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Abstract
Purpose Impairment of cholinergic neurotransmission is a
well-established fact in Alzheimer’s disease (AD), but there
is controversy about its relevance at the early stages of the
disease and in mild cognitive impairment (MCI).
Methods In vivo positron emission tomography imaging of
cortical acetylcholine esterase (AChE) activity as a marker
of cholinergic innervation that is expressed by cholinergic
axons and cholinoceptive neurons has demonstrated a
reduction of this enzyme activity in manifest AD. The
technique is also useful to measure the inhibition of
cerebral AChE induced by cholinesterase inhibitors for
treatment of dementia symptoms.
Results A reduction of cortical AchE activity was found
consistently in all studies of AD and in few cases of MCI
who later concerted to AD.
Conclusion The in vivo findings in MCI and very mild AD
are still preliminary, and studies seem to suggest that
cholinergic innervation and AChE as the main degrading
enzyme are both reduced, which might result in partial
compensation of their effect.

Keywords Acetylcholine esterase . Alzheimer’s disease .

Neurodegenerative disease .Mild cognitive impairment .

Positron emission tomography

Background

Acetylcholine (ACh) is an essential neurotransmitter in the
central and the peripheral nervous system that developed
very early in phylogenetical history. In the human brain,
multiple areas exist where cholinergic neurons are concen-
trated [1]. In the context of neurodegenerative disease,
cholinergic nuclei in the basal forebrain with diffuse
projections into virtually all cortical areas appear to be
most important. They are modulating selective attention
and the processing of sensory input as well as associative
thinking [2, 3]. Those cholinergic projections are severely
impaired in Alzheimer’s disease [4, 5]. Another important
cholinergic projection system originates in the pedunculo-
pontine and laterodorsal tegmental nuclei of the brainstem
with projections to thalamus, in particular its reticular
nucleus which controls consciousness and general attention.
This system is impaired in dementia with Lewy bodies
which can be associated with parkinsonian symptoms or
may occur without clinically manifest motor symptoms [1].

Degeneration and loss of trophic support for the
cholinergic neurons of the basal forebrain and their
projections is widely held as an early and pivotal event in
AD, and there is evidence for interaction with amyloid
deposition and plaque formation [6]. That view has been
challenged by recent neuropathological studies indicating
that cortical AChE immunoreactivity is well preserved in
mild AD [7] or even upregulated in mild cognitive
impairment (MCI) [8], and cholinergic forebrain neurons
are not decreased in early AD [9]. Yet, there is a loss of
calbindin in cholinergic basal forebrain neurons that
corresponds with the appearance of tangles before mani-
festation of dementia [7], suggesting early and severe
functional impairment of these neurons. Disturbance of
axonal transport in cholinergic neurons has been identified
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as one of the earliest signs of disease in humans and in
transgenic mice [8]. Thus, the current evidence from
postmortem studies on the involvement of the cholinergic
system in the earliest stages of AD is inconclusive.

By use of tracers that are substrates for AChE, positron
emission tomography (PET) permits direct measurement of
cerebral AChE activity in health and disease. AChE is
being present in cholinergic axons and in some cholino-
ceptive pyramidal cortical neurons [10]. Loss and severe
functional impairment of cholinergic axons, therefore, is
associated with reduction not only of the transmitter ACh
and its synthetic enzyme ChAT but also of its main
degrading enzyme AChE [11]. Changes in AChE activity
could also be due to alterations of the cellular environment,
such as association with amyloid plaques in AD [12]. This
brief review therefore concentrates on recent findings using
these advanced in vivo techniques in MCI and AD.

Methods for measuring cerebral AChE activity

Labelled analogues of acetylcholine which are also substrates
for AChE can be used to measure and image its activity in
vivo. These are C-11-N-methyl-4-piperidyl-acetate (MP4A,
also known as AMP) [13], which is 94% specific for AChE
in human brain, and C-11-N-methyl-4-piperidyl-propionate
(MP4P or PMP) [14]. Hydrolysis of these tracers by AChE
results in tissue trapping, whereas unhydrolysed tracer is
washed out from brain by blood flow.

