE-related side effects in patients
with tracer accumulation in the anterior abdominal wall on the
99mTc-MAA scan are neither common nor severe [23, 42, 44].
Leong et al. reported one patients with self-limiting radiation
dermatitis caused by shunting of 90Y microspheres to the
anterior abdominal wall via a patent HFA [46]. In a recent
study, a patient HFAwas identified by 99mTc-MAASPECT/CT
in 16 patients who did not undergo coil embolization prior to
treatment with only one patient complaining of abdominal pain
for 48 h without skin lesions [42]. Therefore, there seems to be
no absolute need for prophylactic embolization of either the
HFA or modification of the treatment plan if the HFA is not
detectable in an angiography session and the intensity of HFA
deposition is low. Recently, Lenoir et al. reported tracer uptake
in the hepatic artery in 6.6 % of patients [23], which had no
impact on patient management. This arterial uptake is likely
due to the aggregation of MAA by arterial microlesions
caused by long and complicated angiography procedures or
when arteries are weakened by previous procedures [23].

Evaluation of intrahepatic tracer distribution

The aim of RE is to treat the total hepatic tumour load while
avoiding delivery of particles to healthy liver tissue. In pa-
tients with a single liver tumour, intrahepatic accumulation of
99mTc-MAA could be acceptably assessed by planar images

and SPECT. SPECT/CT may be of higher value in patients
with multiple liver lesions and lesions adjacent to surrounding
structures. For example, 99mTc-MAA uptake in the tumour
thrombus of the portal vein, which is more commonly seen in
hepatocellular carcinoma (HCC) [34], can only be detected by
SPECT/CT. 99mTc-MAA uptake in the tumour thrombus is
usually a predictor of a favourable response to RE. In a study
by Garin et al. [47], 92 % of responding patients with portal
vein thrombosis showed 99mTc-MAA uptake in the thrombo-
sis on SPECT/CT images [47]. There is early proof of a
positive correlation between the amount of tumoral 99mTc-
MAA uptake and treatment response, but further clinical
studies are needed.

Flamen et al. treated ten patients with colorectal cancer
metastases and found that a 99mTc-MAA tumour to non-
tumour (liver) uptake ratio cut-off value of 1 could predict a
significant metabolic response [48]. Garin et al. in a study of
36 patients with HCC found that quantitative 99mTc-MAA
SPECT/CT is predictive regarding response, progression-
free survival and overall survival. The authors suggested that
using tumour dosimetry based on 99mTc-MAA SPECT/CT
imaging could allow adaptation of the treatment plan [47,
49]. The same group reported recently that 99mTc-MAA
SPECT/CT predicted response with a sensitivity of 100 %
and overall accuracy of 90 % in 71 HCC patients [50].

A diffuse high accumulation of 99mTc-MAA in the nonin-
volved tissue is an important issue, as a high radiation dose to
the healthy liver may increase the probability of REILD, a life-
threatening condition. The pretreatment angiogram together
with the 99mTc-MAA SPECT/CT provide the opportunity to
clearly identify the respective tumour-feeding vessels. This is
crucial to avoid excessive radiation exposure to nontarget
healthy liver tissue (Fig. 2).

If there is a discrepancy between the segmental distribution
of 99mTc-MAA and the intended vascular territory to be treat-
ed, the angiograms should be reviewed carefully. One reason
may be tracer injection distal to a branching point, which
would exclude part of the tumour area [34], or accessory
arterial blood supplying vessels or parasitized arteries [34].
In such cases, the test angiogram should be repeated with
more selective 99mTc-MAA administration into the tumour-
feeding arteries followed by SPECT/CT imaging for confir-
mation of exact targeting.

Pretherapeutic dose estimation and dosimetry

For 90Y-loaded glass microspheres, the dose calculation was
based on the accepted simplified formula that includes per-
centage of pulmonary shunting and the mass of the liver
volume to be treated [51]:

ILD ¼ IA� 1−Sð Þ � 50=W
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where ILD is the injected liver dose, IA is the injected
activity in gigabecquerels, S is the percentage of pulmonary
shunting as measured by MAA scan, and W is the mass in
kilograms of the liver volume to be treated. The goal was to
deliver a radiation dose of 120±20 Gy to the involved liver
volume. For 90Y resin microspheres, two approaches to esti-
mating the needed activity were used: the body surface area
(BSA) method and the partition model based on the Medical
Internal Radiation Dosimetry (MIRD) methodology. The
BSA method uses only the BSA index and the tumour burden
to calculate the 90Yactivity and thus cannot be considered as a
real dosimetry approach. Indeed, it does not take the tumour-
to-normal liver activity ratio into account, which is a patient-
specific and sometimes a lesion-specific measure of the rela-
tive difference in microsphere trapping between tumoral and
nontumoral tissue related to their vascularization [52–54].
However, the BSA method is widely used in treatment with
90Y-loaded resin spheres for its simplicity and safety.

