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Abstract The quantitative accuracy and image quality of
positron emission tomography (PET) measurements with
124I and 86Y is affected by the prompt emission of gamma
radiation and positrons in their decays, as well as the higher
energy of the emitted positrons compared to those emitted
by 18F. PET scanners cannot distinguish between true
coincidences, involving two 511-keV annihilation photons,
and coincidences involving one annihilation photon and a
prompt gamma, if the energy of this prompt gamma is
within the energy window of the scanner. The current
review deals with a number of aspects of the challenge this
poses for quantitative PET imaging. First, the effect of
prompt gamma coincidences on quantitative accuracy of
PET images is discussed and a number of suggested
corrections are described. Then, the effect of prompt
gamma coincidences and the increased singles count rates
due to gamma radiation on the count rate performance of
PET is addressed, as well as possible improvements based
on modification of the scanner’s energy windows. Finally,
the effect of positron energy on spatial resolution and
recovery is assessed. The methods presented in this
overview aim to overcome the challenges associated with
the decay characteristics of 124I and 86Y. Careful application
of the presented correction methods can allow for quanti-
tatively accurate images with improved image contrast.

Keywords PET. Positron emission tomography . 86Y. 124I .

Quantitative imaging . Radionuclide therapy . Dosimetry

Introduction

Generally positron emission tomography (PET) is considered
as a quantitative imaging modality which is able to measure
the radioactivity concentration within the patient not just as
count rates, but in absolute terms with the unit of becquerel
per millilitre. This quantitative measurement is a prerequisite
for calculating the radiation dose administered to target and
healthy tissues in radionuclide therapy. The quantitative
property of PET is based on positron emission and the
subsequent annihilation process with the emission of a pair of
photons in opposite directions with an energy of 511 keV
each. Although the coincident measurement of a pair of
annihilation photons by a ring of detectors surrounding the
patient is disturbed by random and scattered (Fig. 2)
coincidences as well as by events lost due to tissue
attenuation, the related errors can be corrected sufficiently
so that the final quantitation error is in the range of a few per
cent. While this situation holds for the typical positron
emitters 18F or 11C, it is no longer true for isotopes such as
124I and 86Y. These radionuclides do not only emit positrons,
but also additional gamma radiation which may disturb
quantitative PET imaging and image quality in a number of
ways. Figure 1 shows simplified decay schemes of 124I, 86Y
and, for comparison, 89Zr and 18F. The decay schemes of the
nonstandard positron emitters include gamma radiation of
different energies and abundances. This gamma radiation,
also called prompt or cascade gamma radiation, is often
emitted essentially simultaneously with positrons. The
amount and the energy of the prompt gamma radiation is
different for the various nonstandard positron emitters.
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In the decay of 124I, with a positron abundance of
approximately 23%, about 50% of all positrons (β+

1 in
Fig. 1) are emitted simultaneously with a 603-keV gamma
photon (γ1 in Fig. 1). In the case of 86Y, on average about
three photons are emitted per decay, compared to a positron
abundance of 32%. All 86Y positrons are emitted simulta-
neously with either a 1,077- or a 1,854-keV gamma photon
(γ1 and γ6), and 628- and 443-keV photons are emitted in
33 and 17% of all decays, respectively. Furthermore, the
energy of the positrons emitted by 124I and 86Y is higher
than the positron energy of 18F. This affects the spatial
resolution of the PET images leading to decreased recovery
and, consequently, underestimation of radioactivity concen-
trations in small structures [1].

Apart from 124I and 86Y as obvious analogues of
therapeutic radionuclides, 89Zr (half-life 78.4 h) is included
here since it has been suggested as an analogue for 90Y
when labelling monoclonal antibodies [2]. 89Zr has much
preferred imaging properties compared to 86Y. The aim of
this chapter is to discuss the quantitation issues related to
the use of 124I and 86Y and, additionally, 89Zr with PET, as
well as possible corrections and improvements.

Prompt or cascade gamma coincidences

Prompt or (cascade) gamma coincidences occur as coinci-
dences of simultaneously emitted gamma photons with
energies accepted within the energy discrimination window
(e.g. 400–650 keV) with each other or with annihilation
photons and cannot be distinguished from true coincidences,
involving two annihilation photons. Detection of these
essentially true coincidences therefore introduces a bias in
the images which is not corrected for by the standard PET
corrections [3–6] (Fig. 2). Since the directions of the gamma
photons and the annihilation photons are not correlated, the
gamma coincidences are distributed nearly uniformly within
the PET field of view (FOV) causing a primarily flat
background in the sinograms, as indicated in Fig. 3, and in
the reconstructed images. This bias also results in degraded
image contrast [4, 7].

