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In the last decade there has been a significant increase in
the development of radiolabelled peptides for diagnostic
applications, especially due to simplified methods of
purification. Peptides have fast clearance, rapid tissue
penetration, and low antigenicity and can therefore be
produced easily and inexpensively. In addition, if the
diagnostic scan is positive, the peptides can be labelled
with therapeutic radionuclides (yttrium-90, lutetium-177)
and used for therapy [1].

Most efforts at labelling peptides have targeted somato-
statin and its receptors. Somatostatin is a regulatory peptide
widely distributed in the human body. Its action is mediated
by membrane-bound receptors (SSTR) that are present in
normal human tissues, such as thyroid, brain, gastrointestinal
tract (GIT), pancreas, spleen and kidney [2]. They are also
abundant in a variety of human tumours, notably neuroen-
docrine tumours (NET) [3] of which carcinoid tumour and
phaeochromocytoma are encountered most in clinical prac-
tice. SSTR are also expressed, with variable abundance, in
renal cell carcinoma, small cell lung cancer, breast cancer,
prostate cancer and malignant lymphoma [4]. Somatostatin

itself has a short half-life and is rapidly degraded by
enzymes; therefore analogues have been developed which
mimic its effects but are resistant to enzyme degradation.

There are 5 somatostatin receptor subtypes but only
subtypes 2 (SSTR2) and 5 (SSTR5) and to a lesser extent
receptor subtype 3 (SSTR3) have a high affinity for
commercially available synthetic analogues and even these
differ in their affinity for the various receptor subtypes [5].

Developments in labelled peptides

The most commonly used somatostatin analogue is indium-
111-diethylenetriaminepentaacetic acid (DTPA)-octreotide
(111In-octreotide) that has a high affinity for SSTR2 and lower
affinity for SSTR5 and SSTR3 [6]. More recent developments
include the use of 1,4,7,10-tetraazacyclodecane-1,4,7,10-
tetraacetic acid (DOTA), a universal chelator capable of
forming stable complexes with radiotracers of the metal group
such as 111In, 67Ga, 68Ga, 64Cu, 90Y and 177Lu [7]. Newer
analogues such as DOTA-Tyr3 octreotide (DOTATOC)
have better uptake than 111In octreotide. The phenylalanine
residue at position 3 is replaced by tyrosine, making the
compound more hydrophilic and increasing the affinity for
SSTR2, leading to higher uptake in SSTR2-positive
tumours [8].

Other peptides linked to DOTA include DOTA-octreotate,
which has a very high affinity for SSTR2 [5], and DOTA-
lanreotide with high affinity for SSTR5. The newest
addition to these compounds is DOTA-1-NaI-octreotide
(DOTANOC), which has shown a high affinity for SSTR2,
SSTR3 and SSTR5. These products have high radiochem-
ical purity and show rapid renal clearance but high
accumulation in tumours with a striking superiority over
standard peptides [9].
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All the above-mentioned peptides are currently labelled
with 111In for use in SSTR imaging. However, the physical
properties of 111In are not ideal for imaging and small
lesions may be missed even with tomographic (single
photon emission computed tomography, SPECT) acquisi-
tion. In addition, imaging with 111In-peptides is usually
performed over a 24-h period to allow adequate uptake in
tumours and washout from normal tissues. There is
therefore a need for a high definition imaging that can be
performed over a shorter period of time, such as that
provided by positron emission tomography (PET).

Clinical experience with 68Ga-peptides

The chemistry and radiopharmacy of the germanium-68/
gallium-68 generator (68Ge/68Ga) have been investigated
since the late 1970s [10, 11]. 68Ga has suitable physical
properties with a high positron yield reaching 89% of all
disintegrations. Its half-life of 68 min matches the pharma-
cokinetics of many peptides and other small molecules
owing to a fast blood clearance, quick diffusion and target
localization [4]. The fact that it is produced from the
68Ge/68Ga generator with a long half-life of 270.8 days of
the parent makes it available in-house for round the clock
production for more than 1 year.

The recent introduction of 68Ga PET imaging in clinical
practice represents a landmark in the ongoing developments
in functional and metabolic imaging that is not dependent
on the availability of a cyclotron. The first impressive 68Ga-
DOTATOC PET imaging of neuroendocrine tumours was
described by Hofmann et al. [12] who compared 111In-
octreotide scintigraphy with 68Ga-DOTATOC PET in eight
patients with carcinoid tumours. 68Ga-DOTATOC PET
identified all 40 lesions whereas 111In-octreotide (even with
SPECT) identified only 85%. More importantly, quantita-
tive analysis of the lesions showed that 68Ga-DOTATOC
PET imaging resulted in higher tumour to non-tumour
contrast with low kidney accumulation. This has been
demonstrated in pre-clinical studies [4], but carries a greater
impact when is shown in humans.

