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Abstract. Wearless dry friction of an elastic block of weight
N , driven by an external force F over a rigid substrate, is
investigated. The slider and substrate surfaces are both mi-
croscopically rough, interacting via a repulsive potential that
depends on the local overlap. The model reproduces Amon-
tons’s laws which state that the friction force is proportional
to the normal loading force N and independent of the nom-
inal surface area. In this model, the dynamic friction force
decays for large velocities and approaches a finite static fric-
tion for small velocities if the surface profiles are self-affine
on small length scales.

PACS: 46.30.Pa; 64.60.Ht

1. Introduction

The physics of solid dry friction is an old and fascinating
field. Yet, many quite fundamental problems are still subject
of debate. The basic phenomenological facts, though, have
since long been known as the Coulomb-Amontons’s laws of
friction: (i) The frictional force is independent of the size
of the surfaces in contact, (ii) friction is proportional to the
normal load, and (iii) kinetic friction is not (or not much)
dependent on the velocity and typically lower than the static
friction force [1].
A simple explanation for these laws arises from Bowden

and Tabor’s adhesion theory of friction, in which plastic de-
formation of the surfaces accounts for the load dependence
of real contact area and friction force [1, 2]. Furthermore,
plastic deformation leads to a logarithmic time dependence
of the static friction and logarithmic velocity dependence of
the kinetic friction [3, 4]. Although plastic flow is assumed
to yield the main contribution to solid friction, other mech-
anisms may play a role as well. In particular, it was noticed
long ago that elastical multistability and hysteresis also gives
rise to friction [5].
Recently, steps have been taken towards the understand-

ing of wearless friction as a collective phenomenon, domi-
nated by the competition of pinning forces emerging from

rough surfaces and bulk elasticity, neglecting plastic defor-
mations [6, 7]. However, a quantitative understanding is still
lacking. Attempts in this direction are inspired by studies of
the depinning transition of driven charge density waves [8],
interfaces in random media [9, 10] and of vortex lines in
type-II superconductors [11], where the behaviour near the
depinning threshold force turned out to be a non-equilibrium
critical phenomenon described by new universal critical ex-
ponents and scaling laws. It is tempting to assume that fric-
tion is a related phenomenon. Indeed, in a recent investiga-
tion by Cule and Hwa [12], a bead-spring model for friction
has been considered which exhibits a depinning transition of
the universality class of interface depinning. Bead or block
chain models do however not account for Amontons’s laws.
The aim of the present paper is to study a simple statisti-
cal model where friction solely arises from hysteretic elastic
response, and to find whether it is nevertheless capable of
reproducing these fundamental laws. The situation we con-
sider is the weak pinning limit, where elastic multistability
arises as a collective effect. The opposite limit of strong pin-
ning, where multistability already emerges on the local scale
of single traps, has been considered recently by Caroli and
Nozières [6].

2. The model

To be specific, we consider an elastic body of weight N and
linear size L, which is pulled over a rigid substrate, cf. Fig. 1.
The two surface profiles, separated by a mean distance d, are
parameterized by scalar height functions l(x) and h(x), re-
spectively. x denotes the 2-dimensional position vector in
the reference plane parallel to the surface and the substrate.
For simplicity, both surfaces are assumed to have the same
statistical properties: They independently obey Gaussian dis-
tributions with mean zero, characterized by a short-range
pair correlation function

〈h(x)h(x′)〉 ≡ h̄2 k((x− x′)/σ), (1)

where h̄ defines the width of the substrate surface, σ is the
typical lateral corrugation length, k(0) = 1 and k(x) ≈ 0 for
|x| � 1. Correspondingly, l̄2 ≡ 〈l2(0)〉 describes the width
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Fig. 1. Cartoon of the model. A block of weight N is pulled over a rigid
substrate. The two adjacent surface profiles h and l, separated by a mean
distance d, are enlarged. Typical overlap areas are shown

of the slider surface. Unless otherwise stated, we will how-
ever assume throughout the paper that both surface profiles
obey the same distribution, hence l̄ = h̄.
Short range correlations characterize a macroscopically

flat surface. Self-affine surfaces, on the other hand, are
characterized, in Fourier space, by a height-height corre-
lator 〈h̃kh̃k′〉 ∼ δ(k + k′)|k|−2ζ−2, where ζ is the rough-
ness exponent. Fracture surfaces, for instance, typically have
ζ = 0.6 . . . 0.9 [13]. The power law behaviour is usually cut
off below some wave number 1/σ [2], so it is reasonable to
restrict the study first to short-range correlations.
The lateral elastic properties of the bottom slider sur-

face depend on the shape of the body and are usually quite
complicated. In general, the elastic energy can be written as
[14]∫

d2x

∫
d2x′γαβγδ(x− x′)∂αrβ(x)∂′

γrδ(x′), (2)

where r(x) denotes the local lateral displacement from the
equilibrium position. For simplicity, we restrict ourselves to
γαβγδ(x) = γ(x)δαγδβδ and consider only two limiting cases:
If the slider is a 2-dimensional object, like a latex membrane
pulled over a rod [15], γ(x) = γδ(x), i.e. the elastic interac-
tion is local. If, on the other hand, the slider is a semi-infinite
3-dimensional object, elastic response is mediated by bulk
elasticity and nonlocal in space with γ(x) ≈ γ/|x|. Both
cases can be treated simultaneously by introducing an ex-
ponent α, so that the elastic kernel in Fourier space scales
like