In the case of 124I, β+
1 is always emitted simultaneously

with a 603-keV photon whereas β+
2 emission results directly

in the ground state of 124Te, which means that 52% of the
positrons is emitted simultaneously with a prompt gamma.
For 86Y, the main two positrons are always emitted

Fig. 1 Simplified decay schemes of 124I, 86Y, 89Zr and, for comparison, the ‘standard’ PET isotope 18F. Only radiation with abundance >5% is
shown. Energy shown for positrons is maximum energy. Data based on [39]

Fig. 2 Degrading effects in
PET, from left to right random
coincidences, scattered radiation
and prompt gamma
coincidences where one of the
annihilation photons is detected
in coincidence with a prompt
gamma photon. Reprinted from
[4] with permission from IOP
Publishing
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simultaneously with at least two photons, and all other
positrons are emitted simultaneously with at least one
photon. Most of these photons have energies greater than
600 keV. Even if the primary energy of a prompt gamma is
above the higher energy level of the energy discrimination
window, the prompt gamma may be accepted after being
scattered within the patient or septa and having lost part of
its energy. For both isotopes, electron capture decays lead to
multiple gamma photons emitted simultaneously, which
might cause a so-called multiple coincidence. In addition, a
multiple coincidence is recorded if a true coincidence is
detected simultaneously with a prompt gamma. The proba-
bility of multiple coincidences is rather low, but increases
with a larger spatial angle of the PET detectors. Such events
are discarded in most PET scanners.

For 89Zr, on the other hand, prompt gamma coincidences
do not occur since the metastable 0.91 MeV level of 89Zr
has a half-life of 14 s [8], as shown in Fig. 1.

As illustrated in Fig. 3, which compares the background
caused by 124I with that of 18F, the background is greater in
3-D PET than in 2-D where the septa limit the acceptance
angle for photons not being within a plane perpendicular to
the scanner’s axis. Therefore, random and scattered
coincidences as well as gamma coincidences are decreased.
On the other hand, simulation studies have shown that the

principle advantage of 2-D imaging is to some extent
counterbalanced by an increase in the relative effect of
prompt gamma radiation due to down-scatter of high
energy photons in the septa [9].

Earlier generation PET scanners, such as the Scanditronix
PC4096 WB (Scanditronix, Uppsala, Sweden), had very long
and thick septa so that the recorded rate of gamma
coincidences became very low despite possible down-
scatter. The advantage of this kind of 2-D PET became
obvious by the papers of Pentlow et al., Herzog et al. and
Lubberink et al. [4, 10–13], and it can be concluded that
early studies using the PC4096 WB scanner for quantitative
imaging of nonstandard positron emitters provided valid
results even without any corrections for prompt gamma
coincidences.

The effect on quantitation due to the background caused
by the gamma coincidences depends on the specific
nonstandard positron emitter and on the specific tissue or
target to be examined. In the case of 124I and imaging of
thyroid cancer, the radioactivity distribution is limited to a
few foci, whereas the backgound is distributed across the
entire image and thus contributes little to the activity
concentration in a lesion. This situation is similar to that
displayed in Fig. 3, where the ratio of counts measured at
the maximum of a 124I point source in water and of the

Fig. 3 Normalized line source profiles derived from sinograms of 124I or 18F line sources inside a cylindrical phantom filled with water. Reprinted
from [10] with permission from Elsevier

Fig. 4 Images of a NEMA 1994
phantom with cold Teflon (top),
water (left) and air (right)
inserts. The measurements were
done with an ECAT Exact HR+
(Siemens/CTI, Knoxville, TN,
USA) PET scanner in 3-D
acquisition mode. There is a
clear bias in the Teflon and
water inserts for 86Y and, to a
lesser extent, for 124I. Reprinted
with permission from [16],
©2008 Edizione Minerva
Medica
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background counts is more than 10:1. For labelled anti-
bodies, however, the situation is different. Here, a lot of the
radioactivity remains in the blood or is distributed to major
organs. This effect may be considerable. Figure 4 illustrates
the background found in a cold water rod which is located
in a phantom homogeneously filled with 18F, 124I or 86Y.
The radioactivity concentration measured at the cold water
rod relative to the surrounding radioactivity is 2% for 18F,
14% for 124I and 56% for 86Y. Figure 4 also documents that
considerably greater errors are found in bone regions which
are simulated by the Teflon rod of the phantom. In this case,
the radioactivity concentration measured at the Teflon rod
relative to the surrounding radioactivity is 13% for 18F,
44% for 124I and 147% for 86Y.

