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Abstract
Purpose The higher prevalence rates of depression and
anxiety disorders in women compared to men have been
associated with sexual dimorphisms in the serotonergic
system. The present positron emission tomography (PET)
study investigated the influence of sex on the major
inhibitory serotonergic receptor subtype, the serotonin-1A
(5-HT1A) receptor.
Methods Sixteen healthy women and 16 healthy men were
measured using PET and the highly specific radioligand
[carbonyl-11C]WAY-100635. Effects of age or gonadal
hormones were excluded by restricting the inclusion criteria
to young adults and by controlling for menstrual cycle
phase. The 5-HT1A receptor BPND was quantified using (1)
the ‘gold standard’ manual delineation approach with ten
regions of interest (ROIs) and (2) a newly developed

delineation method using a PET template normalized to the
Montreal Neurologic Institute space with 45 ROIs based on
automated anatomical labeling.
Results The 5-HT1A receptor BPND was found equally
distributed in men and women applying both the manual
delineation method and the automated delineation approach.
Women had lower mean BPND values in every region
investigated, with a borderline significant sex difference in
the hypothalamus (p=0.012, uncorrected). There was a high
intersubject variability of the 5-HT1A receptor BPND within
both sexes compared to the small mean differences between
men and women.
Conclusions To conclude, when measured in the follicular
phase, women do not differ from men in the 5-HT1A

receptor binding. To explain the higher prevalence of
affective disorders in women, further studies are needed to
evaluate the relationship between hormonal status and the
5-HT1A receptor expression.
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Introduction

Twice as many women compared to men suffer from major
depression and anxiety disorders, which affect nearly one-
fifth of the Western population and cause an immense
personal, social and economic burden (see, e.g. [1]). The
striking sex difference in prevalence rates appears to be
independent of country and culture and cannot be entirely
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explained by psychosocial factors, social support or coping
style [2]. Rather, it has been demonstrated that women and
men differ significantly in brain structure and function (for
reviews, see [3, 4]), suggesting a higher biological
susceptibility to depression in females. Interestingly, a
growing body of evidence suggests that the serotonergic
system, which is known to be altered in affective disorders,
may be sexually dimorphic. In the brain of female rodents,
a higher tryptophan content and utilization rate [5], a higher
serotonin synthesis and serotonin turnover [6] and overall
higher serotonin levels [7] have been demonstrated. Several
human studies reported a greater responsiveness to seroto-
nergic challenges in female participants [8]. Acute trypto-
phan depletion, used as an experimental model for
depression, was shown to affect females to a significantly
larger extent than males [9]. And also, in vivo assessment
of serotonergic structure and function with positron emission
tomography (PET) revealed sex differences in the serotonin
neurotransmission. Major methodological advancements
and the development of selective radioligands allow now
for a precise quantification and localisation of serotonergic
receptors and the serotonin transporter [10]. The few studies
that have been conducted in human subjects, however,
report findings that are in part contrasting the results
obtained in rodents. Using PET and the radioligand α-
[11C]methyl-L-tryptophan, the serotonin synthesis rate in
the brain of healthy male subjects was found to be higher
than the synthesis rate in females [11]. A lower serotonin
transporter binding in women was observed using the
radioligand [11C]MADAM [12]. A lower 5-HT2 receptor-
binding capacity in women was also reported [13]. The
reason for the discrepant results is still unclear.

Several lines of evidence indicate a sexual dimorphism of
the serotonin-1A (5-HT1A) receptor subtype, which is
suspected to be substantially involved in the pathogenesis
of depressive illness [14], anxiety disorders [15] and suicide
[16]. The 5-HT1A receptor binding is of particular interest for
psychiatry as it was shown to correlate with the treatment
effect of SSRIs (selective serotonin reuptake inhibitors) as
recently demonstrated by our group [17]. The 5-HT1A
receptors serve both as somatodendritic autoreceptors on
serotonergic neurons in the raphe nuclei of the brainstem and
as postsynaptic heteroreceptors. The highest densities of the
postsynaptic receptor are found in limbic areas (in particular
in the hippocampus and the anterior cingulate cortex), while
basal ganglia and the cerebellum exhibit very low densities
[18]. Postsynaptically located 5-HT1A receptors influence a
wide range of physiological and behavioural states by
modulating cholinergic, dopaminergic, glutamatergic and
GABAergic neurotransmitter release (for review, see [19]),
while autoreceptor activation in the raphe nuclei reduces
serotonergic cell firing and inhibits excitation and neural
activation in targeted cortical areas [20].