γ̃(k) ≡
∫

d2x eikxγ(x) ∼ kα−2, (3)

with α = 1 and 2 for bulk and surface elasticity, respectively.
Consequently, the dispersion of the elastic energy will be-
have as kα. Generalizing (2) to a D-dimensional surface,
the real space elastic kernel scales like γ(x) ∼ |x|2−D−α.
In the direction perpendicular to the reference plane, the

slider surface would strictly also have to be treated as elastic,
interacting with the substrate via a hard wall potential (in the
absence of adhesion forces). To make the model analytically
amenable, however, we allow the surfaces to overlap and
introduce a repulsive potential V (z) that depends on the local
overlap

z(x) = h(x + r(x, t)) + l(x)− d. (4)

This potential is used to mimic vertical elasticity. We choose

V (z) = V0 z
n Θ(z), (5)

where Θ(z) is the Heaviside step function, and n > 1. With
n = 3/2, the Hertzian result on the distance dependence
of the repulsive force between two elastic spheres [14] is
reproduced (this nontrivial dependence being the result of the
interplay between Hooke’s law and the spherical geometry).
As it turns out, the results do not depend very sensitively
on the chosen value of n. Note that setting V (z) ≡ 0 for
z < 0 via the Heaviside function is natural and justified, in
the absence of adhesion.
Finally, the total driving force F is applied homoge-

neously as a force density f = F/L2. This choice appears
to be natural in the case of bulk elasticity, whilst for a
membrane-like slider the external force should rather be ex-
erted at one border.
Assume that, with the slider lying at rest on the substrate,

we turn on the external driving force F. If F is large enough,
the slider will start to move, and the interaction between the
slider and the substrate will generate a dynamic friction force
Ffr ≡ −F (as we will show below) which leads, after a
transient time of acceleration, to a constant average velocity
v of the center of mass of the slider. In the steady state, the
equation of motion of a point r(x, t) of the slider surface can
be written as

η (ṙ(x, t)− v) =
∫

d2x′γ(x− x′)∇′2r(x′, t) + f (6)

− ∂

∂r(x, t)
V [h(x + r(x, t)) + l(x)− d].

The term on the left hand side accounts for surface phononic
damping within the slider, with a damping coefficient η.
Since (6) is written in the laboratory frame, the center of
mass velocity v has to be subtracted from the local velocity
ṙ. In this way we make sure that rigid sliding, i.e. r(x) ≡ vt
with a constant velocity v, is frictionless. The neglect of
an inertial term is justified by our primary interest in the
depinning region, where kinetic energy is relatively small.
If we started, on the other hand, with a theory including
an inertial term only, viscous friction would nevertheless be
generated by the nonlinear random force after eliminating
short wavelength displacement modes.
The mean separation d between slider and substrate

obeys a similar equation of motion

Λ
∂

∂t
d(t) = −N −

∫
d2x

∂

∂d
V [h(x + r(x, t)) + l(x)− d], (7)

which has to be solved simultaneously with (6). Again, over-
damped motion is assumed with another friction constant.
In the analysis we will take Λ → ∞, because in the ther-
modynamic limit of infinitely large system size L, fluctua-
tions of the mean distance d will vanish, so that it can be
treated as a constant parameter that has to be determined
self-consistently.
Simple scaling analysis shows that the model is domi-

nated by two dimensionless quantities:

E ≡ V0h̄
n/γσ2−α and N ≡ N/V0 h̄

n−1σ2, (8)

where E is the ratio between typical overlap and elastic
forces on short scales. In this paper, we will restrict our-
selves to E � 1, corresponding to weak disorder or weak
pinning, and 1� N � (L/σ)2. Under these conditions, N
will turn out to be of the order of the number of contact
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points between the two surfaces (V0 h̄n−1σ2 is the typical
overlap force at a single contact), hence the latter condition
ensures that the real contact area is smaller than the nominal
area L2 and bigger than the typical size σ2 of one point of
contact. Note that N � (L/σ)2 can be rewritten as p� p0,
where p = N/L2 is the nominal pressure and p0 = V0h̄

n−1
a typical pressure at contact points.

3. Static properties

Let us first consider the limit of vanishing surface elasticity
E → 0 (which implies that there is no friction force and
hence no pinning at all) and zero external force F. In this
limit r(x, t) ≡ 0, and in (7) the height profiles h and l can
be averaged over. We find

N =
1

V0h̄n−1σ2

∫
d2x 〈V ′[h(x) + l(x)− d]〉 (9)

= cn

(
L

σ

)2
(2h̄/d)ne−d2/4h̄2 (

1 +O (
(h̄/d)2

))
, (10)

where cn ≡ Γ (n + 1)/
√
4π. This implicitly determines

d as a function of N and the surface roughness: d ≈
2h̄ ln1/2(cnL2/Nσ2). The real contact area

Ar ≡ L2〈Θ(h(x) + l(x)− d)〉 (11)

can be calculated in the same limit. Note that, while lateral
elasticity is suppressed in the limit E → 0, the ”soft” in-
teraction potential V (z) that mimics vertical elasticity still
allows for a finite contact area. Making use of (9), it is given
by

Ar ≈ Nσ2√
4π cn

ln
4−n
2n

[
cnL

2/Nσ2
]
. (12)

Apart from logarithmic corrections, Ar is thus proportional
to the normal load, independent of the total surface area1.
The dependence on the potential parameter n is weak, influ-
encing only the strength of the logarithmic correction.
The proportionality between load and contact area is a

generic feature in our model, as long as the height probability
distribution P (h) decreases at least exponentially for heights
|h| � h̄, where h̄ is the surface profile width. The only
restriction imposed on the choice of the potential V (z) is that
it is cut off for z < 0, which should be true for any effective,
adhesionless interaction, and that it increases slower than
exponentially, or, in the case of a Gaussian height probability
distribution, at most exponentially; the exact form for z > 0
does not matter. Under these assumptions, the expectation
value (considered to be a function of d) satisfies

〈V (h− d)〉 ≡
∫ ∞

d

V (h− d)P (h)dh ∼ P (d) (13)

to leading order. With the definition in (11) and N/L2 =
〈V ′(h + l − d)〉, the proportionality between Ar and N is a
consequence of this result.
1 In [16], the proportionality between load and contact area was shown

for a purely elastic surface with Gaussian distributed profile. In the model
considered there, surface asperities were assumed to be spherically shaped
and to obey the Hertzian distance-force relation.

