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Abstract 
Novel compositional magnetic resonance (MR) imaging techniques have allowed for both the qualitative and quantitative 
assessments of tissue changes in osteoarthritis, many of which are difficult to characterize on conventional MR imaging. 
Ultrashort echo time (UTE) and zero echo time (ZTE) MR imaging have not been broadly implemented clinically but have 
several applications that leverage contrast mechanisms for morphologic evaluation of bone and soft tissue, as well as bio-
chemical assessment in various stages of osteoarthritis progression. Many of the musculoskeletal tissues implicated in the 
initiation and progression of osteoarthritis are short T2 in nature, appearing dark as signal has already decayed to its minimum 
when image sampling starts. UTE and ZTE MR imaging allow for the qualitative and quantitative assessments of these short 
T2 tissues (bone, tendon, calcified cartilage, meniscus, and ligament) with both structural and functional reference standards 
described in the literature [1–3]. This review will describe applications of UTE and ZTE MR imaging in musculoskeletal tis-
sues focusing on its role in knee osteoarthritis. While the review will address tissue-specific applications of these sequences, 
it is understood that osteoarthritis is a whole joint process with involvement and interdependence of all tissues.

Key points   
• UTE MR imaging allows for the qualitative and quantitative evaluation of short T2 tissues (bone, calcified cartilage, 
and meniscus), enabling identification of both early degenerative changes and subclinical injuries that may predispose to 
osteoarthritis.
• ZTE MR imaging allows for the detection of signal from bone, which has some of the shortest T2 values, and generates 
tissue contrast similar to CT, potentially obviating the need for CT in the assessment of osseous features of osteoarthritis.
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Introduction

Magnetic resonance (MR) imaging has become increas-
ingly important for the detection and characterization of 
osteoarthritis, and particularly of knee osteoarthritis. With 
advances in technology, MR imaging offers morphologic 
assessment of musculoskeletal tissues through excellent soft 
tissue contrast, high-resolution, and quantitative techniques. 
These capabilities have facilitated the ability to characterize 
the broad range of structural alteration that occurs in vastly 
different musculoskeletal tissues across the range of mild 
to severe degenerative osteoarthritis. Many of the tissues 
of interest in osteoarthritis—including menisci, ligaments, 
calcified cartilage, and subchondral bone—have very short 
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T2 relaxation times related to their intrinsic structure. At 
the time image sampling starts with standard MR imaging 
sequences, signal has decayed to its minimum rendering 
short T2 tissues “invisible” or opaque to detection of struc-
tural change through standard diagnostic methods of iden-
tification of signal alteration. UTE and ZTE imaging have 
emerged as techniques to enable both visual and quantitative 
assessments of these short T2 tissues. UTE imaging uses 
echo times (TE) that are 100 μs or less, at least 20–50-fold 
shorter than the shortest conventional MR imaging echo 
times, which are on the order of several milliseconds. ZTE 
imaging is an extension of this approach which enables sig-
nal acquisition immediately after the application of the radi-
ofrequency pulse at near-zero TE. These techniques allow 
for the detection of signal from tissues with very short T2 
relaxation times before the signal has decayed.

UTE and ZTE imaging of tissues 
in osteoarthritis

Calcified cartilage and osteochondral junction

Normal articular cartilage has a layered architecture, with 
the collagen fibrils that provide scaffolding for cartilage 
structure anchored in the subjacent subchondral bone. The 
deepest layer of cartilage is calcified and interdigitates with 
the subchondral bone, providing a structural and material 
property transition of intermediate stiffness between the 
overlying uncalcified radial zone cartilage and the under-
lying subchondral bone that helps resist delamination due 
to shear force [4]. The thickness of this calcified zone of 
cartilage has been shown to decrease with increasing age 
[5]. In addition, alterations in the thickness of the zone of 
calcified cartilage and subchondral bone plate are thought 

to be associated with osteoarthritis and chondral damage 
[6, 7]. Furthermore, proteoglycan synthesis in the zone of 
calcified cartilage has been shown to occur within cartilage 
in response to subfracture impaction injuries in the absence 
of chondral surface disruption [8].These findings suggest 
that the chondral abnormalities associated with osteoarthritis 
may not progress from damage beginning at the superficial 
layer and extending deeper with greater severity of injury, as 
has been classically described (e.g., “outside-in”), but may 
instead begin with insults to the deep cartilage structures 
and only propagate to more superficial structures later (e.g., 
“inside-out”). Moreover, they highlight the importance of 
assessing these deep structures of cartilage.