Quantification of AChE activity is based on a standard
three-compartment model comprising (1) intravascular
blood plasma, (2) non-hydrolysed tracer in tissue and (3)
tracer hydrolysed by AChE in tissue [13]. There also is
rapid hydrolysis of the tracer in plasma, but the hydrolysis
product cannot cross the blood brain barrier. Tracer hydro-
lysed in the brain also is trapped in brain tissue, and the
hydrolysis rate in tissue, k3, is a measure of AChE activity
[15]. Due to lower affinity to AChE, hydrolysis rates of
MP4P are generally lower than that of MP4A (0.02 to
0.03 min-1 for MP4P vs 0.06 to 0.09 min-1 for MP4A in
normal cortex), and both tracers have been used successful
in human studies (see review by [16]).

The first kinetic studies using these tracers involved
arterial blood sampling with metabolite correction [13, 14,
17]. Kinetic measurements demonstrated that blood–tissue
transfer rates K1 and k2 are high and correlated with
cerebral blood flow (CBF), whereas k3 is independent from
CBF [18, 19]. It also became clear that hydrolysis rates in
striatum are extremely high, corresponding to the very high
AChE activity in this structure in humans [20]. As a
consequence, virtually all tracer that enters the striatum is
hydrolysed and trapped immediately, and delivery by CBF
rather than hydrolysis by AChE becomes rate-limiting for

tracer accumulation. In mathematical terms, this means that
striatal tracer activity is the integral of plasma activity, scaled
by K1. Comparison of measured activity in arterial plasma
samples with striatal activity has confirmed that relation
(Fig. 1). In consequence, it is not possible with this technique
to actually measure striatal k3, but it also opens the possibility
to use the striatum as a positive reference structure for non-
invasive quantitation of k3 in other brain structures. This
concept for full non-invasive quantitation has been exploited
in several computational implementations, either involving
nonlinear least-squares fits of target-to-reference curves [21,
22] or double integration and linear least-squares fits [23,
24]. Another non-invasive technique [15] based on curve
shape proved less reliable because it depends on the
assumption that initially all tracer in tissue is non-hydrolysed,
whereas at the end of the study, all tracer is hydrolysed.

There are other cholinesterases besides AChE that can
hydrolyse ACh in brain, most notably butyrylcholinesterase
(BChE), but under physiological conditions, their quantita-
tive contribution is small, probably less than 10% [11].
BChE is being expressed primarily in glial cells and is
present in AD amyloid plaques [25]. C-11-N-methylpiper-
din-4-yl-butyrate (MP4B, BMP) is hydrolysed and thus
trapped with good specificity by BChE [26, 27]. Other
ligands for AChE have been based on AChE inhibitors, e.g.
C-11-physostigmine [28] and C-11-donepezil [29, 30], but
did not provide appropriate signal quality. More recently,
encouraging results were obtained using the C-11-CP-
126998 [31].

Results

A study in 20 normal control subjects with a wide age
range (24–89 years) did not indicate a relevant age or sex
effect [19].

Fig. 1 Correspondence of measuredMP4A activity in putamen with the
integral of metabolite-corrected plasma activity, forming the basis for
non-invasive quantitation of cortical hydrolysis rates using the putamen
as a reference region to derive the time course of the input function

