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Abstract Somatostatin is a peptide with a broad distribution
in the nervous system and acts as a neurotransmitter in several
organs, having a wide range of mainly inhibiting effects, such
as the suppression of growth hormone release, as well as the
inhibition of pancreatic and gastrointestinal hormone release.
Five somatostatin receptor subtypes have been cloned and
demonstrated to have an emphasized expression in all human
tumours. In particular, type 2 receptors were identified as the
most frequently represented on the surface of neuroendocrine
tumour cells, providing the molecular basis for many clinical
applications of somatostatin analogues. Towards the end of
the 1980s, the in vivo demonstration of somatostatin receptors
on the surface of some tumours raised interest in receptor
imaging, and indeed the peptide receptor overexpression on
tumour cells, as compared to normal tissues, constitutes the
basis for molecular imaging of these tumours. This review
intends to illustrate the development of single photon emis-
sion radiopharmaceuticals for the study of somatostatin recep-
tors and their application in diagnostic imaging.

Keywords Somatostatin . Somatostatin receptor
scintigraphy (SRS) . Single photon emission computed
tomography (SPECT) . Neuroendocrine tumours (NET) .

Gastroenteropancreatic (GEP) tumours . Peptide receptor
radionuclide therapy (PRRT)

Introduction

Somatostatin is a peptide with a broad distribution in the
nervous system and acts as a neurotransmitter in several
organs, having a wide range of mainly inhibiting effects,
such as the suppression of growth hormone release, as well
as the inhibition of pancreatic and gastrointestinal hormone
release [1, 2]. Five somatostatin receptor subtypes have been
cloned of which sstr 1 and 4 are grouped into one family and
sstr 2, 3 and 5 into another. They all are G protein-coupled
receptors located at the cell membrane [3].

Pangerl et al. [4] reported that only sstr3 seems to have an
emphasized expression in all human tumours, whilst sstr2
appears to be the most frequently represented receptor over
the surface of neuroendocrine tumour (NET) cells [5], pro-
viding the molecular basis for many clinical applications of
somatostatin analogues [6].

Towards the end of the 1980s, the in vivo demonstration
of somatostatin receptors on the surface of some tumours
raised interest in receptor imaging [7], and indeed the pep-
tide receptor overexpression on tumours cells, as compared
to normal tissues [8, 9], constitutes the basis for molecular
imaging of these tumours.

This review intends to be a “voyage” through the devel-
opment of single photon emission radiopharmaceuticals for
the study of somatostatin receptors and their application in
diagnostic imaging.

We will describe the somatostatin analogues and the de-
rived radiopharmaceuticals, describe the imaging technique
and show the results and applications in the clinical scenario.

Somatostatin analogues

Somatostatin is an acid polypeptide broadly distributed
throughout different organs and tissues including the central
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nervous system. Structural and functional studies on this
peptide demonstrated the amino acid components that are
considered fundamental for the peptide activity in the body;
therefore, a number of peptides showing similarities in the
binding affinity of the native somatostatin have been
synthesized [10].

The most important octapeptides in clinical use are
octreotide and lanreotide, registered in several countries
for clinical use [11] (Table 1).

Octreotide-based radiopharmaceuticals

The radiopharmaceutical that was first used in patients to
study human NET is 123I-Tyr3-octreotide, a radioiodinated
somatostatin analogue with a Tyr substitution [12, 13]. Due
to the costs of producing 123I, the need of special technology
and skills for peptide iodination and the difficult interpretation
of images due to the accumulation of the radiopharmaceutical
in the bowel—a consequence of the predominantly biliary
clearance of the product—led to the development of 111In-
DTPA-D-Phe1-octreotide (also called 111In-pentetreotide).
This tracer became the first radioreceptor imaging tracer com-
mercially available (OctreoScan, Mallinckrodt Medical, St.
Louis, MO, USA) that was approved in 1994 by the US Food
and DrugAdministration as an imaging agent for somatostatin
receptor-positive NET. 111In-pentetreotide has shown high
accuracy for imaging NET [14–16] (Fig. 1).