With regard to sex differences, the presynaptic function
of the 5-HT1A receptor was proposed to be decreased [21]
or increased in female rodents [22]. Animal studies
suggested area specific sexual dimorphisms with higher 5-
HT1A receptor binding in females in some regions (e.g. the
anterior cingulate cortex) while lower in other regions (e.g.
the hippocampus) [23, 24]. A higher 5-HT1A receptor
density in women was reported post mortem in the dorsal
raphe nucleus [25] and in the prefrontal cortex [26]. Several
other human post-mortem studies, however, found no
gender differences in binding sites [27-29]. The few PET
studies investigating sex differences in the 5-HT1A receptor
in humans in vivo resulted in controversial findings. Using
the radioligand [carbonyl-11C]WAY-100635, either a higher
5-HT1A receptor-binding potential (BPND, “BP non dis-
placeable” according to the nomenclature established in the
consensus paper by Innis et al. [30]) in female subjects was
found [12, 31] or only age-related effects without an overall
influence of sex [32].

Given the controversial results, the aim of the present
study was to prove the hypothesis of sex differences in the 5-
HT1A receptor-binding potential in 32 healthy volunteers
(16 male and 16 female subjects) matched to age and socio-
economic status. To account for the presumable influence of
gonadal hormones on the receptor binding [33], all female
subjects were measured within the follicular phase of the
menstrual cycle. To control for a possible effect of age [32,
34], the age range of the subjects was limited to 20–
35 years. Furthermore, a newly developed method for the
anatomical delineation of the 5-HT1A receptor maps was
introduced using a tracer-specific template, a coregistered
region of interest (ROI) template and automated anatomical
labelling (AAL) [35].

Materials and methods

Subjects

Thirty-six healthy subjects (18 females and 18 males)
participated in the PET study approved by the Ethics
Committee at the Medical University of Vienna. All
subjects gave written informed consent at the screening
visit and were recruited from the community via advertise-
ments. Female and male subjects were matched for age and
socio-economic status. The criteria for participation were
age of 20 to 35 years and physical health as assessed by a
general physical examination including neurological status,
electrocardiogram and a routine laboratory screening. The
narrow age range was chosen to minimize possible age
effects on the 5-HT1A receptor-binding potential [34].
Exclusion criteria comprised any chronic medication or
hormonal treatment including hormonal contraception
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within 6 months prior to the study, drug abuse, pregnancy,
irregular menstrual cycles, abnormalities in the physical
examination or any Axis I, DSM IV, psychiatric disorder as
assessed by the MINI International Neuropsychiatric
Interview obtained by an experienced psychiatrist [36].
Female participants were tested for pregnancy at the
screening visit and before each PET measurement using an
human choriogonadotropin urine test (ACON Laboratories,
Inc., San Diego, CA, USA).

Four subjects were excluded from the final analysis
either because of outliers in radiochemical variables (one
female, one male) or because the time activity curves of the
cerebellar regions exceeded the mean cerebellar binding by
more than two standard deviations (one female, one male)
[37]. The final statistical analysis included 16 female (age
24.1±2.6 years, mean ± SD) and 16 male subjects (age
26.2±4.2 years, mean ± SD). To control for menstrual cycle
phase at PET measurement, blood samples were collected
in the morning prior to the first examination, prior to PET
scans and on the day of the final examination from all
female participants. Plasma levels of estrogen, proges-
terone, testosterone, follicle stimulating hormone and
luteinizing hormone (LH) were quantified by the Clinical
Institute for Medical and Chemical Laboratory Diagnostics
at the Medical University of Vienna (for details of standards
and references, see http://www.kimcl.at). All female sub-
jects were measured within the follicular phase, i.e. within
the first 3–10 days of the menstrual cycle. The female
subjects were only measured when their hormonal plasmal
levels lied within the follicular reference range of 0.5–
1.0 ng/ml for progesterone, 22–215 pg/ml for 17β-estradiol
and 2.4–12.6 mU/ml for LH.