S26 Eur J Nucl Med Mol Imaging (2008) 35 (Suppl 1):S25–S29



There have been several studies measuring AChE activity
using MP4A or MP4P in AD, and all of them found a reduc-
tion of cortical activity [18, 32–34], most severely affecting
temporal cortex (Fig. 2). We found a reduction by 18% (in
frontal cortex) to 34% (in temporal cortex) in patients with
mild to moderate AD [35], while apparent AChE activity in
basal forebrain was still intact. In another study, a
pronounced reduction of AChE activity was found in the
amygdala, whereas hippocampus was much less affected
[36]. Contrary to expectations, a less severe reduction of
AChE activity was found in AD patients carrying the
ApoE4 allele than in those without that risk factor [37].
Correlations between reduction of AChE activity and
impairment of cognitive function or dementia severity tend
to be relatively weak. There appears to be a non-linear relation
of reduced MP4A hydrolysis with a decline of AChE at mild
stages (MMSE 15–30) and a bottom effect without further
change in severe dementia (MMSE 0–15) [36], arguing for a
significant decline in mild AD. On the other hand, in one
study of 12 subjects with MP4P in mild AD (average MMSE
score 23), an overall cortical reduction by only 9% was
reported, significantly less than in patients with Parkinson’s
disease with dementia of similar severity (20%) [38].

As yet, there are very few data available in patients with
MCI. Subjects with MCI do not yet have dementia (which,
by definition, requires cognitive impairment in multiple
domains that are progressive and are severe enough to
impairment of daily activities) but are at increased risk for
developing AD. In a small study comparing four converters
to AD within 18 months with four non-converters, we
found a significant reduction of cortical AChE activity in
converters at that stage already [39]. This study has
limitations due to the small number of subjects studied, a
relatively low age of subjects (65±13 years) and a higher
than expected conversion rate of 50% over 18 months.
Thus, generalisation to MCI in general would be premature,
and larger studies are needed.

Inhibition of AChE by cholinesterase inhibitors which are
used as therapeutic agents in AD and dementia with Lewy
bodies has been measured using MP4A and MP4P. For all
currently available cholinesterase inhibitors at standard
clinical dose, the reduction of cerebral AChE activity is in
the range of 30 to 40% [40–42], and slightly stronger
inhibition by 50% has been observed using intravenous
infusion of 1.5 mg physostigmine salicylate [32].

Comments

It is controversial whether there is significant impairment of
the cholinergic system very early in AD, but there are some
in vivo studies indicating such impairment. In addition to
the non-linear relation between dementia severity and
reduction of MP4A which is steeper in mild than in severe
disease, and the preliminary findings in MCI, a study in 27
patients with mild AD found a relation between attentional
tests (digit symbol and trail making test A) and using C-
11-nicotine binding [43]. These studies seem to suggest that
presynaptic receptors and AChE as the main degrading
enzyme are both reduced in AD, which might result in
partial compensation. In conclusion, PET has demonstrated
a reduction of cortical AChE activity in manifest AD in
vivo, while the findings in MCI are still preliminary.

Conflict of interest statement The author declares that he has no
relevant financial or any other interests in this manuscript.

References

1. Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a
neurotransmitter correlate of consciousness? Trends Neurosci.
1999;22:273–80.

2. Mesulam M. The cholinergic lesion of Alzheimer’s disease:
pivotal factor or side show? Learn. Mem. 2004;11:43–9.

Fig. 2 Parametric images (or-
thogonal slices with masking of
subcortical areas) of 11C-MP4A
hydrolysis rates, indicating re-
duced AChE activity in Alz-
heimer’s disease compared to
normal controls

Eur J Nucl Med Mol Imaging (2008) 35 (Suppl 1):S25–S29 S27



3. Sarter M, Hasselmo ME, Bruno JP, Givens B. Unraveling the
attentional functions of cortical cholinergic inputs: interactions
between signal-driven and cognitive modulation of signal detec-
tion. Brains Res Rev. 2005;48:98–111.

4. Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS,
Purohit DP, Perl DP, Schmeidler J, Kanof P, Davis KL.
Neurochemical correlates of dementia severity in Alzheimer’s
disease: relative importance of the cholinergic deficits. J Neuro-
chem. 1995;64:749–60.