As a result of its higher proportion of hydroxyapatite, 
higher density of collagen fibrils, and lower water content, 
compared to the uncalcified cartilage, the layer of calcified 
cartilage has a shorter T2 relaxation time (ranging from 1 
to 3.3 ms) and may be indistinguishable from the under-
lying subchondral bone (less than 1 ms) on conventional 
MR imaging, as signals from both tissues have decayed by 
the time of image acquisition [4, 9, 10]. The application of 
UTE MR imaging in the knee was introduced more than 
20 years ago by several investigators [11, 12]. With technical 
advances in UTE MR imaging, contrast mechanisms were 
optimized to provide facile identification and characteriza-
tion of these short T2 tissues, with the normal appearance 
of the calcified zone of cartilage represented by linear high 
signal intensity at the subchondral bone interface [13, 14]. 
In osteoarthritis, the osteochondral junction may be abnor-
mal, with qualitative disruption in the normal high signal 
intensity band (Fig. 1) [15], perhaps even before there are 
conventional imaging features consistent with osteoarthritis 
[16]. Additional morphologic changes on UTE MR imag-
ing sequences of the calcified cartilage include effacement 
or widening of its normal bright signal[15–17]. Subsequent 

Fig. 1   High contrast 3D UTE osteochondral junction imaging in nor-
mal (A–E) and osteoarthritic (F–J) knees. In the normal knee, the 
osteochondral junction is hypointense on the clinical T2 FSE image 
(A) due to rapid signal decay but is hyperintense on the UTE images 

(B–E). In osteoarthritis, the hyperintense signal at the osteochondral 
junction is decreased on the UTE images (G–J, arrows) in the regions 
of chondral loss noted on conventional T2 FS image (F, arrows)
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work has developed 3D UTE sequences to reduce partial-
volume effects, including a 3D adiabatic inversion recovery 
prepared (IR) UTE Cones sequence [15] and more recently 
a 3D dual IR UTE Cones sequence [18], which have enabled 
the application of these techniques in vivo. Mackay et al. 
applied 3D UTE MR imaging in a small cohort of patients 
with knee pain and found that those with pain had changes 
in the morphologic appearance of the calcified layer of carti-
lage with associated regions of increased T2 values in super-
ficial cartilage, reinforcing the importance of the calcified 
cartilage in the development of osteoarthritis [16]. Further 
technical development has focused on high resolution, high 
contrast imaging with fast UTE MR imaging scan times on 
the order of 3 min, increasing the practicality of inclusion of 
these sequences into standard osteoarthritis protocols [19].

Quantitative imaging of the calcified layer of cartilage 
has been studied using UTE MR imaging for evaluation 
of T2* and T1 rho mapping, the former assessing collagen 
content and orientation and the latter proteoglycan content. 
As previously noted, T2* values in the calcified cartilage 
were found to range from 1.0 to 3.3 ms, with T1 rho values 
from 2.2 to 4.6 ms [10]. In a study of subjects after ACL 
injury, UTE T2* values in a cohort with intact cartilage were 
shown to discriminate between uninjured controls and sub-
jects with Outerbridge grade 0 and 1 cartilage classification. 
In addition, UTE T2* values were shown to normalize with 

longitudinal assessment in treated subjects, establishing the 
ability to identify calcified cartilage injury as well as track 
response to therapy, both crucial to identifying initiating 
steps in osteoarthritis [20]. UTE T2* values have also been 
shown to be elevated with increased varus alignment of the 
knee, as well as increased knee adduction moment, both 
known clinical markers of increased risk for osteoarthritis 
[21]. Recently, UTE MR imaging has been used in conjunc-
tion with T1, T1 rho, macromolecular fraction (MMF), and 
T2* for evaluation of the osteochondral junction in cadaveric 
knees. Results indicated that T1, T1 rho, and T2* relaxation 
times increased from deep to superifical cartilage, whereas 
MMF decreased from the osteochondral junction to super-
ficial cartilage. Higher grades of cartilage degeneration by 
MR grading systems correlated with increased T1, T1 rho, 
and T2* values (Fig. 2), while the MMF was negatively 
correlated with grade of chondral degeneration [22]. These 
findings speak to the ability of UTE MR imaging to assess 
compositional features of the calcified layer of cartilage and 
interrogate its role in early osteoarthritis.