The partition method considers the lung, the tumour and
the healthy liver as separate compartments, and requires the
assessment of the tumour-to-normal liver activity ratio, as well
as the tumour and healthy liver mass. As a result, in addition to
natural patient variability, anatomic and metabolic effects of
previous treatments, such as liver resection and radiofrequen-
cy ablation, are taken into account, leading to a more accurate
dose estimation [55]. However, this method is limited to well-
delineated tumours such as HCC and is of limited value in
multiple/disseminated lesions.

Of note, tumour dosimetry should be based on reporting
the dose in units of gray rather than megabecquerels per
millilitre. For example, a recent study by Van de Wiele et al.
in 13 patients showed no significant difference in 99mTc-MAA
specific uptake (median 2 MBq/ml) in responding and
nonresponding lesions in RE with glass microspheres [35].
This uptake corresponded to a tumour dose range of 90±
90 Gy. In line with this, Chiesa et al. [56, 57] found in a
retrospective study of 52 patients treated with 90Y-loaded
glass microspheres an overlap in the absorbed dose of the
nonresponding tumours (0 – 500 Gy) and of the responding
tumours (250 – 1,500 Gy). In that study, the Liver Normal

Tissue Complication Probability (NTCP) strongly depended
on the Child Pugh status, with NTCP50 occurring around an
absorbed doseDof 100 Gy for Child PughA. This stresses the
importance of reporting dosimetry results in gray rather than
megabecquerels per millilitre. Another drawback of distribu-
tion prediction and dosimetry on the basis of 99mTc-MAA
SPECT/CT is the discrepancy in intrahepatic tracer distribu-
tion between before and after treatment.

Chiesa et al. [56] reported the problem of differences in the
distribution of 99mTc-MAA and 90Y microspheres. In 29
patients treated with the same intended catheter positioning
as in the pretherapeutic study, the biodistribution was mark-
edly different between the two modalities in two of the 29
patients (7 %). Jiang et al. [58] found a segmental perfusion
difference (SPD) between the pre- and posttherapeutic SPECT
studies in 31 treatments out of 81, all performed with the
catheter in the same intended position. Carefully reanalysing
the position of the catheter tip in the two angiograms, they
noted only a slight difference in catheter position in 24 of the
31 treatments with SPD, 21 of which showed the catheter tip
close to an arterial node. SPD occurred in two treatments
despite an identical tip position, also close to an arterial
bifurcation. However, for five treatments with SPD no partic-
ular explanation could be found. Recently, Wondergem et al.
[59] confirmed these features in a similar study.

If at all possible, the catheter tip should be in the same
position in the two procedures. However, Jiang et al. also
showed that in 9 % of patients (5/57) the SPD could not be
explained. A possible explanation can be found in the com-
puter simulations performed by Basciano et al. [60], who
found that even for a remote node, the microsphere spreading
between daughter vessels depends on the injection time-frame
(i.e. during blood acceleration, peak or deceleration), on the
injection speed and also on the cross-sectional position of the
catheter tip in the artery. The higher number of resin or glass
microspheres compared to that of MAA particles could also
play a role by differently altering the blood flow during the
injection [59]. All these discrepancies are in line with early
tumour response studies that displayed a better correlation
with the absorbed dose using posttherapy dosimetry [61] than
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Fig. 2 Patient with HCC in whom RE of a single HCC in the left liver
lobe (aMRI scan, red arrow) was planned. The first test angiogram (b)
shows diffuse tracer accumulation in the left liver lobe and no specific

uptake in the tumour area. The second test angiogram after placing the
catheter tip more distally (c) shows accentuated accumulation in the
tumour area without any relevant uptake in the noninvolved liver



using pretherapy dosimetry [48]. One might also perform
“dosimetry on the fly” by tracking the microsphere de-
position during catheterization; this would be a major
evolution [62, 63].

Bremsstrahlung SPECT/CT after radioembolization

BS means the photons emitted by beta particles as they lose
their energy in tissue [64]. BS imaging should be performed
within 24 h of RE. BS SPECT/CT is used to confirm satis-
factory microsphere delivery to the target arterial territory.
However, no study with a significant number of patients has
yet confirmed this. Quantitative evaluation of BS scans with
SPECT/CT indicates that this approach may be feasible de-
spite scatter artefacts [31, 65, 66]. Areas of tumour uptake
after RE were demonstrated by 90Y BS SPECT/CT in a case
reported by Mansberg et al. [30]. According to our experience
with BS SPECT/CT, evaluation of tracer deposition in the
liver, and especially in metastases, is feasible. Additionally,
the absence of 90Y accumulation in a considerable lesion/area
correlates well with an unfavourable response.

