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Abstract
Objectives  To develop and evaluate a deep learning (DL)–based system for measuring leg length on full leg radiographs of 
diverse patients, including those with orthopedic hardware implanted for surgical treatment.
Methods  This study retrospectively assessed 2767 X-ray scanograms of 2767 patients who did or did not have orthope-
dic hardware implanted between January 2016 and December 2019. A cascaded DL model was developed to localize the 
relevant landmarks on the pelvis, knees, and ankles required for measuring leg length. Statistical analysis was performed 
using the correlation coefficient analysis and Bland–Altman plots to assess the agreement between the reference standard 
and DL-calculated lengths.
Results  Testing data comprised 400 radiographs from 400 patients. Of these radiographs, 100 were from patients with 
orthopedic hardware implanted in their pelvis, knees, or ankles. For all testing data, leg lengths derived from the DL-based 
measurement system, with or without internal fixation devices, showed excellent agreement with the reference standard 
(femoral length, r = 0.99 (P < .001); root mean square error (RMSE) = 0.17 cm; mean difference, − 0.01 ± 0.17 cm; 95% limit 
of agreement (LoA), − 0.35 to 0.34; tibial length, r = 0.99 (P < .001); RMSE = 0.17 cm; mean difference, − 0.02 ± 0.17 cm, 
95% LoA, − 0.34 to 0.31; and full leg length, r = 1.0 (P < .001); RMSE = 0.19 cm; mean difference, 0.05 ± 0.18 cm; 95% 
LoA, − 0.31 to 0.40). The mean time for leg length measurement for each patient using the DL-based system was 8.68 ± 0.18 s.
Conclusion  The DL-based leg length measurement system could provide similar performance to radiologists in terms of 
accuracy and reliability for a diverse group of patients.
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Abbreviations
CCC​	� Concordance correlation coefficient
DL	� Deep learning
LLD	� Leg length discrepancies

LoA 	� Limit of agreement
MAE	� Mean absolute error
MSE	� Mean squared error
POI	� Point of interest
r 	� Pearson correlation coefficient
RMSE	� Root mean square error
ROI	� Region of interest

Introduction

Leg length discrepancies (LLDs),  in which the 
lengths of the paired lower extremity l imbs are 
unequal, are considered orthopedic deformities [1]. 
LLDs are relatively common and found in as many 
as 40–70% of adult and pediatric populations [1–3]. 
The causes of LLDs include idiopathic developmental 
abnormalities, scoliosis, fixed pelvic tilt, orthope-
dic degenerative disorders, and surgical disorders, 
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Key points:  • Strong correlations (P<.001) were observed 
between the reference standard and lengths of the separated 
femurs, tibias, and full legs that were calculated through deep 
learning.

• The deep learning–based system measured each patient’s leg 
length in approximately8.68 ± 0.18 s.

• There was no significant difference in performance noted 
when the radiographs ofpatients with internal fixation devices 
implanted in the pelvis, knees, or ankles were compared with those 
without implants.
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such as joint replacements [1–5]. In particular, stud-
ies have suggested that LLD is associated with sev-
eral lower limb and lumbar biomechanical conditions 
and musculoskeletal disorders, such as foot prona-
tion, low back pain, osteoarthritis of the knee and hip 
joints, and stress fractures [1, 6–10]. Therefore, it is 
crucial that the leg length be accurately and reliably 
measured to allow for proper diagnosis and treatment 
planning.

Direct and indirect clinical measurement of leg 
length relies on the palpation of bony landmarks, which 
is prone to errors [7]. Therefore, due to their accuracy 
and reliability, radiographs are considered the gold 
standard for measuring leg length [1, 7–10]. However, 
manual leg length measurements using radiographs, 
while cognitively simple for a radiologist, are time-
consuming tasks [10]. Computer-assisted quantification 
programs may allow for automatic leg length measure-
ments without these limitations. The recent develop-
ment of a deep learning–based (DL-based) approach 
showed promising results for LLD measurement on 
limited datasets [10].

This study aimed to evaluate the accuracy and reli-
ability of DL-based leg length measurements using full 
leg radiographs of a diverse group of patients, including 
those with internal fixation devices that were implanted 
for surgical treatment, by comparing the performance 
of a DL-based system to that of trained radiologists.

Materials and methods

Study population and dataset

The appropriate institutional review board approved this ret-
rospective study, and the requirement for informed consent 
was waived due to the retrospective design of the study. We 
identified 2791 X-ray scanograms that were taken between 
January 2016 and December 2019 (Innovision; DongKang 
Medical Systems Co. Ltd., Seoul, South Korea), and a total 
of 2767 X-ray scanograms from 2767 patients were manu-
ally selected for this study. Of these scanograms, there 
are approximately twice as many female patients as male 
patients, and 328 were from patients with internal fixation 
devices implanted in the pelvis, knees, or ankles. Patient’s 
radiographic studies were excluded from the study if they 
(a) overlapped (n = 0); (b) had segmental views of the 
hips, knees, and ankles (n = 21); (c) had skeletal dysplasia 
(n = 0); (d) had external orthopedic hardware (n = 0); or (e) 
had undergone radiography with a scale at their side (n = 3). 
Full leg, standing, anteroposterior view radiographs that 
included both lower extremities from the hips to the ankles 
were obtained through an image acquisition system (HPACS 
software; HealthHub Co. Ltd., Seoul, South Korea). The 
image resolution was approximately 3000 × 8000 pixels in a 
24-bit gray scale JPEG format. All images were de-identified 
before use. The patient demographic statistics are summa-
rized in Table 1.