Due to the affinity of 111In-pentetreotide to bind to sstr2 it
has shown effectiveness in diagnosing and localizing NET. By
means of this diagnostic ability staging of the disease through
the detection of metastases has been made possible [17, 18].

As compared to 123I-Tyr-octreotide, it shows less intesti-
nal accumulation as it is mainly cleared via the kidneys [19]
and appears to be more suitable for late imaging thanks to its
longer half-life, improving the interpretation of the scanning
of the upper abdomen.

Given the importance and success of 99mTc as a
routine isotope in nuclear medicine imaging, it came

as a logical consequence that 99mTc-labelled somatostat-
in analogues have been developed, namely the 99mTc-N-
α-(6-hydrazinonicotinoyl)-octreotide (99mTc-EDDA/
HYNIC OCT) [20, 21] (Fig. 2). At that time propaga-
tion of the tracer was hampered by proprietary rights on
the peptide. For this reason it has remained a tracer for
in-house use. Interestingly it is currently being offered
as a routine product by POLATOM (Warsaw, Poland).
Besides imaging of NET it has been used in the study
of thyroid-associated orbitopathy [22].

Further improvements in the development of radio-
receptor radiopharmaceuticals have been achieved with
the introduction of DOTA a more universal chelator for
metal ions, in the attempt to develop peptides that could
be labelled to other isotopes such as 90Y with therapeu-
tic rather than diagnostic aims. On the diagnostic side,
111In-DOTA-D-Phe1-Tyr3-octreotide shows similar bio-
distribution of 111In-DTPA-D-Phe1-octreotide [23].

Three other tracers are 111In-DOTANOC (1-NaI3-octreotide)
[24], 111In-DOTANOC-ATE (1-NaI3-Thr8-octreotide) and
111In-DOTABOC-ATE, (Bz-Thi3-Thr8-octreotide), the applica-
tions of which are limited though and are not currently
commercially available [25, 26]. The replacement of octreotide
with octreotate has eventually shown a decrease of lipophilicity
[27], boosting the affinity for the sstr2.

Among octreotate-based radiopharmaceuticals there
are maltotriose-123I-Tyr3-octreotate (123I-Mtr-TOCA) that
however did not show major imaging advantages [28]
and 99mTc-Demotate for which preclinical evaluations
are available [29–31].

It is interesting to mention that this Demotate peptide has
been further developed into a positron emission tomography
(PET) tracer in a more sophisticated combination with
receptor-based reporter gene features [32].

The most recent contribution to 99mTc-labelled peptides is
Demotensin used for the detection of brain metastases [33].

Other analogue-based radiopharmaceuticals

The successful introduction of 111In-pentetreotide as a ra-
diopharmaceutical for scintigraphic imaging coupled with
the knowledge about other somatostatin analogues with
different affinity profiles led as a consequence to efforts in
developing new radiopharmaceuticals with higher sensitivity
or a wider somatostatin receptor subtype affinity profile.

Some of these somatostatin analogues are characterized by
the macrocyclic chelator DOTA instead of DTPA in their
structure, suitable for the labelling not only with 111In for
diagnostic use but also with beta emitters, namely 90Y and
177Lu, used for peptide receptor radionuclide therapy (PRRT).

An example is 111In-DOTA-lanreotide, known also as
MAURITIUS (Multicenter Analysis of a Universal

Table 1 sstr subtype selectivity to endogenous somatostatin and
somatostatin analogues modified from Volante et al. [10]

Ki (nM)

Agonist sstr1 sstr2 sstr3 sstr4 sstr5

SS-14 1.1 1.3 1.6 0.53 0.9

SS-28 2.2 4.1 6.1 1.1 0.07

Octreotide >1,000 0.6 34.5 >1,000 7

Lanreotide >1,000 0.8 107 >1,000 5.2

Vapreotide >1,000 5.4 31 45 0.7

SOM-230 9.3 1.0 1.5 >100 0.2
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Fig. 1 Imaging with 111In-pentetreotide. Patient affected by well-
differentiated pancreatic NET. Diagnostic scan pre-therapy showed
advanced disease with nodal, liver and bone metastases. After two

cycles of treatment (one with 177Lu-DOTA-TATE and one with 90Y-
DOTA-TATE) the post-therapy scan showed good response to
treatment