Another comparison between the two radiopharmaceu-
ticals showed that 68Ga-DOTATOC PET was better at
demonstrating smaller lesions with low tracer uptake [13].
The pharmacokinetics of 68Ga-DOTATOC was studied by
Koukouraki et al. in an attempt to establish parameters
affecting the standard uptake value (SUV) in patients with
metastatic NET [14]. Their dynamic qualitative analysis
showed increased uptake of 68Ga-DOTATOC in 21 of 22
patients and in 72 of 74 lesions with a variable SUV range
(0.877–28.07, mean: 8.73). They confirmed high receptor
binding and internalisation, but low cellular externalisation
and relatively low fractional blood volume. This is helpful

in optimizing planning for 90Y-DOTATOC therapy as
DOTATOC uptake in NET is mainly dependent on receptor
binding and fractional blood volume, and by using
pharmacokinetic data analysis, blood background activity
can be separated from the receptor binding. The same group
used similar dynamic analysis to compare the pharmacoki-
netics of 68Ga-DOTATOC PET and [18F]-fluorodeoxyglu-
cose (FDG) PET in patients with metastatic NET. Qualitative
analysis showed uptake of 68Ga-DOTATOC in all patients in
57 of 63 lesions, while 18F-FDG uptake was observed in 43
of 63 lesions, and discordant findings were seen in 6 of 15
patients [15].

Further comparison between 68Ga-DOTATOC PET and
99mTc-HYNIC-octreotide was performed more recently by
Gabriel et al. [16] in 88 patients with known or suspected
NET. The patients were placed in three categories: those
with unknown primary tumour, but with clinical or
biochemical suspicion of neuroendocrine malignancy (n=
13 patients), those for staging of known tumour (n=36
patients) and those being followed up after therapy (n=35
patients). 68Ga-DOTATOC PET had sensitivity of 97%,
specificity of 92%, and overall accuracy of 96%, and
showed significantly higher diagnostic efficacy compared
with 99mTc-HYNIC-octreotide scintigraphy and computed
tomography (CT) (p<0.001). The combined use of PET and
CT were shown to have the highest overall accuracy.

Another clinical application of imaging with 68Ga-
DOTATATE PET is in the management of phaeochromo-
cytoma. Our group assessed the viability of such imaging in
malignant phaeochromocytomas in a small group of five
patients who had previously undergone surgical resection of
histologically proven malignant phaeochromocytomas and
subsequently presented with clinical and biochemical signs
of recurrence [17, 18]. All patients underwent imaging with
CT, 123I-metaiodobenzylguanidine (MIBG) and 68Ga-
DOTATATE PET. Three patients had concordant results
while two patients had negative 123I-MIBG scintigraphy but
positive 68Ga-DOTATATE PET. The SUV (max.) for the
positive lesions ranged from 4.6 to 10.4, indicating good
tumour to background ratio. These findings present an
interesting role for 68Ga-DOTATATE PET in malignant
phaeochromocytomas, especially those that show no or
little avidity to MIBG. In addition this may lead to further
treatment options with radiolabelled somatostatin analogues
such as yttrium-90 DOTATATE [19] or lutetium-177
octreotate [20] and is particularly relevant in cases of
malignant phaeochromocytoma where recurrent or meta-
static disease is usually not amenable to conventional
treatment strategies.

Besides the DOTA analogues of somatostatin, DOTA-
related analogues of several other interesting peptides have
been developed though the majority of these applications
remain at the pre-clinical and research level.
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Pre-clinical studies with 68Ga PET

It is notable that very few pre-clinical studies, mostly
with unstable compounds [21, 22], preceded the introduc-
tion of 68Ga into clinical practice, which meant that such
studies are still progressing alongside clinical studies. Pre-
clinical studies on somatostatin analogues showed that
68Ga-desferrioxamine (DFO)-octreotide injected in rats
bearing SSTR-positive pancreatic tumours had a selective
binding to the tumour site, with a tumour to background
ratio (TBR)=5 [23].

Subsequently, somatostatin receptors were evaluated in
vivo with several DOTA-related-labelled somatostatin
analogues, among which 68Ga-DOTATOC and 68Ga-
DOTANOC were the most promising [24–27].

Biologic evaluation in living rats of 68Ga-DOTA-
labelled oligonucleotides for labelling antisense oligonu-
cleotides targeting activated human K-ras oncogene was
recently published by Roivainen et al. [28]. They evaluated
the biodistribution and biokinetics of the tracer in vivo in
tumour-bearing athymic rats and showed that 68Ga-DOTA-
oligonucleotide compounds are stable and capable of
producing high-quality PET images. Antunes et al. deter-
mined somatostatin receptor affinity by in vitro receptor autora-
diography in a rat xenograft tumour model. They demonstrated
that third-generation gallium-DOTA-octapeptides have dis-
tinctly better pre-clinical pharmacological performances than
the indium-labelled peptides [4].