We next assume that the elasticity constant E is finite
and set up a perturbation expansion in the local displace-
ment field r(x, t) about an undistorted configuration, first
with F = 0. For our further calculation it is useful to gener-
alize the model to a D-dimensional slider surface, redefining
N correspondingly to N = N/V0h̄

n−1σD. The definition of
E is unaffected. The set of equations of motion (6) and (7)
can then be solved by iteration, order by order in the strength
of the interaction potential V0, using a diagrammatic tech-
nique introduced in [17]. At each step, the random profiles
h and l are averaged over. In the following analysis, the
mean distance is assumed to be determined self-consistently
by (7) in the limit Λ→∞, i.e. it is treated as a constant.
In order to set up the perturbation theory, we transform

the equation of motion (6) to Fourier space:

G−1
0 (k, ω) r̃k,ω = (2π)

D+1δD(k)δ(ω)f (14)

−
∫
dDx dt e−ikx−iωt ∂

∂r(x, t)
V [h(x + r(x, t)) + l(x)− d],

where the bare propagator is given by

G0(k, ω) = (γ|k|α + iηω)−1. (15)

Expanding the last term in (14) in powers of r(x, t), one gets
for the displacement field to first order in V0

r̃k,ω = −G0(k, ω)
∫

dDx dt e−ikx−iωt × (16)

∇h(x)V ′[h(x) + l(x)− d] +O(V 2
0 ).

For the displacement correlation function in lowest non-
vanishing order follows

〈r̃k,ω r̃k′,ω′〉 = −(2π)D+2δ(ω) δ(ω′)δD(k + k′)× (17)

|G0(k, ω)|2
∫

dDx e−ikx ×
∇2r

∣∣
r=0 〈V [h(x + r) + l(x)− d]V [h(0) + l(0)− d]〉︸ ︷︷ ︸

≡ C2(x + r, x; d)

.

Since the surface height profiles are Gaussian distributed,
the pair correlator C2 will be a function of the first (which
we have chosen to be zero) and second moments of the dis-
tribution only. More specifically, only the sum of the second
moments enters the definition of C2, so we can define

C̄2(Kh(x1) +Kl(x2); d) ≡ C2(x1, x2; d), (18)

with Kh(x) = 〈h(x)h(0)〉 and Kl(x) = 〈l(x)l(0)〉, where the
average is taken over the respective height distributions. The
exact form of C̄2(K, d) is analyzed in appendix A. The main
result of this analysis is that the value of C̄2 is proportional
to the normal load N if |x1|, |x2| <∼ σ. For the real space
displacement correlation function follows (with σ � |x| �
L)
1
2
〈 [r(x)− r(0)]2 〉 =

∫
k
(1− eikx)〈r̃k,0r̃−k,0〉 (19)

=
∫
k,p

1− eikx
γ2|k|2α

∫
dDx1d

Dx2p2e−ikx2+ip(x2−x1)C2(x1, x2; d)

∼ σ2NE2 (σ/L)D ×
⎧⎨
⎩

1
Dc−D

(
|x|
σ

)Dc−D

for D < Dc

ln(|x|/σ) for D = Dc,
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where
∫
k is short hand for

∫
dDk
(2π)D . In the last equation, we

have made use of (49) from App. A, with κ ≈ 1. The (upper)
critical dimension is given by

Dc = 2α, (20)

implying that the physically relevant situationD = 2 and α =
1 corresponds to the marginal case. Ignoring for a moment
the dependence on length scales, the result is proportional
to NE2 ∼ NV0/γ

2; the linear dependence on N stems from
replacing V0e−d2/4h̄2 (being the leading dependence on the
mean distance d) by N/LD via (9).
Like in other cases of collective pinning, one can now

determine a Larkin length LL from the condition 〈 [r(LL)−
r(0)]2 〉 ≈ σ2 [18], i.e. LL is the length scale where typical
displacements become of the order of the corrugation length
of the substrate. This yields

LL ≈ σ(LDε/σDNE2)1/ε
= σ[γ2σ2(2−α)/V0h̄

n+1p ]1/ε, (21)

where ε = Dc−D. Note that LL depends, apart from a com-
bination of intrinsic model parameters, only on the nominal
pressure p = N/LD.
What are the consequences for the static friction force,

which in our model is identified with the critical force at the
depinning transition [10]? LL will be smaller than the sys-
tem size only if we choose our model parameters such that
N � E−2(L/σ)D−ε. In this case, it is possible to estimate
the static friction force in the standard way [19, 20, 21]: On
small length scales, the elastic energy is dominant compared
to the interaction with the random potential, so that adjacent
sites move coherently. On larger length scales, the random
forces become more relevant until on the scale of the Larkin
length LL, elastic and pinning forces are of the same order of
magnitude, so the elastic manifold becomes able to explore
the inhomogeneous force field emerging from the randomly
distributed contact points on scales larger than LL. Regions
of linear size LL can hence be assumed to adapt indepen-
dently to the disorder, each of them giving an independent
contribution to the pinning force of the order of the elastic
force on this scale. The force density in a Larkin region is
thus given by ffr(LL) ≈ γσL−α