PET image acquisition

Subjects were measured using an ADVANCE full-ring PET
scanner (General Electric Medical Systems, Milwaukee,
WI, USA) at the Department of Nuclear Medicine, Medical
University of Vienna. For quantification of the 5-HT1A

receptor binding, the radioligand [carbonyl-11C]WAY-
100635 was chosen, a highly selective and specific 5-
HT1A receptor antagonist [38]. The tracer was prepared in a
fully automated PET synthesizer (GE Healthcare, Uppsala,
Sweden) at the Cyclotron Unit of the PET centre at the
Medical University of Vienna as recently described by our
group [39]. For image acquisition, the head of the subject
was positioned parallel to the orbitomeatal line using a laser
beam system to ensure the covering of the cerebellum in the
field of view (FOV). Head movements were minimized by
polyurethane moulded cushions and straps around forehead
and chin. A transmission scan (5 min) was performed in
two-dimensional mode for correction of tissue attenuation
using a retractable 68Ge ring source. The three-dimensional

image acquisition started simultaneously with the intrave-
nous bolus injection of the radioligand [carbonyl-11C]WAY-
100635, soluted in phosphate-buffered saline (pH 7.4). The
mean injected activity of the radioligand was 5.65±0.8
(mean ± SD) MBq/kg body weight, with a mean specific
radioactivity at the time of injection of 153±117 GBq/
μmol, and a radiochemical purity of 97.5±1.3%. Dynamic
scans were collected in three-dimensional mode and
comprised a series of 30 successive time frames (15×
1 min, 15×5 min) resulting in a total acquisition time of
90 min. Data were reconstructed in a 128×128×35 matrix,
with a slice thickness of 4.25 mm using an iterative filtered
back-projection algorithm (FORE-ITER). The spatial reso-
lution of the scanner was 4.36 mm full-width at half-
maximum at the centre of the FOV.

MR image acquisition

High-resolution T1-weighted images were acquired from
all subjects using a 3-tesla whole-body MEDSPEC S300
MR-scanner (Bruker BioSpin, Ettlingen, Germany) and a
magnetization-prepared rapid gradient-echo sequence
(128 slices, 256×256 matrix, slice thickness 1.56 mm,
voxel size 0.78×0.86 mm). The structural MR images
were coregistered to summed PET images (PETADD) for
definition of ROIs.

Data analysis

For quantification of the 5-HT1A receptor BPND, we applied
the Simplified Reference Tissue Model (SRTM) [40–42] as
implemented in PMOD 2.9 (PMOD Technologies Ltd.,
Zurich, Switzerland, http://www.pmod.com) [43] using the
cerebellum as reference region. Furthermore, in a second
approach, the 5-HT1A receptor BPND was quantified by
applying the non-invasive Logan Plot method [44]. Cere-
bellar time activity curves were normalized to its peak to
identify and exclude subjects with high specific binding in
the reference region [37]. Two complementary approaches
for the delineation of ROIs were applied, a manual
delineation method with 10 ROIs (including the cerebellum
as reference region) and an ROI-template-based, automated
method with 45 ROIs (including the cerebellum as
reference region), which was used to exclude possible bias
caused by manual delineation.

Manual delineation of ROIs

For the manual delineation method, the individual MR
images were coregistered to individual summed PET
images (PETADD) of 30 dynamic time frames using
Statistical Parametric Mapping software (SPM2, http://
www.fil.ion.ucl.ac.uk/spm/) [45, 46]. Nine regions of
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interest known for their high 5-HT1A receptor density [18]
were delineated on the coregistered MR images according
to the standardised anatomical criteria established by
Bremner et al. [47] and described by our group [15, 17].
Delineation was done by one investigator (C.S.) who was
blind to gender of the subjects. The regions of interest
(given in Fig. 3) included the anterior and posterior
cingulate cortices, insula, hippocampus, hypothalamus,
amygdala, the medial orbitofrontal cortex, the retrosplenial
cortex and the cerebellum as region of reference [48]. The
raphe nuclei were defined on the PETADD image by fixing a
circular volume of interest (0.08 cm3) over the highest
binding signal in the dorsal midbrain area.