Fig. 2 Imaging with 99mTc-EDDA/HYNIC-TOC. Case of unknown primary. SRS imaging detected focal uptake in the ileum and a mediastinal
node. CT fusion and registration was performed between separate scans
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Receptor Imaging and Treatment Initiative: a European
study), that has been used in Europe for dosimetry studies
for therapy with 90Y-DOTALAN. Compared to 111In-DTPA-

D-Phe1-octreotide, it was shown to have lower affinity for
NET but high affinity for intestinal adenocarcinoma and
differentiated thyroid cancer [34]. One drawback of 111In-
DOTA-lanreotide, however, is its affinity for bone marrow
which makes diagnostic interpretation difficult.

99mTc-Depreotide, P829, commercially also known as
NeoTect or NeoSpect, was approved for lung cancer studies
[35]. Its applications for NET in the abdomen are reduced by
the short half-life of the labelling isotope, thus not permit-
ting late imaging to reduce the abdominal background [36].

99mTc-Vapreotide (RC-160 Octastatin) was developed for
applications in gastroenterology and NET. It shows high
binding affinity for sstr 2 and 5 and less for sstr 3 and 4
[37] (Table 2).

Somatostatin receptor scintigraphic imaging

Technique

Revised somatostatin receptor scintigraphy (SRS) guide-
lines have recently been published by the European Associ-
ation of Nuclear Medicine (EANM) [38]. In an abridged
way the method can be summarized as follows.

Previous to the moment of injecting the tracer prep-
aration of the patient is needed. Any “cold” somatostat-
in analogues should be suspended 4 weeks before
scintigraphy. In addition the administration of a mild
oral laxative to reduce the abdominal interferences is
recommended.

The preferred administered activity is 200 MBq [39–42]
and a peptide amount of 10 μg, which is not expected to
produce significant pharmacological effects.

The radiopharmaceutical is prepared according to the
manufacturer’s indications and undergoes quality controls
during which the activity is measured in a calibrated ioni-
zation chamber and the radiochemical purity is verified with
a thin-layer chromatography (TLC) method.

A gamma camera equipped with a medium-energy
parallel-hole collimator with 111In photopeaks (172 and
245 keV) set for 20% windows is used to acquire 4-, 24-
and also 48-h post-injection planar total body scans. Further
single photon emission computed tomography (SPECT)
images of the area of interest, neck, thorax or abdomen
can also be acquired at both 4 and 24 h, but preferably at
24 h.

As we further explain in the following section, CT cor-
egistration has been reported to improve the localization of
the lesions, thanks to the attenuation correction [43–45].

The 99mTc-labelled octreotide has also been used for
image fusion studies [46].

Images are processed according to the preferences of
each nuclear medicine department. Image viewing depends
on the technology available on site.

Normal findings and imaging pitfalls

Thyroid, spleen, liver, kidneys and sometimes pituitary
gland are visualized as normal foci of uptake in SRS [19,
47]. The uptake in pituitary, thyroid, spleen and adrenals
depends on receptor binding. The excretion via the liver
may cause the visualization of bowel; therefore, the use of
laxatives prior to late scanning (at 24–48 h) is recommended