Meniscus

Meniscal integrity is key and crucial to overall knee joint 
health with meniscal pathology, having a central role in 
structural progression of knee osteoarthritis [23]. UTE MR 

Fig. 2   In vivo 3D UTE-AdiabT1rho mapping of articular cartilage in 
normal (A–C) and osteoarthritic (D–F) knees. T2w-FSE images dem-
onstrates normal appearance of the cartilage in the normal knee (A) 
and diffuse chondral thinning with areas of high-grade chondral loss 
and subchondral cystic change in the osteoarthritic knee (C).The cor-
responding color maps (B, E) and UTE-AdiabT1rho fitting curves (C, 

F) demonstrate elevated UTE-AdiabT1rho values in osteoarthritis (E, 
F), compared to the normal knee (B, C). Color map in both normal 
(B) and osteoarthritic (D) knees distinguish the calcified cartilage 
from superficial. Furthermore, the normal (B) color map demon-
strates the zonal variation in T1 rho in the superficial cartilage
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imaging has been leveraged to directly visualize the fibrillar 
infrastructure of the meniscus in ex vivo meniscal samples, 
establishing the foundation for application of quantitative 
UTE MR imaging techniques [24]. Quantitative UTE MR 
imaging has been applied to meniscal evaluation in both 
ex vivo human meniscal tissue and patient cohorts. UTE T2* 
values have been shown to distinguish degenerated and torn 
menisci from normal, with higher T2* values in torn menisci 
than with degeneration (Fig. 3) [25, 26]. Furthermore, and 
perhaps most compelling, one study demonstrated not only 
the potential for UTE T2* mapping to identify occult, sub-
clinical meniscal injury, but to follow response to therapy 
[20]. In this study of 42 patients who underwent ACL recon-
struction, UTE T2* values were increased, even when the 
meniscus was confirmed to be normal at arthroscopy. This 
is not surprising as arthroscopic evaluation is confined to 
surface evaluation of the meniscus, without the ability to 
interrogate its infrastructure. Meniscus damage, particularly 
involving the posterior horn of the lateral meniscus, is com-
mon in the setting of ACL injury and has been associated 
with meniscus extrusion, which increases the risk of knee 
osteoarthritis due to greater exposure of the tibial cartilage 
and reduced ability to disperse load and absorb shock. Even 
after ACL reconstruction, approximately 50–70% of patients 
develop osteoarthritis within 10–15 years after their initial 
injury, underlining the importance for a method to non-
invasively assess structural alterations in tissues such as the 
meniscus [27].

Though UTE MR imaging techniques for meniscal eval-
uation have largely focused on T2* quantification, other 

techniques have been applied and include T1 rho and UTE 
MR imaging with magnetization transfer modeling (UTE-
MT) for calculation of macromolecular fraction (MMF). 
T1 rho techniques have been deployed for meniscal evalu-
ation (Fig. 4), but to a much lesser degree than in carti-
lage. This may be partly due to the lower concentration 
of proteoglycan in meniscus (1–2%), compared to hyaline 
articular cartilage (5–10%). While T1 rho MR imaging 
has shown altered values in the menisci consistent with 
degeneration in ACL-injured patients, the UTE T1 rho 
sequence has not been broadly used for meniscal evalua-
tion [28]. UTE T1 rho imaging of the meniscus has been 
performed in cadaveric donor tissue as well as healthy 
volunteers to assess meniscal proteoglycan content [29]. 
The UTE T1 rho sequence has also been highlighted as an 
imaging marker of tissue function in the setting of menis-
cal loading with the ability to detect deformation patterns. 
In a study in cadaveric knee donor tissue, the UTE T1 rho 
sequence showed altered values in the loaded knee, with 
partial restoration of the UTE T1 rho value with unloading 
[30]. MMF, as the main parameter calculated by UTE-
MT modeling, estimates macromolecular matrix density 
(collagen and proteoglycan) in meniscus. With compres-
sion of meniscal tissue, outward water flux occurs with 
a subsequent increase in MMF. In a study using young 
and elderly cadaveric donor tissue with varying degrees 
of degeneration, MMF calculation with UTE-MT tech-
niques highlighted the potential of the technique to non-
invasively characterize effects of tissue deformation with 
knee loading [31]. Though these techniques have not been 

Fig. 3   In vivo 3D UTE-T2* mapping of meniscus in a patient with 
intact menisci and normal cartilage (A, B) and a patient with osteo-
arthritis and a vertical tear of the anterior horn of the lateral menis-
cus (C, D). The meniscal UTE-T2* values are elevated in the region 
of meniscal tear (D, tear indicated by arrows in C), compared to the 

intact meniscus (B). In addition, there is altered T2* in the posterior 
horn medial meniscus (D) which suggests meniscal degeneration. 
Deep to the torn anterior horn of the lateral meniscus, chondral loss 
is noted (C)
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broadly used in cohorts with osteoarthritis, the ability to 
interrogate proteoglycan content and functional change in 
the meniscus are compelling tools to detect early meniscal 
degeneration.