Automated delineation of regions of interest

For the automated delineation method, we used an ROI-
template normalized to the 5-HT1A distribution map in the
stereotactic space of the MNI/ICBM brain (Montreal
Neurologic Institute/International Consortium for Brain
Mapping) and PMOD 2.9 [45]. Individual dynamic PET
data were normalized to this standardised 5-HT1A distribu-
tion map that corresponded to the ROI template. All 45
ROIs of this approach were based on the anatomical AAL
atlas implemented in the SPM2 software [35]. The ROIs are
given in Table 1. Figures 1 and 2 show representative ROIs
overlayed on the 5-HT1A receptor-binding potential map.
Time activity curves of the 45 regions were used for
quantification in PMOD 2.9.

Statistical analysis

Statistical analyses of the regional mean 5-HT1A receptor
BPND were done using the software SPSS 12.0.1 (SPSS
Inc., Chicago, IL, USA). The threshold of significance was
set at p<0.05, all tests were two-tailed. To control for
normal distribution and equality of co-variance, the
Kolmogorov–Smirnov test and the Levene’s test were
performed, respectively. Independent-samples t tests were
used to test for sex differences in age, radiochemical
variables and the normalized regional tracer delivery (R1).
Two-tailed Pearson product-moment correlation coeffi-
cients were calculated to test for a possible effect of age
or radiochemical variables on the 5-HT1A receptor BPND
(i.e. injected activity, radiochemical purity, weight of WAY-
100634, weight of unlabelled WAY-100635 and specific
activity of the radioligand). Variables without influence on
the 5-HT1A receptor-binding potential were dropped from
further analysis. To evaluate a mean effect of sex on the 5-
HT1A receptor BPND, a two-way analysis of variance
(ANOVA) was conducted using sex as between-subject
factor, region as within-subject factor, subjects as random
factor and the interaction term sex by region. For an

additional, exploratory analysis, independent-sample t tests,
with sex as independent variable, were conducted in each
region of interest. Bonferroni adjustment for multiple
testing was used to correct for type I error. Both delineation
methods were statistically analysed in the described way.

Results

The regional 5-HT1A receptor BPND values separated for
men and women are given in Fig. 3 for the manual
delineation method and in Table 1 for the ROI-template-
based approach. The regional distribution of the 5-HT1A

receptor BPND was in accordance with published in vivo
and post-mortem studies showing the highest 5-HT1A

receptor expression in limbic areas as in the hippocampus
and the anterior cingulate cortex [48]. Female and male
participants did not differ significantly by age, radio-
chemical variables, regional tracer delivery (R1) or binding
in the reference region ( p>0.05). There was no effect of
age or radiochemical variables on the 5-HT1A receptor
BPND (Pearson correlation, p>0.05).

Results of the manual delineation method

Using the manual delineation method, the mean 5-HT1A

receptor BPND over all regions of interest was 3.38±0.07
(mean ± SE) for men and 3.11±0.07 (mean ± SE) for
women. The two-way ANOVA did not confirm the
hypothesis of a main effect for sex (F1,30=1.3, p=0.278).
However, a slightly lower mean 5-HT1A receptor BPND was
observed in all regions of interest in females (Fig. 3). Also,
no significant interaction was found between sex and
region. Post hoc independent-samples t tests done in nine
manually drawn regions of interest (anterior and posterior
cingulate cortex, amygdala, hippocampus, hypothalamus,
insula, orbitofrontal cortex, retrosplenial cortex and raphe
nuclei) did not reveal any significant sex differences except
for a trend in the hypothalamus (t30=2.7; p=0.012) that did
not withstand the Bonferroni correction (adjusted signifi-
cance level of p<0.0056). The results do not support the
hypothesis of sex differences in the 5-HT1A receptor BPND
or in the 5-HT1A receptor distribution.