Table 2 Somatostatin receptor
radiopharmaceuticals

CCA currently commercially
available

Radiopharmaceutical Availability

Full name Abbreviation

123I-Tyr3-octreotide Historical
111In-DTPA-D-Phe1-octreotide 111In-DTPA-OCT (111In-pentetreotide) CCA
111In-DOTA-D-Phe1-Tyr3-octreotide 111In-DOTA-TOC In house
111In-DOTA-Tyr3-octreotate 111In-DOTA-TATE In house
111In-DOTA-NaI3-octreotide 111In-DOTA-NOC In house
111In-DOTA-NaI3-Thr8-octreotide 111In-DOTANOC-ATE Research
111In-DOTA-Bz-Thi3-Thr8-octreotide 111In-DOTABOC-ATE Research
99mTc-EDDA/HYNIC-Tyr3-octreotide 99mTc-EDDA/HYNIC-TOC In house
99mTc-EDDA/HYNIC-Tyr3-octreotate 99mTc-EDDA/HYNIC-TATE In house
123I-Mtr-TOCA-octreotate Research
99mTc-Demotate In house
111In-DOTA-lanreotide 111In-DOTA-LAN (MAURITIUS) In house
99mTc-depreotide CCA
99mTc-vapreotide Research
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in order to differentiate aspecific areas of uptake [48].
The radiopharmaceutical is also excreted via the kidneys
and is reabsorbed in the renal tubular cells: on the one
hand this causes the possible visualization of the urinary
bladder and on the other a higher radiation exposure of
the kidneys, requiring a good hydration status and even
infusion at therapeutically administered doses for renal
protection.

A specific uptake in breast or in sites of recent surgery,
the visualization of gallbladder or the presence of accessory
spleens could lead to misinterpretation (Table 3).

There are also some other possible pitfalls emanating
from other conditions such as inflammations and infections,
granulomatous diseases, nodular goiter and cerebrovascular
accidents [49].

Some of the SRS drawbacks related to the limited spatial
resolution and the lack of anatomical landmarks may be
overcome by the use of hybrid SPECT/low-energy CT inte-
grated diagnostic systems. There is an interesting number of
studies reporting an improvement in terms of diagnostic
accuracy in general nuclear medicine when using a
SPECT/CT device, and in particular the contribution of
CT fusion to NET imaging has been reported by Krausz et
al. [50] who found an incremental value of SPECT/CT over
SPECT alone of 32%, with a subsequent change of patient
management in 14% of cases. Similar results were described
by Hillel et al. [44].

In a small series of patients studied by Moreira et al.
[51] CT fusion imaging proved to be of additional value
in NET imaging, and more recently Perri et al. [52]
prospectively compared the performance of 111In-pente-
treotide SPECT and SPECT/CT in patients with known
or suspected NET and analysed the results on a patient-
by-patient and lesion-by-lesion basis. SPECT/CT
showed a 95.3% sensitivity and 92.1% specificity whilst
for SPECT alone sensitivity was 95.3% and specificity
was 71%, confirming that CT fusion improving the
anatomical localization of the areas of uptake is useful
in reducing equivocal findings.

Imaging results

The sensitivity of SRS by means of 111In-DTPA-octreotide
scan is well documented in the diagnosis pathways for NETs
but may vary depending on the type of tumour studied and
on the site of the disease. As already said one of the major
issues with the study of NETs is the heterogeneity of these
neoplasms.

Somatostatin receptor-positive tumours include pituitary
adenomas, gastroenteropancreatic (GEP) tumours, carci-
noids, small cell lung cancers (SCLC), paragangliomas,
phaeochromocytomas and neuroblastomas and medullary
thyroid cancer. Some breast cancers have been reported
and among the non-oncological diseases sarcoidosis can
show positive results at SRS [10, 53]

Kwekkeboom et al. [54] recently listed the SRS results in
tumours and other diseases (Table 4).

Pituitary

Somatostatin receptors have been demonstrated in vitro in
pituitary adenomas and positive results at SRS have been
reported in patients affected by functioning and non-
functioning pituitary adenomas, with the uptake higher in
the first group of patients than in the second [55, 56].
However, in pituitary adenomas the role of SRS is still
limited because of the physiological uptake in the same site
that makes the diagnostic accuracy poorer [55].

GEP NETs and carcinoids

GEPs and carcinoids are relatively rare diseases with a wide
range of clinical presentations and therefore require a com-
plex diagnostic workup in which scintigraphic imaging
plays a relevant role both alone or in association with other
instrumental examinations (Fig. 3).