Correction

Several methods have been suggested to correct for the bias
caused by prompt gamma coincidences. Firstly, subtraction
of a uniform background [4, 14] or a linear background
fitted to the sinogram data outside the object [4, 15] (shown
for 76Br in Fig. 5) has been suggested. In 2-D mode, the
assumption can be made that the outermost bins in the
sinogram contain only prompt gamma coincidences, since
scatter is negligible in these bins. Depending on the size of
the imaged object, however, this assumption may be wrong,
and especially in 3-D acquisition mode there is a
considerable amount of scatter in the edge bins. Herzog et
al. [16] found that 75% of the background had to be
subtracted for 86Y to obtain similar residual correction
errors in a cylindrical phantom with cold inserts as for 18F.
Buchholz et al. compared phantom measurements with and
without a uniform background subtraction for different
scanners [17]. An example of the effect of subtraction of a
uniform background on 86Y patient data is shown in Fig. 6.
Although this subtraction gives a good first approximation
for cylindrical objects in the centre of the FOV, the
assumption that the background caused by prompt gamma
coincidences is linear is generally not valid, as clearly
shown in Figs. 5 and 8. Therefore, Kull et al. [15] used a
second-order series expansion to describe the shape of the
background for 2-D scans with 86Y, where they determined
the second-order term using a measurement with a body
phantom and the linear portion of the background by fitting
to the sinogram tails of the individual patient, and also
included a recalibration of the scanner based on the trues to
singles ratio.

A convolution subtraction algorithm based on the
method suggested by Bergström et al. in the early 1980s

Fig. 5 Projections of a torso phantom filled with 76Br and 18F, along
its short axis, as measured on an ECAT Exact HR+ scanner in 3-D
mode. The decay scheme of 76Br resembles that of 86Y. The difference
between both projections shows the contribution of gamma coinci-
dences. The red line indicates the linear fit used to correct for prompt
gamma coincidences, corresponding to 80% of the counts in the
outermost bins. Adapted from [23]

Fig. 6 86Y-DOTATOC images
as measured with the ECAT
Exact in 2-D mode, without (top
row) and with (bottom row)
subtraction of a uniform
sinogram background. The
corrected image shows a lower
background in the liver and
a considerable reduction of
radioactivity concentration in
the spine. Reprinted from Fig. 4
in [17] with kind permission
from Springer Science+Business
Media
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for correction for scattered radiation [18] was described by
Beattie et al. [6]. This method does take patient-specific
variations into account, but has only been described for 2-D
acquisitions. Walrand et al. [5] used a patient-dependent
correction method based on sinogram tail fitting using an
86Y point spread function library, showing promising results.
A geometrical correction was suggested by Schweizer and

von Busch [19], calculating the contribution of prompt
gamma coincidences of a number of source points to each
line of response.

The single-scatter simulation scatter correction applied
on all last generation PET(/CT) scanners [20] usually
includes a scaling to match the estimated scatter contribu-
tion to the actual events measured just outside the body. If
this scaling includes both a multiplicative as well as an
additive factor, it implicitly performs a crude correction for
a uniform bias caused by prompt gamma coincidences as
well. This has been shown by Surti et al. for 124I on a
Gemini PET/CT scanner (Philips Healthcare, Cleveland,
OH, USA) [21, 22] (Fig. 7). As Fig. 7 also shows, using
only a multiplicative factor leads to overcorrection in the
centre of the image.

Finally, it has been shown that the distribution of prompt
gamma coincidences matches the distribution of random
coincidences rather well [23] (Fig. 8). Therefore, a
correction method involving subtraction of a scaled
randoms sinogram could be an accurate correction for
prompt gamma coincidences [23], possibly incorporated
into the single-scatter simulation. This method has been
realized by Watson et al. and Hayden et al. [24, 25] for
cardiac studies with the nonstandard positron emitter 82Rb,
which emits a 777-keV prompt gamma together with
positrons in only 14% of decays and has, so far, not been
implemented for 124I or 86Y.