Results of the automated delineation method

Using the automated delineation method, the mean 5-HT1A

receptor BPND over all regions of interest was 3.54±0.05
(mean ± SE) for men and 3.32±0.05 (mean ± SE) for
women. The two-way ANOVA did not reveal any signif-
icant effect for sex (F1,30=0.8, p=0.378), and there was no
significant interaction between sex and region. Post hoc
independent-samples t tests done in the 45 AAL regions of
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Table 1 The regional serotonin-1A (5-HT1A) receptor-binding potential receptor (BPND) in men and women using the automated delineation
method (SD—standard deviation)

No. region of interest 5-HT1A BPND males 5-HT1A BPND females

Mean ± SD Range Mean ± SD Range

Central region
1 Precentral gyrus 2.63±0.43 1.88–3.27 2.51±0.54 1.70–3.70
2 Postcentral gyrus 2.94±0.54 1.94–3.81 2.74±0.55 1.79–3.84
3 Rolandic operculum 4.50±0.90 3.01–5.90 4.22±0.78 2.78–5.71
Frontal lobe
4 Superior frontal gyrus 3.32±0.54 2.31–4.26 3.22±0.70 2.09–4.80
5 Middle frontal gyrus 3.51±0.60 2.54–4.51 3.41±0.74 2.34–5.31
6 Inferior frontal gyrus, opercular part 3.66±0.62 2.40–4.85 3.50±0.68 2.43–5.15
7 Inferior frontal gyrus, triangular part 3.25±0.52 2.25–4.11 3.17±0.64 2.10–4.51
8 Superior frontal gyrus, medial 3.56±0.60 2.31–4.59 3.48±0.75 2.30–5.18
9 Supplementary motor area 3.19±0.55 2.32–4.21 3.06±0.65 2.08–4.44
10 Paracentral lobule 3.09±0.63 1.93–4.17 3.00±0.58 2.02–4.06
11 Superior frontal gyrus, orbital part 3.76±0.64 2.73–4.79 3.63±0.75 2.49–5.34
12 Middle frontal gyrus, orbital part 3.69±0.71 2.62–4.78 3.48±0.73 2.48–5.18
13 Inferior frontal gyrus, orbital part 3.62±0.59 2.39–4.49 3.50±0.76 2.36–5.26
14 Gyrus rectus 4.70±0.81 3.15–5.85 4.54±1.06 2.95–7.03
15 Olfactory cortex 4.67±1.14 2.81–6.42 4.42±1.05 2.16–6.58
Temporal lobe
16 Superior temporal gyrus 4.25±0.70 2.92–5.18 4.02±0.84 2.52–5.65
17 Heschl gyrus 4.22±0.76 3.06–5.43 4.00±0.83 2.67–5.77
18 Middle temporal gyrus 4.57±0.78 3.16–5.63 4.27±0.91 2.71–6.34
19 Inferior temporal gyrus 5.01±0.86 3.53–6.30 4.60±1.01 2.77–6.56
Parietal lobe
20 Superior parietal gyrus 3.11±0.58 2.22–4.28 3.02±0.68 1.88–4.48
21 Inferior parietal, supramarginal/angular 3.47±0.57 2.48–4.45 3.41±0.70 2.29–4.96
22 Angular gyrus 3.70±0.63 2.75–4.97 3.57±0.74 2.29–5.13
23 Supramarginal gyrus 4.05±0.74 2.87–5.31 3.80±0.72 2.57–5.11
24 Precuneus 3.36±0.57 2.44–4.38 3.27±0.64 2.16–4.68
Occipital lobe
25 Superior occipital gyrus 2.84±0.48 2.04–3.51 2.68±0.59 1.52–3.99
26 Middle occipital gyrus 3.57±0.64 2.57–4.40 3.37±0.71 2.03–4.99
27 Inferior occipital gyrus 3.67±0.61 2.64–4.52 3.42±0.66 2.22–4.71
28 Cuneus 2.77±0.43 2.06–3.41 2.62±0.60 1.44–3.88
29 Calcarine fissure 2.47±0.46 1.57–3.08 2.33±0.43 1.42–3.14
30 Lingual gyrus 3.17±0.49 2.26–3.87 2.98±0.57 1.77–4.05
31 Fusiform gyrus 4.98±0.87 3.41–6.24 4.62±0.95 3.07–6.59
Limbic lobe
32 Temporal pole: sup. temporal gyrus 5.11±0.95 3.16–6.53 4.77±1.07 2.90–7.32
33 Temporal pole: middle temporal gyrus 5.27±0.90 3.33–6.60 4.91±1.18 2.78–7.43
34 Anterior cingulate/paracingulate gyri 4.02±0.75 2.50–5.06 3.72±0.90 2.43–5.75
35 Median cingulate/paracingulate gyri 3.33±0.60 2.32–4.33 3.18±0.75 2.12–4.84
36 Posterior cingulate gyrus 2.80±0.55 1.94–3.90 2.47±0.62 1.30–3.65
37 Hippocampus 4.51±1.35 2.34–6.78 4.18±1.02 1.98–5.51
38 Caput hippocampi 5.04±1.76 2.21–8.09 4.62±1.32 2.10–7.00
39 Parahippocampal gyrus 5.73±1.12 3.66–7.37 5.33±1.15 3.42–7.59
40 Insula 5.12±0.90 3.53–6.40 4.76±0.96 3.18–7.03
41 Amygdala 4.41±1.02 2.61–5.63 4.06±0.98 2.42–6.15
42 Subgenual cingulum 3.97±0.96 2.74–5.67 3.63±0.87 1.96–5.00
43 Superior frontal gyrus, medial orbital 4.19±0.77 2.84–5.43 4.03±0.81 2.73–5.90
Raphe nuclei (DRN) cerebellum as region of reference 1.98±0.98 1.06–5.17 1.65±0.71 0.59–3.36