The use of SRS in GEPs is largely diffused and there is
nowadays quite a consolidated experience about it, sup-
ported by clinical data on its accuracy which is higher than
conventional imaging (i.e. CT or MRI) with a sensitivity of
80–100% in localizing the primary tumour and disease
burden [57, 58]. The association with other imaging techni-
ques may improve the already high accuracy [59].

In a multicentre trial in Europe Krenning et al. [60]
studied the sensitivity of histologically or biochemically
proven pancreatic NET. The results were promising with a
detection rate of 100% for glucagonomas, 88% for VIPo-
mas, 72% for gastrinomas, 82% for non-functioning islet
cell tumours and 87% for carcinoids.

Carcinoid tumour detection has been reported at nearly a
100% sensitivity and many authors describe the detection of
unknown and unexpected sites of diseases that were not
found at other imaging modalities [61]. This is very helpful

Table 3 Causes of potential misinterpretation of negative results with
111In-pentetreotide scintigraphy modified from Kwekkeboom et al.
[54]

Cause

Possible competitive effect against the tracer by the presence
of unlabelled somatostatin

Different affinity profile of the analogue for the various sstr
subtypes and variability of expression of the receptors:
subtypes of receptors expressed and density of sstr expression
over the tumour cells may influence the tumour detectability

Liver metastases may be taking up the tracer with a similar
degree as the normal liver
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as it can modify the therapeutic strategy in the management
of the patient.

The reported sensitivity for the diagnosis of insulino-
mas is lower and ranges between 20 and 60%. [13, 62–
64]. The density of expression of somatostatin receptor
is different in benign and malignant insulinomas and a
higher number of 111In-DTPA-pentetreotide-positive scans
have been reported [65].

In patients affected by malignant insulinomas, uptake
in the primary and in the metastatic foci has been
demonstrated in several studies [64, 66], although the
high sensitivity of endoscopic ultrasound [67] is well
known and the real role of SRS in these tumours still
needs further investigations.

Small cell lung cancers

SRS positivity has been demonstrated in lung cancers
and shows high sensitivity particularly in SCLC. In the
multicentre study by Reisinger et al. [68] including 4
centres and 100 patients, 111In-pentetreotide scintigraphy
yielded a sensitivity of 96% in diagnosing the primary

tumour. Overall sensitivity in detecting the metastases
was 54%, being higher for regional metastases (60%)
and lower for distant metastases (45%). In an article
published by Bombardieri et al. [69] the primary
tumours were detected with a sensitivity of 95% and
the metastases with a sensitivity of 80%. For the detec-
tion of the primary, Krenning et al. [13], O’Byrne et al.
[70] and Kwekkeboom et al. [71] reported a sensitivity
of 100%; Kirsch et al. [72] reported a sensitivity of
96% and Maini et al. [73] a sensitivity of 87%. The
average sensitivity in the reported literature in detecting
metastases is 59%.

Despite the limits in the detection of distant metastases,
SRS by means of 111In-pentetreotide is a useful tool for the
evaluation of the extent of disease and may upstage patients
from a limited disease to an extensive disease status.

Leitha et al. [74] reported a sensitivity of 84% for the
primary and 65% for the metastases in 20 patients affected
by SCLC and evaluated with 123I-Tyr3-octreotide.

99mTc-depreotide approved specifically for lung nodules
has been reported with a sensitivity of 97% and a specificity
of 73% [75].