Count rate performance

The increased singles rate due to gamma radiation leads
to increased random coincidence rates and, consequently,
reduced noise equivalent count (NEC) rates [26]. The
increased random rate can be accurately corrected for
using the standard delayed window method, but correction
for a larger random fraction increases image noise.
Figure 9 shows NEC rates for 124I and 11C as measured
using a cylindrical phantom. To calculate these NEC rates,
the scatter fraction for 11C was computed according to a
method described by de Jong et al. [27]. The total (scatter +
prompt gamma) background was measured in a similar
way for 124I as for 11C, and the prompt gamma

Fig. 7 Images of a 20-cm
diameter phantom containing
one 3-cm, one 1.5-cm and three
1-cm diameter spheres. From
left to right: 18F, 124I without
offset correction and 124I with
offset correction in the scaling
of the scatter estimate. Reprinted
with permission from [22],
©2009 IEEE

Fig. 8 Projections of a 10-cm off-centre cylindrical phantom with
cold inserts filled with 76Br (solid black line) and 18F (solid grey line)
as well as the prompt gamma contribution for 76Br (dashed line) as
measured with an ECAT Exact HR+ in 3-D mode (a) and
corresponding delayed coincidence projections (b). Shapes of delayed
coincidence and prompt gamma coincidence projections are approx-
imately similar. Reprinted from [23]
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contribution to this background was estimated assuming
identical scatter fractions for 11C and 124I. The NEC rate is
then described by:

NEC ¼ T2

Tþ Sþ Gþ 2D
ð1Þ

Here, T are the true coincidences, S and G are the number
of scattered and prompt gamma coincidences, respectively,
and D is the number of delayed coincidences.

For 124I, and even more so for 86Y, the fraction of
detected photons with energy outside the scanner’s energy
window increases considerably compared to positron-only
emitters. Rejection of photons outside the energy window
does contribute to dead time, but these photons are, on most
scanners, not counted in the singles rate. Since the dead
time correction is usually implemented as a function of
singles rate, it may become inaccurate [3, 15, 28, 29]. This
effect has previously been shown for 86Y [15], 124I [28] as
well as for 76Br [29], which has a decay scheme somewhere
in between that of 124I and 86Y in terms of the number of
emitted prompt gamma photons.

Energy window

One option to improve image quality for isotopes
emitting high-energy gamma radiation besides positrons
may be the use of a narrower energy window, which
reduces random coincidence rates involving higher-
energy photons, such as the 603-keV photon emitted by
124I [7, 30] (Figs. 10 and 11). Furthermore, the amount of
scattered higher-energy gamma photons which may
coincide with annihilation photons will be decreased.
Gregory et al. found an increase in NEC rates of 48%

for 124I when changing the energy window from 409–
665 keV to 455–588 keV on a Gemini Dual GS PET/CT
scanner [28]. Due to its higher standard lower level
discriminator, a more limited improvement was found for
the Gemini TF scanner when changing the energy window
from 440–665 keV to 440–560 keV [31]. In addition to a
different energy window, a narrower coincidence window
decreases random coincidence rates which is relatively of
more importance for 124I and 86Y than for 18F. Use of a
narrower energy window, however, may increase the
inaccuracy of dead time corrections as described in the
previous paragraph, and energy window-specific scanner
normalization may be required.

Fig. 10 a NEC rates, which are a measure of the signal to noise ratio,
of the Gemini TF-64 with 11C using the standard 440–665 keV energy
window (black), for 124I using this same window (blue) and for 124I
using a narrow 440–560 keV window (red). Activity concentrations
were normalized for positron abundance. b Improvement in recovery
of 124I using the narrower energy window [31]

Fig. 9 NEC rates for a 20-cm diameter phantom filled with 124I (solid
line) and 11C (dashed line) for the Gemini TF PET/CT scanner. Data
for 11C were based on Surti et al. [40] with radioactivity concen-
trations divided by 0.225 to account for the difference in positron
abundance between 124I and 11C [31]
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Resolution and recovery

One of the parameters influencing the accuracy of quanti-
tation is image resolution. The lower the image resolution
is, the greater is the partial volume effect which compro-
mises the analysis of small structures. As a first approxi-
mation, the image resolution of PET can be estimated by
the following equation:

r ¼ 1:25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d

2

� �2

þ 0:0022 � Dð Þ2þR2þb2

s

ð2Þ

where the image resolution r is expressed as full-width at
half-maximum (FWHM), d is the detector width, D is the
detector ring diameter and R is the effective positron range
[32]. The factor b equals 0 for detectors individually coupled
to photomultiplier tubes and 2 for a block detector design.