The 5-HT1A receptor BPND in 45 regions was quantified using the Simplified Reference Tissue Model and the cerebellum as region of reference.
An independent-samples ANOVA revealed no significant sex differences in the mean 5-HT1A receptor BPND between men and women (p>0.05),
though men had a slightly higher 5-HT1A receptor BPND in every region investigated. The range of the 5-HT1A receptor BPND values in each
region of interest demonstrates a high intersubject variability consistent to other PET studies investigating this receptor subtype [37]. The
numbering of the ROIs corresponds to the PET templates shown in Figs. 1 and 2.
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interest did not reveal any significant sex differences (the
hypothalamus, however, is not included in the AAL
regions). Therefore, the results of the automated method
do not support the hypothesis of sex differences in the
5-HT1A receptor BPND or in the 5-HT1A receptor distribu-
tion. A second analysis in the AAL regions applying the
non-invasive Logan plot yielded similar results to the
SRTM (results not shown).

Discussion

The main finding of this in vivo study is the lack of a sex-
specific 5-HT1A receptor binding. This in vivo investigation
using PET and the highly specific radioligand [carbonyl-11C]
WAY-100635 did not confirm the hypothesis of sex differ-
ences in the 5-HT1A receptor BPND suggested in some
previous PET studies [12, 31]. Our results were obtained
independently using two delineation methods for regions
of interest and the non-invasive SRTM [41] and Logan
Plot method [44]. The absence of sex effects in the 5-HT1A

receptor BPND is in line with several human post-mortem
[27–29] and in vivo studies [32, 49]. Interestingly, the mean
observed 5-HT1A receptor BPND tended to be lower in
females in all regions of interest (see Fig. 3), which is in
contrast to three previous studies performed using the
same radioligand in healthy subjects [12, 31, 50]. One of
these studies reported a higher 5-HT1A receptor BPND in
females using a clearly broader age range compared to our
study. The sex difference was found only when using arterial
input function but not when using the non-invasive SRTM
[31]. A second, subsequent study also found a higher 5-
HT1A receptor BPND in females using both an arterial input
function and the SRTM for comparison [50]. Limits of this
study were a small sample size (six females and eight males)
and a broad age range in males (25–65 years), while the age
range for females was quite narrow (47–52 years). Both
groups did not control for the possible effects of gonadal
steroids [51]. A third study, however, found a significantly
higher 5-HT1A receptor BPND using SRTM in females in a
demographically comparable sample to ours [12]. Given the
similar study design (control for hormonal status and young

Fig. 1 PET template for auto-
mated delineation of ROIs. The
45 delineated ROIs are based on
the AAL atlas implemented in
the SPM2 software (toolbox)
[35]. The figure shows repre-
sentative ROIs on two axial
slices (a/b vs. c/d) overlayed on
a serotonin-1A receptor
(5-HT1A) receptor distribution
map normalized to the MNI
space either in black/white (a, c)
or in colour (b, d). Low
5-HT1A receptor BPND values
are dark blue and high BPND
values are dark red (see colour
bar). The numbering of the
regions corresponds to the
regions of interest given in
Table 1
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age of the participants), it remains unclear why the suggested
sex difference in the 5-HT1A receptor binding was not
replicated in the present investigation. Even more surprising,
the mean 5-HT1A receptor BPND in the present study was
lower (though not significantly) in females compared to

males in every region examined, which is the opposite of the
findings of Jovanovic et al. [12].