Chondrocalcinosis

Chondrocalcinosis or calcium pyrophosphate crystal deposi-
tion (CPPD) has been associated with osteoarthritis; though 
it is not clear whether it is the result of a systemic process 
that leads to osteoarthritis, it predisposes to or results from 
osteoarthritis [32]. The prevalence of CPPD is estimated to 
be 4–7%, and it is considered a disease of aging [33]. In a 
recent study assessing a calcium-containing crystal cohort 
from the Osteoarthritis Initiative, crystal deposition was 
associated with increased cartilage and meniscal degenera-
tion over a 4-year period. The study suggested that an assess-
ment of the crystal burden may be useful to evaluate risk 
of onset and worsening of degenerative disease [34]. Imag-
ing methods used for detection of calcifications in articular 

cartilage and menisci have been x-ray-based, focusing on 
the conventional radiographs and computed tomography 
(CT) [32]. In the ACR/EULAR consensus criteria for CPPD 
diagnosis, MR imaging has not been recommended for the 
assessment of CPPD, as it has relatively low specificity and 
historically poor spatial resolution, as compared to other 
techniques such as CT [35, 36]. The MR imaging literature 
has described limited use of gradient-echo sequences and 
DESS (dual echo steady state) with some success, the latter 
at 3 T and 7 T, for the detection of chondrocalcinosis using 
CT as a reference standard. In these studies, chondral calci-
fications appear low in signal intensity on the background of 
higher signal normal hyaline cartilage. It has been suggested 
that 7 T MR imaging may offer significantly higher sensitiv-
ity in detection of chondral calcific deposits, compared to 
3 T MR imaging in patient populations [33]. MR imaging of 
calcifications in meniscus has been more challenging, even 
at ultra-high field strength, due to the short T2 nature of 
both the meniscal tissue and calcifications with similar con-
trast on standard MR imaging sequences. UTE MR imaging 

Fig. 4   In vivo 3D UTE-AdiabT1rho mapping of meniscus in a patient 
with normal cartilage and meniscus (A, B) and a patient with osteo-
arthritis and a vertical tear of the anterior horn of the lateral menis-
cus (C, D). The meniscal UTE-AdiabT1rho values are elevated in the 

region of meniscal tear (D, indicated by arrows  in C), compared to 
the intact meniscus (B). Deep to the torn anterior horn of the lateral 
meniscus, chondral loss is noted (C)

Fig. 5   UTE MR imaging (A) 
and micro CT (B) images 
of meniscal tissue with CPP 
deposits. On the UTE MR 
image (A), the meniscal tissue 
appears bright with punc-
tate CPP deposits, which are 
confirmed on the micro CT (B) 
images
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techniques enable direct visualization of meniscal calcifica-
tion [37]. On UTE MR images, CPPD appears as punctate 
dark regions within the menisci (Fig. 5). Interestingly, on 
a study of nine cadaveric knees, calcium pyrophosphate 
deposits were almost exclusively found in the central avas-
cular zones of the meniscus [32]. Not surprisingly, compared 
to normal tissue, menisci with crystal deposition had higher 
indentation stiffness [32].

Osseous structures and zero echo time imaging

The hallmarks of osteoarthritis include joint space narrow-
ing, osteophytosis, and subchondral trabecular remodeling 
resulting in sclerosis. These findings have historically been 
characterized on radiographs or CT, focusing on imple-
mentation of MR imaging for soft tissue evaluation [38]. 
Interest in MR imaging sequences with CT-like contrast 
has increased for many reasons, including consideration of 
ALARA (as low as reasonably acceptable) principles for 

radiation exposure, healthcare cost, and efficiency of health 
care delivery [39, 40].