Table 1   Data and patient 
characteristics

Note—Except where indicated, data are expressed as the mean ± standard deviation, with ranges in paren-
theses
* Numbers in parentheses are the total number after the data augmentation was applied

Dataset source Training data Validation data Testing data

No. of total patients 1895 472 400
No. of patients with 

internal fixation 
devices*

183 (915) 45 (225) 100

Pelvis only 16 (80) 3 (15) 20
Knees only 108 (540) 27 (135) 40
Ankles only 23 (115) 5 (25) 20
More than 2 places 36 (180) 10 (50) 20
Mean age (y) 55 ± 16 55 ± 16 66 ± 13
Age range (y) 8–91 10–89 11–88
Sex (n)
Men 682 151 142
Women 1213 321 258
Leg length (cm)
Femoral length 45.7 ± 4.1 (35.3–57.3) 45.2 ± 3.3 (36.1–53.8) 46.5 ± 3.6 (36.9–56.5)
Tibial length 36.3 ± 3.0 (30.0–46.9) 35.6 ± 2.7 (29.5–44.8) 35.7 ± 2.9 (28.9–45.3)
Full leg length 80.3 ± 7.5 (63.7–102.2) 80.5 ± 7.8 (63.7–101.5) 82.1 ± 6.3 (65.9–100.5)
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Patient studies were split into training, validation, and 
testing data without overlaps (Fig. 1). Images with inter-
nal fixation devices in the pelvis, knee, or ankle only 
accounted for 9.7% (183/1,895) and 9.5% (45/472) of the 
total number of training and validation data, respectively. 
To address the class imbalance, we applied a simple data 
augmentation scheme based on image cropping and hori-
zontal flip. A given radiograph was manually cropped at all 
four corners, while ensuring that no body parts were lost. 
Training data were used to train DL models for detecting 
regions of interest (ROI) containing relevant landmarks 
for leg length measurement as well as segmenting bones, 
including implanted prostheses, from ROI images. ROIs in 
the individual radiographs and the femoral area and knee 
and ankle joint masks that were within corresponding ROIs 
were manually annotated by a board-certified radiologist. 
These annotations were used as the ground truth for ROI 

detection and segmentation. Details of the training and vali-
dation datasets for deep learning models are summarized in 
Table E1 and E2.

Reference standard for leg length measurements

A board-certified radiologist performed the leg length meas-
urements on full leg, standing, anteroposterior radiographs 
in the testing data. Here, femoral, tibial, and full leg lengths 
were measured based on the mechanical axis [11]. The point 
of interest (POI) for measurements in the femoral area was 
the top of the femoral head or prosthetic femoral head. The 
POI for the knee joint was the most distal end of the medial 
femoral condyle or the prosthesis that replaced it. The POI 
for the ankle joint was the center of the tibial plafond or the 
prosthesis that replaced it. Leg length measurements on the 
full leg, standing radiograph are presented in Fig. 2.

Fig. 1   Flow chart for the datasets. PACS, picture archiving and communication system

1009Skeletal Radiology (2022) 51:1007–1016



1 3

Development of the DL‑based, fully automated, leg 
length measurement system

The system had a cascade architecture that comprised three 
stages (Fig. 2). The first stage involved locating six ROIs 
and identifying their classes. Based on the ROI’s location 
(e.g., femoral area, knee joint and ankle joint on the left and 
right sides) and the presence of internal fixation devices in 
the ROI, the ROIs were classified into 12 different classes. 
We customized the single shot multibox detector [12] archi-
tecture for ROI detection. The second stage comprised 12 
segmentation DL models, each of which was responsible for 
segmenting bones in the designated ROIs. All segmentation 
DL models shared the same model architecture; however, 
they were trained with different training data. For the seg-
mentation DL model, we customized the standard U-Net 
[13] model. In the third stage, the bone contours in the seg-
mentation masks were traversed using conventional image 
processing algorithms to find the accurate POI locations. 
Once all six POIs were identified, the final leg lengths on 
both sides were calculated. For training and testing, we used 
a single NVIDIA Titan-XP GPU (NVIDIA, Santa Clara, 
CA, USA). The code is accessible at https://​github.​com/​
RTOSC​hansu/​llm/. See Appendix E1 for additional details 
of the model development.