5. Reinikainen KJ, Soininen H, Riekkinen PJ. Neurotransmitter
changes in Alzheimer’s disease: implications to diagnostics and
therapy. J Neurosci Res. 1990;27:576–86.

6. Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer’s
disease and the basal forebrain cholinergic system: relations to
[beta]-amyloid peptides, cognition, and treatment strategies. Prog
Neurobiol. 2002;68:209–45.

7. Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M,
Austin G, Haroutunian V. Cholinergic markers in elderly patients
with early signs of Alzheimer disease. JAMA. 1999; 281:1401–6.

8. DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski
S, Bennett DA, Cochran EJ, Kordower JH, Mufson EJ. Upregu-
lation of choline acetyltransferase activity in hippocampus and
frontal cortex of elderly subjects with mild cognitive impairment.
Ann Neurol. 2002;51:145–55.

9. Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA,
Cochran EJ, Mufson EJ, Levey AI. Preservation of nucleus basalis
neurons containing choline acetyltransferase and the vesicular
acetylcholine transporter in the elderly with mild cognitive
impairment and early Alzheimer’s disease. J Comp Neurol.
1999;411:693–704.

10. Mesulam MM, Geula C. Acetylcholinesterase-rich neurons of the
human cerebral cortex: cytoarchitectonic and ontogenetic patterns
of distribution. J Comp Neurol. 1991;306:193–220.

11. Perry EK, Perry RH, Blessed G, Tomlinson BE. Changes in brain
cholinesterases in senile dementia of Alzheimer type. Neuropathol
Appl Neurobiol. 1978;4:273–7.

12. Inestrosa NC, Alarcon R. Molecular interactions of acetylcholin-
esterase with senile plaques. J Physiol Paris. 1998;92:341–4.

13. Namba H, Irie T, Fukushi K, Iyo M. In vivo measurement of
acetylcholinesterase activity in the brain with a radioactive
acetylcholine analog. Brain Res. 1994;667:278–82.

14. Kilbourn MR, Snyder SE, Sherman PS, Kuhl DE. In vivo studies
of acetylcholinesterase activity using a labeled substrate, n-[C-11]
methylpiperdin-4-yl propionate ([C-11]PMP). Synapse. 1996;
22:123–31.

15. Koeppe RA, Frey KA, Snyder SE, Meyer P, Kilbourn MR, Kuhl
DE. Kinetic modeling of N-[11C]methylpiperidin-4-yl propionate:
alternatives for analysis of an irreversible positron emission
tomography trace for measurement of acetylcholinesterase activity
in human brain. J Cereb Blood Flow Metab. 1999;19:1150–63.

16. Shinotoh H, Fukushi K, Nagatsuka S, Irie T. Acetylcholinesterase
imaging: its use in therapy evaluation and drug design. Curr
Pharm Des. 2004;10:1505–17.

17. Shinotoh H, Namba H, Fukushi K, Nagatsuka S, Tanaka N,
Aotsuka A, Tanada S, Irie T. Brain acetylcholinesterase activity in
Alzheimer disease measured by positron emission tomography.
Alzheimer Dis Assoc Disord. 2000;14(Suppl 1):S114–8.

18. Herholz K, Bauer B, Wienhard K, Kracht L, Mielke R, Lenz O,
Strotmann T, Heiss WD. In-vivo measurements of regional
acetylcholine esterase activity in degenerative dementia: compar-
ison with blood flow and glucose metabolism. J Neural Transm.
2000;12:1457–68.

19. Namba H, Iyo M, Fukushi K, Shinotoh H, Nagatsuka S, Suhara T,
Sudo Y, Suzuki K, Irie T. Human cerebral acetylcholinesterase
activity measured with positron emission tomography: procedure,
normal values and effect of age. Eur J Nucl Med. 1999;26:135–43.

20. Atack JR, Perry EK, Bonham JR, Candy JM, Perry RH.
Molecular forms of acetylcholinesterase and butyrylcholinesterase
in the aged human central nervous system. J Neurochem.
1986;47:263–77.