Although whole-body and planar BS scans can detect
diffuse extrahepatic 90Y microsphere accumulation in the
lung, intestinal tract, or along the HFA, their analysis may be

difficult and misleading due to low spatial resolution. Further-
more, the localization of several different organs within this
relatively small region, especially in the upper abdomen,
requires analysis of tomographic images to accurately deter-
mine whether the 90Y has accumulated in the liver or in an
adjacent organ (Fig. 3). Ahmadzadehfar et al. [28] evaluated
the significance of BS SPECT/CT in predicting GI ulcers in
188 RE procedures, and observed a dramatic improvement in
the accuracy of SPECT/CT compared to SPECT alone. Thus,
BS SPECT/CT should be performed after RE to confirm the
safe distribution of 90Y microspheres and for the prediction of
GI side effects, for an appropriate and timely management
strategy if extrahepatic tracer deposition occurs.

Similar to 99mTc-MAA SPECT/CT, there are no defined
instructions for BS acquisitions. The first issue concerning BS
imaging is choosing the optimal energy window. Due to the
continuous and broad energy distribution of BS photons, and
the lack of a well-defined photopeak for 90Y BS imaging,
there is significant variability in the acquisition energy win-
dow choices [67]. In a phantom study, Ito et al. [68] used three
energy window widths of 50 % (57 – 94 keV) centred at
75 keV, 30 % (102 – 138 keV) centred at 120 keV and 50 %
(139 – 232 keV) centred at 185 keV set on the 90Y BS
spectrum. They found that BS SPECT acquisition using the
120 keV window resulted in the highest spatial resolution and

Fig. 3 Whole liver treatment
with resin spheres in a 75-year-
old patient with cholangiocellular
carcinoma (a planar BS, bBS
SPECT, cBS SPECT/CT, dCT).
Due to early onset of flow
deceleration until stasis, the
administration was terminated
(total activity 0.6 GBq). Backflow
was not apparent on the
angiogram. The planar BS scan
shows no pathological findings.
The BS SPECT/CT image shows
focal gastric accumulation
(arrow). One week after RE the
patient developed gastric pain due
to a radiation-induced prepyloric
ulcer in the antrum confirmed by
gastroduodenoscopy
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the lowest diagnostic uncertainty, while the sum window (75,
120 and 185 keV) showed the highest sensitivity (about three
times higher than that of the 120 keV window). Most centres
use medium-energy, general-purpose collimators (MEGP)
[29, 31, 69, 70]. However, there are reports that a high-
energy general purpose collimator (HEGP) would also be
acceptable [69, 71–73]. For SPECT acquisition, a 128×128
matrix with 64 frames (20 – 30 s per frame) can be used. An
iterative reconstruction with attenuation correction may be

performed [72, 74]. We recommend using the MEGP, the
window centred at 120 keV and iterative reconstruction.

Posttherapeutic dosimetry

Quantitative BS SPECT/CT would require sophisticated cor-
rection of intrapatient and intradetector x-ray scattering which
are not (yet) commercially available [65, 75, 76]. In contrast,

AAW: anterior abdominal wall
RE: radioembolization
HFA: hepatic falciform artery

NoYes

NoYes

Tc99m-MAA- SPECT/CT

No extra hepatic 
accumulation

Extra hepatic 
accumulation

except gallbladder & 
AAW

Accumulation in 
gallbladder

Accumulation in 
AAW

Review the angiogram 
Adjust catheter position 

(distal to the cystic 
artery) or perform a super 

selective therapy

Coil-embolize the HFA, if 
possible, else RE without 

any change in therapy 
plan

Radioembolization

Aberrant vessels visible ? 

Coil-embolize the 
aberrant vessels 
+ repeat Tc-MAA-

SPECT/CT

Is a super selective RE 
feasible ? 

Perform a super selective 
Tc-MAA injection in the 

same session,
Followed by RE

No Radioembolization

Fig. 4 Flow chart highlighting the role of SPECT/CT in the treatment pathway. AAW anterior abdominal wall, RE radioembolization, HFA hepatic
falciform artery
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all PET/CT systems provide the possibility of quantification,
so PET/CTwill be used more and more in post-RE dosimetry
assessment [77–80].

Summary

Pretherapeutic99mTc-MAA SPECT/CT and posttherapeutic
BS SPECT/CT have been shown to be superior to planar
and SPECT imaging alone in treatment planning as well as
for post-RE imaging. By using SPECT/CT the efficacy and
safety of RE can be improved significantly (Fig. 4). In addi-
tion SPECT/CT can improve the pretherapeutic dose estima-
tion with a partition model because of exact delineation of
tumoral and nontumoral liver tissue as well as quantification
of liver perfusion. Although posttherapeutic dosimetry with
BS SPECT/CT might be possible, 90Y PET/CTwill probably
become the method of choice in post-RE assessment in the
near future.

Conflicts of Interest None.
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