Several issues and limitations need to be considered in
the interpretation of these results. First, the disaccording
results may reflect a small effect size of sex, which would

Fig. 2 A three-dimensional
view on the PET template for
automated delineation of ROIs.
a Dorsolateral view on the ROI
template. The numbering of the
regions corresponds to the
regions of interest given in
Table 1. b Sagittal and an axial
views of the serotonin-1A
receptor (5-HT1A) receptor dis-
tribution map. The labelling
indicates the localisation of
regions of interest used for the
manual delineation method.
ACC Anterior cingulate cortex,
PCC posterior cingulate cortex,
HIP hippocampus, INS insula.
c Three-dimensional sagittal
view on the ROI template. CER
Cerebellum (region of interest),
DRN dorsal raphe nuclei (used
as an ROI for the quantification
of the presynaptic 5-HT1A

receptor BPND). d Three-
dimensional sagittal view on the
ROI template projected on an
axial slice of the 5-HT1A

receptor distribution map. The
numbering of the regions
corresponds to the regions of
interest given in Table 1

Fig. 3 The serotonin-1A receptor
(5-HT1A) binding potential
(BPND) in men and women using
a manual delineation approach in
nine regions of interest and the
cerebellum as region of reference
(black bars men, white bars
women). An independent-
samples ANOVA revealed no
significant sex differences in the
mean 5-HT1A receptor BPND
between men and women
( p>0.05). The asterisk (*) indi-
cates a lower 5-HT1A receptor
BPND in women ( p=0.012) in
the hypothalamus that did not
withstand the Bonferroni correc-
tion for multiple testing
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conflict with the inherent limitations of PET studies. These
include the particularly high intersubject variability com-
pared to the broad overlapping range between the male and
female 5-HT1A receptor BPND [37] and the small sample
size (because of ethical considerations and high costs of
PET measurements). Second, given the significant correla-
tions between the 5-HT1A receptor BPND and personality
traits as aggression [31] or anxiety [52], recruiting by
advertisement and random inclusion of subjects in the
lower or higher range in personality scales might bias the
study sample. Methodological bias, however, is unlikely as
the present results have been obtained using two indepen-
dent approaches for definition of brain regions after a
careful control for sex differences in binding of the
reference region. In addition, two independent approaches
for quantification have been applied, the SRTM and the
Logan non-invasive approach that yielded comparable
results in the ANOVA (data derived from the Logan
approach not shown). By using an automated delineation,
for the first time, a comprehensive distribution map of the
5-HT1A receptor BPND in 45 regions of interest has been
obtained in males and females.

Another contributing factor for diverging results may be
the sex-specific effect on age-dependent increase or
decrease in the 5-HT1A receptor binding. Several post-
mortem studies using the 5-HT1A receptor agonist [3H]8-
OH-DPAT as radioligand did not report any significant sex
differences in receptor binding or distribution, while an
age-dependent decline of binding sites was found in men
but not in women [27–29]. In women, the 5-HT1A receptor
binding in the occipital cortex even seemed to increase with
age [27]. A similar trend was also observed in recent human
PET studies using the radioligand [carbonyl-11C]WAY-
100635. Here, a significant inverse correlation of the 5-
HT1A receptor BPND with age was found in men [34, 49]
but not in women [32]. Therefore, comparing the 5-HT1A

receptor expression in inhomogeneous groups of subjects
with regard to age may yield deceptive results. The 5-HT1A

receptor BPND may be higher in females when comparing
men and women in older age but lower in young adulthood.
The results of the present study would be in line with the
hypothesis since the female subjects included in the present
study showing a trend towards a lower mean 5-HT1A

receptor BPND were particularly young (24.1±2.6 years,
mean age ± SD).