21. Herholz K, Lercher M, Wienhard K, Bauer B, Lenz O, Heiss WD.
PET measurement of cerebral acetylcholine esterase activity
without blood sampling. Eur J Nucl Med. 2001;28:472–7.

22. Zundorf G, Herholz K, Lercher M, Wienhard K, Bauer B,
Weisenbach S, Heiss WD. In: Senda M, Kimura Y, Herscovitch
P, editors. PET functional parametric images of acetylcholine
esterase activity without blood sampling Brain imaging using
PET. San Diego, CA.: Academic; 2002. p. 41–6.

23. Nagatsuka S, Fukushi K, Shinotoh H, Namba H, Iyo M, Tanaka
N, Aotsuka A, Ota T, Tanada S, Irie T. Kinetic analysis of [(11)C]
MP4A using a high-radioactivity brain region that represents an
integrated input function for measurement of cerebral acetylcho-
linesterase activity without arterial blood sampling. J Cereb Blood
Flow Metab. 2001;21:1354–66.

24. Sato K, Fukushi K, Shinotoh H, Nagatsuka S, Tanaka N, Aotsuka
A, Ota T, Shiraishi T, Tanada S, Iyo M, Irie T. Evaluation of
simplified kinetic analyses for measurement of brain acetylcho-
linesterase activity using N-[11C]Methylpiperidin-4-yl propionate
and positron emission tomography. J Cereb Blood Flow Metab.
2004;24:600–11.

25. Huff FJ, Reiter CT, Rand JB. The ratio of acetylcholinesterase to
butyrylcholinesterase influences the specificity of assays for each
enzyme in human brain. J Neural Transm. 1989;75:129–34.

26. Roivainen A, Rinne J, Virta J, Jarvenpaa T, Salomaki S, Yu M,
Nagren K. Biodistribution and blood metabolism of 1-11C-
methyl-4-piperidinyl n-butyrate in humans: an imaging agent for
in vivo assessment of butyrylcholinesterase activity with PET. The
J Nucl Med. 2004;45:2032–9.

27. Snyder SE, Gunupudi N, Sherman PS, Butch ER, Skaddan MB,
Kilbourn MR, Koeppe RA, Kuhl DE. Radiolabeled cholinesterase
substrates: in vitro methods for determining structure-activity
relationships and identification of a positron emission tomography
radiopharmaceutical for in vivo measurement of butyrylcholines-
terase activity. J Cereb Blood Flow Metab. 2001;21:132–43.

28. Traykov L, Tavitian B, Jobert A, Boller F, Forette F, Crouzel C,
Di Giamberardino L, Pappata S. In vivo PET study of cerebral
[11C] methyl-tetrahydroaminoacridine distribution and kinetics in
healthy human subjects. Eur J Neurol. 1999;6:273–8.

29. Funaki Y, Kato M, Iwata R, Sakurai E, Sakurai E, Tashiro M, Ido
T, Yanai K. Evaluation of the binding characteristics of [5-(11)C-
methoxy]donepezil in the rat brain for in vivo visualization of
acetylcholinesterase. J Pharmacol Sci. 2003;91:105–12.

30. De Vos F, Santens P, Vermeirsch H, Dewolf I, Dumont F, Slegers
G, Dierckx RA, De Reuck J. Pharmacological evaluation of [11C]
donepezil as a tracer for visualization of acetylcholinesterase by
PET. Nucl Med Biol. 2000;27:745–7.

31. Bencherif B, Endres CJ, Musachio JL, Villalobos A, Hilton J,
Scheffel U, Dannals RF, Williams S, Frost JJ. PET imaging of
brain acetylcholinesterase using [11C]CP-126,998, a brain selec-
tive enzyme inhibitor. Synapse. 2002;45:1–9.

32. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP,
Foster NL, Frey KA, Kilbourn MR. In vivo mapping of cerebral
acetylcholinesterase activity in aging and Alzheimer’s disease.
Neurology. 1999;52:691–9.