68Ga has also been successfully labelled to melanocortin
peptides. These are involved in many physiologic func-
tions, and their receptors are expressed in several cells like
cutaneous melanocytes, keratinocytes, fibroblasts, endothe-
lial cells, antigen-presenting cells and leukocytes. One of
the tumours that can benefit from such imaging is
melanoma which over-expresses melanocortin receptor. A
melanocyte-stimulating hormone (MSH) analogue, [Nle4,
Asp5,D-Phe7]-MSH (4–11) (NAPamide), was conjugated
to DOTA and labelled with 68Ga to characterize both in
vitro and in vivo the mouse B16F1 melanoma model. PET
studies using 68Ga-DOTA-NAPamide revealed high con-
trast images even at 1 h after tracer administration [29].
However, receptor density in human melanomas is much
lower than that in the murine tumour model and more work
is needed to improve receptor affinity in man.

Bombesin receptors are over-expressed on major human
tumours, in particular prostate and breast cancer, and
interest in labelling a bombesin-related carcinoma model
with 68Ga has been tried for the pre-clinical setting and in
patients. One example is a pancreatic cancer model
(AR42J) that was evaluated with 68Ga-DOTAPEG2-[D-
Tyr6, Ala11,Thi13,Nle14] bombesin. Studies published by
Schuhmacher et al. have demonstrated good uptake by the
tumour with a significant tumour to background ratio,

ranging from 5.5 to 11, showing its potential role in clinical
practice [30]. Promising pre-clinical studies using DOTA-
related analogues of several other interesting peptides,
including substance P [31], neurotensin [32] and cholecys-
tokinin (CCK) [33], have also been published and will
benefit from using similar models labelled with 68Ga.

Tumour hypoxia is well known to affect response to
cancer therapy and can be assessed with metronidazole,
which has been recently successfully labelled with 68Ga. A
study by Ito et al. showed clear visualisation of various
tumour cells with 68Ga-metronidazole using ethylenedicys-
teine as a chelator [34]. The over-expression of multidrug
resistance (MDR1) P-glycoprotein (Pgp) is another factor in
tumour response to therapy that has been assessed with
68Ga. Sharma and colleagues [35] examined cell tracer
transport and biodistribution using 68Ga micro-PET imag-
ing. They concluded that this modality could enable
noninvasive PET monitoring of the blood-brain barrier,
chemotherapeutic regimens and MDR1 gene therapy pro-
tocols in vivo.

Pre-clinical studies were not limited to oncology, and an
interesting application of 68Ga involves the evaluation of
infection. 68Ga belongs to the same metallic group as 67Ga
that, as 67Ga-citrate, has been used for the imaging of
infection due to its binding to the circulating transferrin and
avidity to transferrin receptors. 68Ga has the same chemical
characteristics and may have the added advantage of better
resolution for the detection of infection compared to 67Ga.
A rat model of Staphylococcus aureus-induced osteomye-
litis was studied by Makinen et al. using 68Ga small animal
PET. They concluded that 68Ga PET is feasible for the
imaging of bone infection and although still far from being
applied in clinical practice, it has a potential role in this
field [36].

Despite these encouraging prospects for the use of 68Ga
PET, it has been highlighted in a recent editorial in the
European Journal of Nuclear Medicine and Molecular
Imaging that no commercial body has yet obtained a
marketing authorization for a 68Ge/68Ga generator! This,
due to the requirements imposed by pharmaceutical
legislation, means that 68Ga-labelled compounds may not
become available as a standard radiopharmaceutical for
widespread use for some time to come [37]. This can, and
must, be solved by the simultaneous increase in the use of
the generator and constructive dialogue with the industry.

Conclusion

The recent development of 68Ga PET is a true landmark in
molecular imaging that will allow for the use of diverse
molecules and receptor analogues in clinical practice. The
inherent superiority of PET imaging is a clear advantage
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compared to single photon imaging, while the feasibility of
using the 68Ge/68Ga generator, round the clock for more
than a year, is extremely cost-effective negating the need
for on-site cyclotron.

The clinical application of 68Ga-peptides, particularly the
third generation of somatostatin analogues, has been
successful in a variety of tumours, particularly NET, to
the extent that its clinical application has preceded its pre-
clinical assessment. Nevertheless, great interest has been
shown in labelling other molecules and tumour models that
will improve the management of other tumours and the
assessment of infection.
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