L , which is the product of a
typical gradient σ/L2L, a typical value of the elastic kernel
γL−D+2−α

L , and the area LD
L of the region. The total friction

force is thus of the order

Ffr ≈ (L/LL)D LD
L ffr(LL) ≈ γLDσL−α

L , (22)

which is proportional to the nominal area LD and hence
violates Amontons’s first law.
With N (σ/L)D � 1 and E � 1, however, LL will

typically be much larger than L. The fact that in solid dry
friction the Larkin length is typically� L, has been recently
remarked also by Persson and Tossati [7] and by Caroli and
Nozières [6]. In the following, we will restrict ourselves to
this situation. In the physical situation D = 2 with bulk
elasticity α = 1, being just at the marginal dimension Dc

(i.e. ε = 0), LL is exponentially large [19, 7]:

LL ∼ σ exp
(
c

LD

σDNE2
)
, (23)

where c is a dimensionless constant.
The elastic response of the surface also allows for a re-

duction of the potential energy of the slider by decreasing
the mean distance d. Technically, this appears in the form
of a correction factor to the r.h.s. of (9). It is calculated by
expanding V ′[h(x + r(x)) + l(x)− d] in r(x) and substituting
for r(x) the first order expression (16), yielding

〈V ′[h(x + r(x)) + l(x)− d]〉 = 〈V ′[h(0) + l(0)− d]〉
+
∫
k
G0(k, 0)

∫
dDx′ e−ikx

′ ×

∇2r
∣∣
r=0 〈V [h(x′ + r) + l(x′)− d]V ′[h(0) + l(0)− d]〉

+O(V0h̄n−1E2). (24)

In this order of perturbation theory, the correction can be
represented by a factor (1− c E(h̄/d)n) with another dimen-
sionless constant c. Since this correction factor is smaller
than 1, the self-consistent determination of the mean dis-
tance d via (9) will in turn lead to a slightly decreased value
of d → d − Δd, so that the enlarged value of the leading
factor

∼ e−(d−Δd)2/4h̄2 (25)

just compensates the reduction. A similar correction in (12),
together with the modified d, leads to a modified contact
area Ar → Ar + δAr.
In order to determine the sign of the relative correction

δAr/Ar, one has to compare the magnitude of the relative
corrections to 〈V ′(h+l−d)〉 and to Ar, as defined in (11), re-
spectively. Using the result of (52) in App. A, one finds that
the relative correction to Ar is smaller by an approximate
factor of Γ (n)Γ (n + 1)/Γ (2n) (which is smaller than 1 for
n > 1). Consequently, the increase in Ar due to −Δd < 0
in the factor (25) will dominate, so the ratio δAr/Ar (which
is of order E) is positive.
If there is a friction force at all, it should depend on δA

and vanish for δA = 0, because a completely rigid surface
is never pinned. We can hence give a dimensional argument
for a characteristic friction force F̃fr. The simplest way to
estimate F̃fr is to write it as the product of the excess con-
tact area δAr ≈ σDNE and a typical lateral force density
V0h̄

n/σ = γσ1−αE
F̃fr ≈ γσD+1−αNE2. (26)

Here, a logarithmic correction of the order ln(LD/NσD)
has been omitted. Defining as usual the friction coefficient
μ ≡ Ffr/N , this expression corresponds to a value of μ of
order E h̄/σ which depends on the ratio between elastic and
repulsive forces on small length scales but not on the load.
Below, we will show that this estimate gives indeed the right
order of magnitude of Ffr.

4. Kinetic and static friction

Next, we consider the case of a moving slider, v ≡ |v| /= 0,
driven by a finite force F. The perturbative expansion is now
set up in

u(x, t) ≡ r(x, t)− vt, (27)
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relative to steady, rigid sliding. For further simplification,
we allow only for displacements in the direction e‖ ≡
F/|F|, corresponding to a further restriction γαβγδ(x) =
γ(x)δαγδβδδα1 in (2), where 1 denotes the direction e‖.
Hence, u(x, t) = u(x, t) e‖. It has been argued in a closely
related context (the depinning of a driven flux line in a ran-
dom medium) that this restriction will not alter the critical
dynamics in the average direction of motion [22]. This ap-
proximation will however overestimate the force needed to
overcome a repulsive trap, because asperities cannot avoid
each other by simply bending away. Recently it has been
shown explicitly that this avoiding process completely rules
out local multistability in the case of isolated isotropic traps,
while multistability is re-established for anisotropic traps
[23]. Full account of D-dimensional lateral elasticity has
been taken in a simpler version of our model, where the
random potential energy is proportional to the product of
two charge densities on the two elastic manifolds, in [24];
there, however, the case of LL � L was considered.
To find the average dynamic friction force to lowest or-

der in perturbation theory, we follow a procedure used by
Feigel’man for driven interfaces [20]. He calculated the first
correction to the mobility constant η, treating the average
velocity v as a parameter which has to be determined self-
consistently. Technically, we proceed as follows: First, re-
place r(x, t) by vt + u(x, t) in (14), and expand the random
potential part in this equation in powers of u(x, t). Now, in-
sert the Fourier transform of (16), having replaced the l.h.s.
of this equation by ũk,ω and the argument of h on the r.h.s.
by x + vt, into the next order expansion term in (14),∫
dDx dt e−ikx−iωtu(x, t)

∂2

v2∂t2
V [h(x + vt) + l(x)− d], (28)

and perform the average over h and l. One finds to second
order in V0

f =
V 20 h̄

4n+1

d2n+1
2nΓ (2n + 1)√

π

∫
p,Ω
G0(p, Ω)× (29)

∫
dDx dt eipx+iΩt 1

v3
∂3

∂t3

[
f2

(
Kh(x + vt) +Kl(x)

2h̄2

)

exp
(
− d2

2h̄2 +Kh(x + vt) +Kl(x)

)]
.