33. Iyo M, Namba H, Fukushi K, Shinotoh H, Nagatsuka S, Suhara T,
Sudo Y, Suzuki K, Irie T. Measurement of acetylcholinesterase by
positron emission tomography in the brains of healthy controls
and patients with Alzheimers disease. Lancet. 1997;349:1805–9.

34. Rinne JO, Kaasinen V, Jarvenpaa T, Nagren K, Roivainen A, Yu
M, Oikonen V, Kurki T. Brain acetylcholinesterase activity in mild
cognitive impairment and early Alzheimer’s disease. J Neurol
Neurosurg Psychiatry. 2003;74:113–5.

S28 Eur J Nucl Med Mol Imaging (2008) 35 (Suppl 1):S25–S29



35. Herholz K, Weisenbach S, Zundorf G, Lenz O, Schroder H, Bauer
B, Kalbe E, Heiss WD. In-vivo study of acetylcholine esterase in
basal forebrain, amygdala, and cortex in mild to moderate
Alzheimer disease. Neuroimage. 2004;21:136–43.

36. Shinotoh H, Fukushi K, Nagatsuka S, Tanaka N, Aotsuka A, Ota
T, Namba H, Tanada S, Irie T. The amygdala and Alzheimer’s
disease: positron emission tomographic study of the cholinergic
system. Ann NY Acad Sci. 2003;985:411–9.

37. Eggers C, Herholz K, Kalbe E, Heiss WD. Cortical acetylcholine
esterase activity and ApoE4-genotype in Alzheimer disease.
Neurosci Lett. 2006;408:46–50.

38. Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis
JG, Mathis CA, Moore RY, DeKosky ST. Cortical cholinergic
function is more severely affected in parkinsonian dementia than
in Alzheimer disease: an in vivo positron emission tomographic
study. Arch Neurol. 2003;60:1745–8.

39. Herholz K, Weisenbach S, Kalbe E, Diederich NJ, Heiss WD.
Cerebral acetylcholine esterase activity in mild cognitive impair-
ment. Neuroreport. 2005;16:1431–4.

40. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ,
Koeppe RA, Meltzer CC, Constantine G, Davis JG, Mathis CA,
DeKosky ST, Moore RY. Degree of inhibition of cortical acetylcho-
linesterase activity and cognitive effects by donepezil treatment in
Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2005;76:315–9.

41. Kaasinen V, Nagren K, Jarvenpaa T, Roivainen A, Yu M, Oikonen
V, Kurki T, Rinne JO. Regional effects of donepezil and
rivastigmine on cortical acetylcholinesterase activity in Alz-
heimer’s disease. J Clin Psychopharmacol. 2002;22:615–20.

42. Kadir A, Darreh-Shori T, Almkvist O, Wall A, Grut M, Strandberg
B, Ringheim A, Eriksson B, Blomquist G, Langstrom B,
Nordberg A. PET imaging of the in vivo brain acetylcholinester-
ase activity and nicotine binding in galantamine-treated patients
with AD. Neurobiol Aging. 2007 (in press). http://dx.doi.org/
10.1016/j.neurobiolaging.2007.02.020

43. Kadir A, Almkvist O, Wall A, Langstrom B, Nordberg A. PET
imaging of cortical 11C-nicotine binding correlates with the
cognitive function of attention in Alzheimer's disease. Psycho-
pharmacology (Berl). 2006;188:509–20.

Eur J Nucl Med Mol Imaging (2008) 35 (Suppl 1):S25–S29 S29

http://dx.doi.org/10.1016/j.neurobiolaging.2007.02.020
http://dx.doi.org/10.1016/j.neurobiolaging.2007.02.020

	Acetylcholine esterase activity in mild cognitive impairment and Alzheimer’s disease
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Background
	Methods for measuring cerebral AChE activity
	Results
	Comments
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