Table 4 Sensitivity of somato-
statin receptor imaging modified
from Kwekkeboom et al. [54]

NHL non-Hodgkin’s lymphoma,
HL Hodgkin’s lymphoma

Disease Reference

High sensitivity (detection rate >75%)

Pituitary tumours Kwekkeboom et al. (1999) [55]

Gastrinomas de Kerviler et al. (1994) [92]; Gibril et al. (1999) [49]

Non-functioning pancreatic NETs Krenning et al. (1993) [13]; Lebtahi et al. (1997) [93]

Functioning pancreatic NETS
except insulinomas

Krenning et al. (1993) [13]; Lebtahi et al. (1997) [93]

Carcinoids Kwekkeboom et al. (1993) [94]; Westlin et al. (1993) [61];
Ahlman et al. (1994) [95]; Kälkner et al. (1995) [96]

Small cell lung cancer Kirsch et al. (1994) [72]; Kwekkeboom et al. (1994) [71];
Bombardieri et al. (1995) [69]; Reisinger et al. (1998) [68]

Paragangliomas Kwekkeboom et al. (1993) [81]; Telischi et al. (2000) [97];
Duet et al. (2003) [98]

Meningiomas Haldemann et al. (1995) [99]; Schmidt et al. (1998) [100]

Sarcoidosis and other granulomatous
diseases

Vanhagen et al. (1994) [101]; Kwekkeboom et al. (1998)
[102]

Graves’ disease and Graves’
ophthalmopathy

Postema et al. (1994) [103]; Krassas et al. (1995) [104]

Intermediate sensitivity (detection rate ranging between 40 and 75%)

Insulinoma Krenning et al. (1993) [13]; Zimmer et al. (1996) [62];
Schillaci et al. (2000) [63]; Vezzosi et al. (2005) [64]

Medullary thyroid carcinoma Kwekkeboom et al. (1993) [84]; Tisell et al. (1997) [105];
Adams et al. (1998) [106]

Differentiated thyroid carcinoma,
including Hürthle cell carcinoma

Postema et al. (1996) [107]; Haslinghuis et al. (2001) [108]

Breast cancer van Eijck et al. (1994) [109]

Lymphoma (NHL, HL) Lugtenburg et al. (2001) [110, 111]

Phaeochromocytoma van der Harst et al. (2001) [112]

Astrocytoma Schmidt et al. (1998) [100]
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Phaeochromocytomas and paragangliomas

Phaeochromocytoma is a neoplasm arising from the
adrenal medulla occurring in 0.1% of patients with
hypertension and is frequently associated with pallor,
headaches and palpitations; 10% of phaeochromocyto-
mas are bilateral, 10% are malignant and 10% arise
outside the adrenals [76].

SRS sensitivity in phaeochromocytomas has been
reported to be comparable to metaiodobenzylguanidine
(MIBG) scintigraphy, ranging between 86 and 100% as in
the papers by Tenenbaum et al. [77], Hoefnagel et al. [78]
and Krenning et al. [13].

Paragangliomas, rare tumours most frequently originat-
ing from aorticosympathetic paraganglia including the
organs of Zuckerkandl, produce catecholamine [79].

Telischi et al. [80] described 111In-pentetreotide scintig-
raphy having a high accuracy in the study of paraganglio-
mas (90%), a 94% sensitivity and a specificity of 75%.

Ten per cent of paragangliomas are metastatic and the
visualization in SRS can be of additional value to conven-
tional imaging [81].

Phaeochromocytomas and paragangliomas show SRS-
positive imaging, though 131/123I-MIBG imaging is usually
preferred for the study of the adrenal region which can be
difficult in SRS given the kidney excretion of the tracer and
the consequent high background activity.

Medullary thyroid cancer

Different single photon emission radiopharmaceuticals
have been proposed for the study of medullary thy-
roid carcinoma. 99mTc(V)-DMSA showed an overall
sensitivity of 69% as opposed to the 29% overall
sensitivity shown by 111In-pentetreotide in a study
by Kurtaran et al. [82], but according to other expe-
riences, SRS has been compared to conventional im-
aging [83] and has been reported with a sensitivity of
50–70% for medullary thyroid carcinoma [84].