Here, the representation of the random potential correlation
function obtained in App. A, with the dimensionless function
f2(κ) as defined in (52), has been used.
The r.h.s. of (29), multiplied with the full area LD of

the slider, is identified with the total friction force Ffr(v) =
LDffr(v). The resulting expression for Ffr(v) can be written
in the form

Ffr(v) = (30)

LDE2γσ1−α v

v0

∫
ξ,χ

ξ41
|χ|2α + ( vv0 )2ξ

2
1

c̃2(σξ, σ(χ− ξ))
σ2D

,

where c̃2(p,p′), defined in (56) in App. A, is the Fourier
transform of the random potential correlator defined in (17).
χ = σp and ξ = σq are dimensionless integration variables,
and we introduced the velocity scale

v0 ≡ γσ1−α/η, (31)

which is a typical relaxation velocity.
Written in this way, the integral on the r.h.s. of (30) is

just a number, the velocity dependence entering only via the
ratio v/v0. Hence, we can write the friction force in the form

Ffr(v) ≈ F̃fr φ

(
v

v0

)
, (32)

where φ(x) is a dimensionless function that depends on the
explicit form of V (z) and the statistics of the surface profiles.
A detailed discussion of the velocity dependence in φ(x) is
given in App. B. Here, we will only summarize the results.
At v ≈ v0, to begin with, Ffr(v) is indeed found to be of

the order F̃fr, which followed from our naı̈ve estimate (26).
The amplitude F̃fr, implying in particular the proportionality
between Ffr(v) and N , follows for similar reasons as those
that led to (20), making use of the random potential corre-
lator calculated in App. A. Thus, our dimensional argument
(26) is justified a posteriori.
In the high velocity regime v � v0, the friction force

decays proportional to 1/v, independent of D and α. Note
that as we have not included inertial terms in the equations
of motion (6) and (7), the experimentally observed velocity
strengthening behaviour of the friction force for high veloc-
ities cannot be reproduced by our model.
In the most interesting regime v � v0, the behaviour cru-

cially depends on the characterics of the surface profile cor-
relator k(x) and on the dimensionality. If the height-height
correlator k(x) is analytic in the origin, the friction force
reaches its maximum (of order F̃fr) at v ≈ v0, and it de-
creases for v � v0 as (v/v0)1−ε/α. This is the usual con-
tribution to friction from phononic damping, vanishing for
v → 0 if ε/α < 1. In the marginal dimension D = 2, with
bulk elasticity, Ffr(v) thus depends linearly on v (times a
logarithm of v/v0, cf. (63) in App. B) in the small velocity
regime.
In order to find a finite static friction force, however,

Ffr(v) has to bend towards a non-zero value for v → 0. In
related problems like the depinning of driven interfaces and
charge density waves, it has been shown that a finite pin-
ning threshold appears due to contributions to φ(x) on length
scales larger than the Larkin length [10]. On these length
scales, configurational multistability emerges as a collective
effect, leading to collective pinning. This is reflected, in a
renormalization group treatment, by the renormalized ran-
dom force correlator developing a cusp-like singularity at
the origin. Since in our case LL is typically larger than the
system size, the collective pinning mechanism is absent. We
thus have to find criteria for the existence of local multista-
bility.
As mentioned above, real world surfaces often have self-

affine properties spanning several orders of magnitude. A
(one dimensional) surface profile, for instance, that is short
range correlated on the scale σ, and self-affine with a rough-
ness exponent ζ = 1/2 below this scale, is described, in real
space, by the correlator

Kh(x− x′) = 〈h(x)h(x′)〉 = h̄2e−|x−x′|/σ. (33)

If the self-affinity covers the length scales from σ down to a
microscopic length scale a, 〈h(x)h(x′)〉 will exhibit the cusp
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only when considering it on a coarser scale than a; on finer
scales, it is analytic again. In Fourier space, the height-height
correlator corresponding to such a profile is given by

Kh(q) =
2 e−(qa)

2

1 + (σq)2
. (34)

A surface with this correlation function can be generated
by an Ornstein-Uhlenbeck process [25]: Given a stochas-
tic spatial noise ζ(x) with 〈ζ(x)〉 = 0 and 〈ζ(x)ζ(x′)〉 =
(2h̄2/σ)δa(x − x′), where δa produces short range corre-
lations over a length scale a, the profile h(x) obeying the
differential equation
dh

dx
= − 1

σ
h(x) + ζ(x) (35)

has the desired statistical properties.
For such surface profiles, we find that φ(v/v0) takes a

finite value of order 1 for v0(a/σ)1/α � v � v0. In this
case, the total friction force is indeed of the estimated order
F̃fr and almost constant for v < v0, and decays ∼ 1/v for
v � v0. More generally, a finite static friction force is found
if the (unrenormalized) surface profile correlator k(x) has a
cusp in the origin (precisely, we need limx‖→0+ ∂x‖k(x) /= 0,
where x‖ is the component of x parallel to f), which cor-
responds to the first spatial derivative of k(x) undergoing a
jump (of order 1) at x = 0. A surface characterized by such a
correlator has local slopes that may take arbitrarily high val-
ues, eventually leading to multistability even for arbitrarily
small roughness h̄.
Note that for a� σ, the lower velocity scale v0(a/σ)1/α

will typically be so small that it has no significance for
a finite sample, since velocity fluctuations will become so
large that the slider gets pinned. Consequently, for L fi-
nite and hence in any experimental situation the regime
v � v0(a/σ)1/α where φ(v/v0) � 1 is unlikely to be ob-
servable.