Furthermore, the sex-dependent age effect on the 5-
HT1A receptor binding might be associated with lifetime
changes in the production of gonadal steroids in men and
women. An abundant amount of literature demonstrates the
influence of steroid hormones on the 5-HT1A receptor
expression. Long-term administration of estrogen was
demonstrated to increase the activity of the tryptophan
hydroxylase [53] while down regulating the pre- and

postsynaptic 5-HT1A receptor binding [33, 54]. The effect
was particularly pronounced in the raphe nuclei and in the
hippocampus, i.e. in regions with a lower 5-HT1A receptor-
binding potential in female rodents [24]. A phase effect of
the menstrual cycle on the 5-HT1A receptor BPND was
demonstrated in preclinical research [55] and indicated in a
recent PET study, which, however, lacked statistical power
[56]. A correlation of the 5-HT1A receptor binding with
progesterone plasma levels has been observed by our group
[unpublished results]. Since we observed a slightly lower
5-HT1A receptor BPND in women measured in the early
follicular phase vs. in women measured in the late follicular
phase, this might be indicative of a down regulation of the
receptor by high progesterone levels at the end of the
menstrual cycle, with a recovery of the 5-HT1A receptor
BPND later in the cycle. However, as long as the temporal
relation of changes in the 5-HT1A receptor BPND with
regard to steroid hormone plasma levels is not known, these
assumptions remain highly speculative.

A heightened serotonin neurotransmission caused by the
long-term down regulation of somatodendritic 5-HT1A

receptors by higher estrogen and progesterone levels in
females would be in line with animal studies that demon-
strated a higher serotonin synthesis and turnover [6] and
overall higher 5-HT levels [7] in the brain of female
rodents. According to this hypothesis, a slightly lower
overall 5-HT1A receptor expression in females, as indicated
in the present study, would lead to a reduced serotonergic
inhibition on postsynaptic mainly glutamatergic neurons
[19] and increased serotonin turnover [57]. This would be
compatible with a greater serotonergic responsiveness in
females. Indirectly, the higher prevalence rate of mood
disorders in women that becomes apparent only with the
onset of puberty while diminishing after the menopause
might be an evidence for the effect of ovarian steroids on
the serotonin neurotransmission [58]. Therefore, the restric-
tion of female participants to women with regular menstrual
cycle duration and the conductance of PET measurements
in a restricted phase of the menstrual cycle appear as
important prerequisites for revealing an either higher or
lower 5-HT1A receptor BPND in women compared to men.

Finally, it must be considered that the hypothesis of sex
differences in the human serotonergic system may be
simply false. Indeed, the present study is the fourth example
of differing results with regard to sex effects on the
serotonergic system. The 5-HT synthesis has been reported
both lower in females [11, 59] and lower in males [60]. The
5-HTT binding potential was reported to be both higher in
females [61] or higher in males [12]. In a large study
sample of 88 subjects, Praschak-Rieder et al. found no sex
differences in 5-HTT binding [62]. Another study with 52
healthy subjects did not reveal any sex differences in the
5-HT2A receptor binding [63], which was suggested before
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by Biver et al. [13]. Therefore, sex differences in the
incidence of affective disorders might be not adequately
explained by sex differences in serotonergic receptor or
transporter densities.

In summary, our results do not confirm the hypothesis of
sex differences in the 5-HT1A receptor BPND in 16 healthy
young women when compared to 16 healthy young men.
This was demonstrated using two independent delineation
methods (manual vs. normalized ROI-template-based) and
two non-invasive quantification approaches (SRTM vs.
Logan). The automated delineation method was shown to
be reliable in comparison with the manual delineation with
the additional benefit of a high number of regions of
interest and a lower variability in regional volumes. A
slightly, though not significantly, lower mean 5-HT1A

receptor BPND in female subjects was observed in all
regions investigated, which is in contrast with some
previous studies. Given the high intersubject variability of
the 5-HT1A receptor BPND within both sexes and the
usually low sample size in PET studies, the inclusion
criteria of the study sample might significantly influence
results on sexual dimorphism. Therefore, sex differences in
5-HT1A receptor binding remain a matter of debate.
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