Summary of clinical applications

The use of SRS in NET, above all in GEPs and carci-
noids, is well established worldwide for the management
of the patients and, as in the aforementioned 111In-pente-
treotide EANM guidelines [38], suited to:

& Localize primary tumours and detect sites of meta-
static disease (staging)

& Follow up patients with known disease to detect
residual, recurrent or progressive disease (restaging)

& Monitor the effects of therapy (surgery, radiotherapy,
chemotherapy or somatostatin analogue therapy)

& Select patients for PRRT
& Obtain prognostic parameters for the response to subse-

quent therapy

In NET a generally high level of sstr expression is
expected, but the heterogeneity of their distribution can
be responsible for some discrepancies in the clinical
features and in the imaging results. However, the major
advantages of the SRS seem to be the possibility of
selecting patients for PRRT and providing prognostic
information since the cellular differentiation is thought

Fig. 3 Imaging with 111In-pentetreotide of gastrinoma. Patient with
gastrinoma metastases, showing multiple lesions to liver, lung and
bone

Table 5 Results of SRS, CT and US in the detection of primary and
metastatic lesions from GEP NETs in 131 patients modified from Chiti
et al. [89]

SRS CT US

Primary tumour

Sensitivity (%) 62 43 36

Liver metastases

Sensitivity (%) 90 78 88

Specificity (%) 97 93 95

Accuracy (%) 93 83 91

Other soft tissue lesions

Sensitivity (%) 90 66 47

Specificity (%) 98 98 100

Accuracy (%) 95 83 67
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to be associated with high levels of sstr expression on
the cell surface [85].

Somatostatin receptor scintigraphy versus conventional
imaging

The heterogeneity of NET has made clear the need for an
integrated workup both in diagnosis and therapy: SRS has
shown to be an accurate tool for diagnosis but of course
conventional radiological imaging, including abdominal
computed tomography (CT), ultrasound (US) and magnetic
resonance imaging (MRI), is required as well.

There is not an extensive number of studies in which SSR
and conventional imaging have been compared. Zimmer et
al. [86] reported in metastasized NET of the upper gastro-
enteric tract a 52% detection rate for SRS, 36% for CT and
24% for MRI.

In another study by Zimmer et al. [62] ten gastrinoma
patients and ten insulinoma patients were studied with SSR
and conventional imaging. In a lesion-based analysis SRS
showed an 86% sensitivity, whereas the combination of CT,
US and MRI showed a 29% sensitivity.

In a study by Shi et al. [87] SRS, CT and MRI were
compared in a group of 48 patients with known or clinically
suspected NET. The sensitivity shown for SSR was 95%. In
a lesion-based analysis SRS showed a detection rate of 87%,
CT of 44% and MRI of 43%.

In 80 patients affected by Zollinger-Ellison syndrome stud-
ied by Gibril et al. [88], SRS succeeded in localizing the
primary gastrinoma in 56% of patients, with a higher sensi-
tivity than any conventional study including angiography.

We report here the interesting data from Chiti et al.
[89]: in 131 patients with known or suspected NET of
the GEP tract, the primary was identified by SRS with a
sensitivity of 62%. The sensitivity in the detection of
the primary fell to 43% for CT and to 36% for US.
Considering the liver metastases there was a comparable
sensitivity for SRS and US (90 vs 88%) and a lower
one for CT (78%) (Table 5).

In a smaller series of patients in a more recent study, Schil-
laci [90] described a lower sensitivity for conventional imaging
as compared to SRS in the detection of NET of the GEP tract.

However, we believe there is a need to compare the new
improved conventional imaging technique with SRS in a
larger series of patients.

Future role and perspectives

The basic biochemistry and physiology of somatostatin and
octreotide have been dealt with in a recent review [91]. It
brings a series of challenges for both basic science

researchers as well as for imaging experts. The “romantic”
past of having one ligand and one receptor has to be re-
evaluated in view of the complexities of receptor molecules
(homodimers, heterodimers and truncated forms). This form
of “socializing” might lead to the development of bivalent
tracers and even to multi-agent diagnostic and therapeutic
approaches. These thoughts might be applicable in many
other systems based on other peptides. New theoretical
models based on fractal dynamics that describe receptor
interactions and OMICS might turn out to be the language
of times to come and those who take up the challenge will
write new reviews on this topic. A “brave new world”
should come.

Conflicts of interest None.
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