5. Strong pinning

Our results have been obtained using the framework of per-
turbation theory about weak disorder, which is sufficient in
the weak pinning limit and which is the natural starting point
for a renormalization group analysis that reveals configura-
tional multistability on length scales larger than LL. In prin-
ciple however, it is possible to have multistability already
locally on the scale of a single trap. This situation corre-
sponds to the strong pinning limit [26], which cannot be
treated successfully within finite order perturbation theory.
Such a situation was recently considered by Caroli and

Nozières (CN) [6]. They consider two flat surfaces with a
sparse distribution of bumps and sinks, where ’active’ traps
are formed when two adjacent asperities are in contact. Writ-
ing the interaction at an active trap as a potential energy
V (ρ) that depends on the distance ρ between their centers,
they derive a criterion for the existence of local (single-site)
multistability which reads

max |∂2ρV (ρ)| > Eσ. (36)

E is Young’s modulus – which, in D = 2 and with α = 1,
is our γ – and σ a typical length scale of the trap. Similar

considerations have been applied for instance in mean-field
like descriptions of driven interfaces or charge density waves
[27]. The frictional force is then proportional to the typical
energy gap at a spinodal jump, multiplied with the density
of active traps.
To make contact with the CN model, we can identify

the overlapping asperities in our model (which are relatively
few in the limit of small normal load) with these active
traps. We aim to derive an estimate for the onset of local
multistability in the case of short range correlated surface
profiles, with a typical corrugation length σ, and a poten-
tial V (z) = V0z

2θ(z), in the physical situation D = 2 with
bulk elasticity (α = 1). A typical energy that can be stored
in one active trap can roughly be estimated as V0h̄2σ2, and
the second derivative with respect to a lateral displacement
will be of order V0h̄2. Comparing this with the elastic en-
ergy term γσ, we find as condition for the presence of local
multistability that

E ≥ O(1), (37)

a condition which violates our assumptions.
This restriction can be relaxed to some extent if one looks

for the occurance of the first appearance of a multistable site
in a finite sample when tuning, for example, the potential
amplitude V0. The largest asperity in a sample of linear size
L will have a height hmax of order 2h̄ ln1/2((L/σ)2), and with
the expression for the mean distance d given after (9) follows
hmax−d ≈ 2h̄2

d lnN . Using further that the second derivative
of a Gaussian correlated surface profile will typically take a
value of order hmax/σ2 at this maximum, we arrive at the
criterion

E lnN ≥ O(1) (38)

where 1� N � (L/σ)2 has been used.

6. Conclusion

Expressions (26) and (32) are the main results of this paper.
They describe a friction force which depends linearly on
the weight N (up to logarithmic corrections), but not on
the nominal contact area LD and hence fulfills Amontons’s
laws. The dependence on the potential parameter n is weak.
It is noteworthy that this result was obtained in the limit
Ar � LD, where statistics are dominated by rare events.
Trying other forms for the overlap interaction potential

V (z), it turned out that the crucial ingredient leading to
Ffr ∼ N is the cutoff below z = 0. If one abandons this cut-
off and uses, e.g., an exponential potential V (z) = V0 ez/z0 ,
the proportionality is no longer valid; for the exponential po-
tential, for example, one finds instead to leading order that
Ffr ∼ N 2.
To summarize, we have introduced a new stochastic

model that incorporates the interplay between bulk elasticity
and surface roughness in solid dry friction. To our knowl-
edge, it is the first purely elastic model that treats solid dry
friction as a collective phenomenon and reproduces the cor-
rect load dependence of the friction force Ffr, known as the
Coulomb-Amontons’s laws. For high velocities v, Ffr de-
cays like 1/v, while the behaviour for small v depends on
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the surface profile statistics: For a smooth surface, the static
friction force vanishes in the weak pinning case, while it
is finite if the surface is characterized by a non-analytical
height-height correlator. We have also given an estimate for
the appearence of local multistability in the case of smooth
interfaces.
We have not considered thermal effects in our study, be-

cause in most situations where temperature changes do not
strongly affect the mechanical strengths of the sliding bodies,
the friction coefficient is found to be basically insensitive to
temperature variations [28]. An example where friction does
however strongly depend on the temperature is the case of
rubber sliding over hard surfaces, where the friction proper-
ties are intimately connected with the temperature dependent
visco-elastic properties of the rubber material [29]. In that
specific case, the friction coefficient η in our model would
become temperature dependent, modifying the velocity scale
v0 (cf. (31)) while leaving the friction force amplitude F̃fr
(26) constant.
The present study can be extended in many directions.

First, let us shortly focus on the damping term in (6). In gen-
eral, also η is non-local in space (and time): For long wave-
lengths, it behaves like η(k) ∼ ks, where the precise value
of s depends on the damping mechanism under considera-
tion. Attenuation rates of surface waves for a semi-infinite
elastic body with a rough surface lead to s = 3 or 4 in
the long wavelength regime [30]. In this case, the dynamics
are dominated by a modified dynamical critical dimension
Dc,d = 2α− s, while the static properties are unaffected.
In a situation where the Larkin length is smaller than the

system size, the perturbative results hold only in the limit
of large velocities; for this situation, the critical dynamics
close to the threshold force remain to be analyzed. Finally,
inertial terms can be included to properly describe the high
velocity regime.