Cortical and trabecular bone have very short T2 val-
ues (less than 0.5 ms), making MR imaging extremely 
challenging. Several techniques have been used to create 
“CT-like” contrast with MR imaging. These include UTE, 
ZTE, and gradient echo (GRE) sequences. ZTE MR imag-
ing has the broadest clinical deployment for synthetic CT 
to date and allows for direct visualization of the cortical 
bone. This sequence can generate tissue contrast similar 
to CT, with isotropic or near-isotropic acquisitions with 
resolution of 0.8–1.2 mm, only slightly greater than the 
0.625-mm resolution of CT [41]. ZTE has already been 
applied in numerous clinical settings that previously 
required CT imaging such as the evaluation of craniofa-
cial abnormalities [42] and glenoid bone stock [43]. With 
regard to degenerative changes, ZTE has been shown to be 
comparable to CT in the assessment of sacroiliac joint [39] 
and lumbar spine [44]. In the lumbar spine, ZTE was more 

Fig. 6   CT-like contrast on 
coronal ZTE image (A, arrow) 
better displays a very small mar-
ginal osteophyte at the lateral 
femoral condyle, as compared 
to conventional T2w-FSE (B) 
and T1(C)-weighted images in 
this 58-year-old woman with 
chronic left knee pain

Fig. 7   UTE-QSM in a patient (28-year-old) with hemophilia type 
A. The patient had hemophilic arthropathy with a hemophilia joint 
health score (HJHS) of 12. Accumulated hemosiderin was observed 
in MRI, where UTE with TE of 0  ms (A) showed much reduced 

blooming artifacts, compared to GRE with TE of 4.4 ms (B, arrows). 
The resultant susceptibility map from UTE-QSM clearly detected the 
hemosiderin deposition and provided a quantitative assessment (C)
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sensitive to cortical bone abnormalities and osteophytes, 
compared to conventional MR imaging [44]. Similarly, 
applying ZTE to imaging of knee osteoarthritis will likely 
allow for improved detection of small osteophytes in the 
setting of early osteoarthritis detectable on MR imaging 
(Fig. 6). With broad adoption of MR imaging with CT-like 
contrast as an acceptable surrogate for osseous evaluation, 
diagnostic imaging algorithms as we currently know them 
will undergo significant transformation due to the ability 
of MR imaging to provide a one-stop-shop for soft tissue 
and bone evaluation.

Quantitative hemosiderin

There has been increasing recognition that inflamma-
tory pathways play an important role in the development 
of osteoarthritis, with both the synovium and infrapatellar 
(Hoffa’s) fat pad containing cells that secrete inflammatory 
cytokines, interleukins, growth factors, and adipokines that 
may regulate cartilage protein production [45]. In hemo-
philia, as well as in non-hemophilic hemosiderotic synovitis, 
recurrent intra-articular hemorrhage results in intracellular 
hemosiderin deposition in these tissues which can trigger 
in a release of pro-inflammatory cytokines that contribute 
to cartilage destruction [46, 47]. UTE quantitative suscep-
tibility mapping (UTE-QSM) is a technique that has been 
shown to be feasible in non-invasively quantitating the 
amount of hemosiderin within the knee (or ankle) joint in 
hemophilic patients (Fig. 7) [48]. Healthy volunteers in this 
study exhibited no regions of high susceptibility to indicate 
significant hemosiderin staining. Hemosiderin deposition 
has also been noted in other conditions such as infrapatel-
lar fat pad impingement (Hoffa disease)[49, 50], and it is 
conceivable that the hemosiderin in such cases may be a 
precursor to chondral loss and osteoarthritis. Future applica-
tion of this technique in the imaging of patients with osteoar-
thritis or at risk for osteoarthritis may be able to detect more 
modest quantities of hemosiderin deposition, intermediate 
between those of healthy and hemophilic patients, providing 
a quantitative measure of synovial or Hoffa’s fat pad iron 
content which may be associated with accelerated chondral 
degeneration.

Conclusions

UTE and ZTE MR imaging are accurate, non-invasive 
means to assess various tissues in the knee joint for early 
degenerative change. They allow for the acquisition of sig-
nal from structures that would otherwise have no detect-
able signal at conventional MR, enabling the radiologist 
to evaluate for subclinical injuries that may predispose the 

patient to osteoarthritis, potentially allowing for earlier 
intervention and treatment to avoid progression to osteo-
arthritis. In addition, ZTE MR imaging generates images 
with CT-like contrast such that future diagnostic imag-
ing algorithms may utilize a single MR imaging scan for 
assessment of both soft tissue and osseous structures.
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