This equation takes into account the positron energy as
an important factor influencing the image resolution. Both
86Y and 124I emit positrons with different energies with
average energies ranging from 550 to 898 keV and from
686 to 973 keV, respectively [33]. For comparison, 18F
emits positrons with mean energy of 250 keV, 89Zr with
389 keV, 15O with 735 keV and 68Ga (mainly) with
836 keV. Thus, the positron ranges given in the literature
for 15O and 68Ga (2.0 and 2.2 mm [34]) can be regarded as
appropriate estimates for the mean positron ranges of 86Y
and 124I, respectively. The mean positron range of 18F is
0.64 mm. The consequences of the greater positron ranges

of 86Y and 124I can be estimated with Eq. 2 and are
summarized in Table 1 for typical design parameters of
human and small animal PET.

Thus, for small animal PET the effect of high positron
range is more severe than for human whole-body PET, both
in the relative and absolute sense. Pentlow et al. evaluated
the resolution of 124I using phantoms containing hot
spheres in a number of different scanners [11, 12], but did
not report actual resolution values. Herzog et al. [10]
measured an image resolution of 6.1 mm with 124I and of
5.1 mm with 18F in a line source centrally located in an HR
+ scanner and reconstructed with filtered backprojection
and a Shepp filter of 2.5 mm. Vandenberghe [30] examined
simulated line sources filled with 18F, 86Y or 124I and placed
centrally in an Allegro PET scanner (Philips Healthcare,
Cleveland, OH, USA). The line spread functions showed
FWHM values of 4.8, 5.7 and 6.1 mm, respectively.

Fig. 11 PET images of a patient
with metastatic thyroid cancer at
24 h after administration of
37 MBq 124I acquired on a
Gemini TF-64 PET/CT scanner
(a) 440–665 keV and (b) 440–
560 keV energy window. The
narrower energy window results
in a 15% improvement in image
contrast in the largest metastasis
(arrow) due to the decreased
image background [31]

Table 1 Theoretical spatial resolution (mm)

Human PET d=4 mm,
D=800 mm, b=2

Animal PET d=1.5 mm,
D=150 mm, b=0

18F 4.2 1.3
124I 5.0 2.9
86Y 4.9 2.7

Fig. 12 Recovery for 124I and 18F as measured with an ECAT Exact
HR+ scanner in 3-D mode. Reprinted from Fig. 2 in [38] with kind
permission from Springer Science+Business Media
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Comparative resolution measurements were performed by
González Trotter et al. [35] using line sources filled with
either 18F or 124I and placed in the centre of a Discovery LS
PET/CT scanner (GE Healthcare, Milwaukee, WI, USA)
operated in 2-D mode. After reconstruction with filtered
backprojection using a Gaussian filter of 7 mm the
measured resolution was 8.71 and 9.74 mm, respectively.
Bading et al. [36] examined the degradation of image
resolution, when 124I was used comparatively with 18F in a
microPET R4 small animal scanner (Concorde/Siemens,
Knoxville, TN, USA). In the scanner’s centre the FWHM
was 2.3 mm for 124I and 1.9 mm for 18F. Using a Discovery
STE PET/CT scanner Zhu and El Fakhri [37] studied the
spatial resolution of 18F and 86Y with a line source placed
centrally in air and reported values of 5.56 and 6.06 mm.
Gregory et al. reported a resolution degradation of
0.7 mm for 124I compared to 18F for the Gemini Dual
GS PET/CT scanner [28]. Although the numbers just
summarized differ depending on the scanner and recon-
struction method applied in the respective studies, the
effect of the higher positron energies of 86Y and 124I is
obvious: concordantly the image resolution is reported to
be 0.5–1 mm inferior to that when using 18F. Considering the
small increase in positron energy between 18F and 89Zr, only a
minor degradation in resolution of about 0.1 mm is expected
for 89Zr.

The effect of this degradation of image resolution for
124I on recovery, that is, the ability of the PET scanner to
quantify the radioactivity concentration in small structures,
was measured extensively by Jentzen et al. [38] (Fig. 12).
Recovery for 124I was considerably worse than for 124I,
even for spheres as large as 37 mm in diameter. This has to
be accounted for when quantifying tumour uptake of 124I
for dose estimations in thyroid cancer therapy, and the
authors conclude that recovery correction is mandatory for
124I, even for large structures.

Summary

The decay characteristics of 124I and 86Y set a challenge to
quantitative imaging of these isotopes. The methods
presented in this overview aim to overcome this as well
as to improve image quality, and careful application of
presented correction methods can allow for quantitatively
accurate images with improved image contrast.
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