It is a pleasure to thank Jan Kierfeld, Tim Newman and Kirill Samokhin
for useful discussions. This work has been supported by the German Israeli
Foundation (GIF).

A. Random potential correlation function

Let vn(z) ≡ Θ(z)zn, cf. (5). We want to calculate the pair
correlator

C̄2(Kh(x) +Kl(x′); d) ≡ (39)
〈V [h(x) + l(x′)− d]V [h(0) + l(0)− d]〉,

cf. (17), for fixed x and x′. The first step is to rewrite (39)
using the Fourier transform of V (z) =

∫
q
eiqzṼq, followed

by performing the disorder average over the Gaussian height
fields h and l. This results in∫
q,q′
ṼqṼq′e−

1
2 (q

2+q′2)(h̄2+l̄2)−qq′(Kh(x)+Kl(x′))−i(q+q′)d. (40)

Vq and Vq′ are Fourier transformed back to V (z) and V (z′),
and the Gaussian integral over q and q′ is carried out. Before
writing it down, we go over to dimensionless functions and
variables. We choose

l0 ≡
√
〈h2〉 + 〈l2〉 (41)

as the length scale in the direction perpendicular to the sur-
face plane. Let

δ ≡ d

l0
, κ ≡ Kh(x) +Kl(x′)

l20
, (42)

so κ ranges between 0 and 1, with κ = 1 for x = x′ = 0
and κ→ 0 in the opposite limit |x|, |x′| � σ. Finally, let us
define the dimensionless function

c2(κ, δ) ≡ C̄2(κl20, δl0)
V 20 h̄

2n . (43)

The resulting expression is then

c2(κ, δ) =
∫

dζdζ ′ vn(ζ)vm(ζ ′)
2π
√
1− κ2

× (44)

exp
(
− (ζ − ζ ′)2 + 2(1− κ)(ζ + δ)(ζ ′ + δ)

2(1− κ2)

)
.

This is a general expression for an arbitrary interaction po-
tential; from now on we will make use of the specific form
of vn(ζ). Let us first consider the limiting cases κ = 0 and
κ = 1. First, for κ = 0 one gets

c2(0, δ) =
∏

k∈{m,n}

∫ ∞

0

dζ√
2π

ζk e−(ζ+δ)
2/2 (45)

(δ�1)≈ Γ (n + 1)Γ (m + 1)
2π δm+n+2

e−δ2 . (46)

In the opposite limit κ→ 1,

c2(1, δ) =
∫ ∞

0

dζ√
2π

ζm+n e−(ζ+δ)
2/2 (47)

(δ�1)≈ Γ (m + n + 1)√
2π δm+n+1

e−δ2/2. (48)

Comparing the δ-dependence in (45) and (47) with the de-
pendence of the mean distance d on the normal load, (9), –
remember that we consider d to be a function of N – one
finds to leading order

c2(κ, δ) ∼
⎧⎨
⎩

(
σ
L

)DN for κ ≈ 1((
σ
L

)DN)2
for κ ≈ 0, (49)

where δ is to be considered a function of N/LD.
To make progress with (44) for arbitrary κ, one can in-

troduce polar coordinates ζ ≡ r cosφ, ζ ′ ≡ r sinφ. The
r-integration can be carried out exactly, leaving the one di-
mensional angular integral

c2(κ, δ) = Γ (ν + 1) (1− κ2)ν/2 e−
δ2
1+κ × (50)∫ π/2

0

dφ

2π
cosnφ sinmφ

(1− κ sin 2φ) ν+12
ey

2(φ)/4D−(ν+1)(y(φ)),

where

y2(φ) =
1− κ

1 + κ
1 + sin 2φ
1− κ sin 2φ

δ2, (51)

and D−(ν+1)(y) with ν = m + n + 1 is a parabolic cylinder
function. Equation (50) can easily be calculated numerically.
For our present purpose it suffices however to write
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c2(κ, δ) =
Γ (m + n + 1)√
2π δm+n+1

f2(κ) e−δ2/(1+κ), (52)

where f2(κ) only weakly depends on κ (’weakly’ compared
to the leading exponential dependence). It is a monotonically
growing function with

f2(κ) ≈
{

Γ (n+1)Γ (m+1)
Γ (m+n+1)

1√
2πδ

for κ = 0

1 for κ = 1.
(53)

For large enough δ, we can neglect the dependence on f2(κ):
The ratio e−δ2/2/f2(0) is ≈ 1/50 for δ = 4, ≈ 3× 10−4 for
δ = 5 etc., with n = m = 2.
Since we will primarily need the Fourier transform of

the potential correlation function, we define

C̃2(p,p′) ≡
∫

dDx dDx′ eipx+ip
′x′ C2(x, x′) (54)

and analyze its behaviour for large δ such that e−δ2/2 � 1.
Under this constraint, it is a good approximation to con-
sider only the leading δ- and κ-dependence of c2(κ, δ), i.e.
c2(κ, δ) � e−δ2/(1+κ), making an error of O(1). For sake of
simplicity, let us assume henceforth that both surface profiles
obey the same distribution Kh(x) with

Kh(x)
l20

≈
{1/2 for |x| <∼ σ

0 for |x| � σ.
(55)

Let

c̃2(p,p′) ≡ C̃2(p,p′) / V 20 h̄2n. (56)

Because C2(x, x′) decays to a nonzero constant for |x| � σ,
it is convenient to write c̃2(p,p′) as the sum of four terms:

c̃α2 δpδp′ + c̃
β
2 (p)δp′ + c̃

β
2 (p

′)δp + c̃γ2 (p,p
′), (57)

only the last two of which will contribute in the integrals
C̃2 appears in (cf. for example (60)). The other two terms
will be eliminated due to the δp–term being multiplied with
a power of p1.
Now, first consider Gaussian correlated surface profiles

k(x) = e−x2/2 (cf. the definition in (1)). Performing a
saddle-point expansion about small x and x′ in C2(x, x′) and
then Fourier transforming, c̃β2 (p) is found to be proportional
to (σ/δ)De−2δ

2/3 for |p| <∼ δ/σ and exponentially damped
for larger p. Correspondingly, c̃γ2 (p,p′) ∼ (σ/δ)2De−δ2/2

for |p|, |p′| <∼ δ/σ, with exponential suppression for |p| or
|p′| >∼ δ/σ.
If the surface correlation function is taken to have a cusp

in the x1-direction, the only – and important – difference
arises in the large p1-behaviour of c̃β2 and c̃

γ
2 . With the mod-

ification that

k(x1) = e−|x1|, (58)

leaving the dependence on the perpendicular spatial coordi-
nates unmodified, we find

c̃β2 (p1) ∼ σb/(1 + p21σ
2
b) (59)

with σb = 9σ/2δ2, and a similar result for c̃γ2 (p1, p′1). In the
perpendicular direction p⊥, cβ2 and cγ2 are again exponen-
tially suppressed.

B. Dynamic friction force

We want to analyze the expression (29) that gives the kinetic
friction force density at velocity v in first non-vanishing or-
der perturbation theory. Two generic scenarios will be con-
sidered, assuming in both cases that the two surface pro-
files obey identical distributions. First, we consider the case
of short range correlated profiles, k(x) = e−x2/2, and sec-
ond, profiles that are self-affine in the direction of F. Let us
rewrite (29) as

f =
∫
p

∫
q
G0(p, q1v) iq31 C̃2(q,p− q), (60)

with C̃2(p,p′) as defined in (54). Only the imaginary part of
the propagator

� (G0(p, q1v)) = − ηq1v

γ2|p|2α + (ηq1v)2 (61)

gives a contribution to the integral, the integral over the real
part vanishes by symmetry. Now, C̃2(p,p′) is of order

V 2
0 h̄

2ne−δ2/2 ∼ γσ3−α

LD
F̃fr for 1/L < |p(′)| < 1/σ, (62)

with δ as defined in App. A and F̃fr from (26), and van-
ishes rapidly for |p(′)| > 1/σ. This is the contribution from
c̃γ2 (p,p′), cf. (57). The second term in the denominator in
(61) serves as an infrared cutoff for the p-integration at
p ≈ σ−1(v/v0)1/α, giving rise to a velocity dependence

φ(v/v0) ∼
⎧⎨
⎩

1
D−2α

(
v
v0

)D/α−1
for D < 2α

v
v0 ln(v/v0) for D = 2α,

(63)

hence confirming the discussion after (32) for velocities
v � v0. For v � v0, the 1/v-behaviour follows from the
dominance of the second term in the denominator of (61),
regardless of the dimension D and the value of α. The term
c̃β2 (q)δ(p−q) gives an independent contribution to the integral
in (60) proportional to∫
p

ip31
γ|p|α + iηvp1 c̃β2 (p). (64)

For small v � v0, it is linear in v, and, apart from the veloc-
ity dependence, it is smaller by a factor of e−δ2/6 compared
to the leading term, so we can neglect it here.
Now consider surface profiles that are characterized by a

correlation function modified via (58), having a cusp in the
direction of the applied force, and being analytic in direc-
tions perpendicular to it. In contrast to the previous situation,
C̃2(q,p − q) is exponentially damped now only in the di-
rection perpendicular to F, while the large p-behaviour of
cγ2 in the sliding direction is ∼ (p1 − q1)−2q−21 , and ∼ p−21
for cβ2 . In the contribution to (60) containing the term cγ2 ,
performing the q1-integration leads to
π

2γσ4

∫
p,q⊥

2|p|α + ṽ
(|p|α + ṽ)2 C̃2(q⊥,p⊥ − q⊥), (65)

where ṽ = v/v0σ
α. The remaining integrals can now easily

be carried out, yielding a result which, provided that D > α,
is independent of v for v � v0. It is of order
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V 20 h̄
2ne−δ2/2

(D − α)γσ3−α
≈ 1
(D − α)LD

F̃fr. (66)

For α = 1, this result is multiplied with a factor of ln(σ/a),
where 1/a is the UV-cutoff of the p1-integration, a setting
the smallest length scale down to which the self-affinity of
the surface profile holds, cf. (34). The result for the fric-
tion force in this case is independent of v in the regime
(a/σ)1/αv0 � v � v0. For even lower velocities, the
fact that the correlator in (34) is analytic on length scales
smaller than a comes into play again, leading to the same
v-dependence of φ(v/v0) in this regime as given by (63).
Again, there is an independent contribution from

c̃β2 (q)δ(p−q) of the form (64). This term has a dependence
on the mean distance ∼ e−2δ

2/3 and is hence proportional
to ((σ/L)DN )4/3. For α = 2, this contribution is negligi-
ble, but for α = 1, it suffers from a linear divergence in the
UV-cutoff ∼ σ/a due to the large p1-behaviour of c̃β2 . We
have checked that in higher orders perturbation theory no di-
vergences in higher order of σ/a appear, so this divergence
will be compensated by the δ-dependence of this term for
moderately large δ.
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