The ROI detection performance was evaluated using the 
mean average precision that was the mean of the average 
precision scores [14] for the 12 different ROI classes. The 
ROI segmentation performance was evaluated using the 
Dice score that was calculated using the following formula: 
(2 × TP)/((TP + FP) + (TP + FN)), where TP, FP, and FN 
indicated the number of true positive, false positive, and 
false negative pixels, respectively.

Statistical analysis

The accuracy and reliability of the DL-based leg length meas-
urements were evaluated using the concordance correlation 
coefficient (CCC) and Pearson correlation coefficient (r) in 
relation to a reference standard. A Bland–Altman plot was 
also used to assess the agreement between the reference leg 
lengths and the leg length that was calculated through DL. 
Additionally, the mean squared error (MSE), mean absolute 
error (MAE), and root mean square error (RMSE) were used 
to evaluate the accuracy of the leg length that was calculated 
through DL in relation to a reference standard. All statistical 
analyses were performed using Minitab software (Minitab 
17.3.1; Minitab LLC, Sate College, PA, USA) and R-pro-
gramming (version 3.1.2 [2014]; https://​www.r-​proje​ct.​org/).

Besides analyzing all testing data, subgroup analysis was 
performed to determine if the implanted orthopedic hard-
ware influenced the accuracy and reliability of the DL-based 
leg length measurement system. Testing data were grouped 
into two disjoint subgroups: subgroup 1, which included 
patients with any internal fixation devices implanted in the 
pelvis, knees, or ankles; and subgroup 2, which included 
patients who had no orthopedic hardware.

Results

Study participants

In total, 2767 patients (mean age ± standard deviation, 
56 ± 16 years; age range, 8–91 years; 975 men and 1972 
women) were included in our study. Among those patients, 
328 had internal fixation devices implanted in their pelvis, 

Table 2   Mean average precision 
of the DL model for ROI 
detection and the Dice scores 
of the individual segmentation 
deep learning models

Note—DL deep learning, ROI region of interest, AP average precision, mAP mean AP

ROI Class AP Dice score

Left side The femoral area with hardware (ROI class 1) 0.92 0.98
The femoral area without hardware (ROI class 2) 0.99 0.99
The knee joint with hardware (ROI class 3) 0.99 0.99
The knee joint without hardware (ROI class 4) 0.99 0.99
The ankle joint with hardware (ROI class 5) 0.97 0.99
The ankle joint without hardware (ROI class 6) 0.99 0.98

Right side The femoral area with hardware (ROI class 7) 0.94 0.99
The femoral area without hardware (ROI class 8) 1.0 0.99
The knee joint with hardware (ROI class 9) 0.99 0.99
The knee joint without hardware (ROI class 10) 0.99 0.98
The ankle joint with hardware (ROI class 11) 0.97 0.98
The ankle joint without hardware (ROI class 12) 0.99 0.98

mAP 0.98
Average of the 12 segmentation DL models 0.98
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knees, or ankles (Fig. 1). Patient studies were split into train-
ing, validation, and testing data (68%, 1895/2767; 17%, 
472/2767; and 15%, 400/2767), each of which comprised 
patients who did or did not have implanted orthopedic hard-
ware. The baseline characteristics of the study population are 
described in Table 1.

Performance of the DL models for ROI detection 
and segmentation

The DL models for ROI detection and segmentation per-
formed excellently with the entire testing dataset. There were 

no cases of failure with the ROI detection and the resultant 
mean average precision was 0.98. The subsequent segmen-
tation masks generated by the DL models overlapped sig-
nificantly with the corresponding ground truth. The average 
Dice score of the 12 segmentation DL models was 0.98. The 
DL models’ performance in ROI detection and segmentation 
is summarized in Table 2.

Fig. 2   An illustration of the leg length measurement process. A The 
deep learning–based system had a cascade architecture. The ROI 
detection network first detected six ROIs that contained the relevant 
landmarks that were needed to perform the measurements. The ROI 
segmentation networks then segmented the bones, including pros-
theses, within ROIs. The segmentation masks were processed using 

image processing algorithms to identify the POIs that corresponded 
to the relevant landmarks in the pelvis, knees, and ankles. Finally, 
the leg length was measured by calculating the distance between the 
extracted pixels; B POIs for the leg length measurement based on 
mechanical axes. Best viewed in color. ROI, region of interest, POI, 
point of interest
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Accuracy and reliability of DL‑based leg length 
measurements

The mean time for leg length measurements by the DL-
based system was 8.68 ± 0.18 s for each patient when using 
a single NVIDIA Titan-XP GPU (NVIDIA, Santa Clara, 
CA, USA). The leg length that was derived from the DL-
based system showed excellent agreement with the reference 
standard (femoral length, CCC = 0.99, r = 0.99; tibial length, 
CCC = 0.99, r = 0.99; and full leg length, CCC = 1.0, r = 1.0; 
P < 0.001 for all correlations) (Table 3).

According to the Bland–Altman agreement analysis, 
there was no systematic bias between the reference stand-
ard and lengths that were calculated through the DL-based 
system. The mean differences ± standard deviation between 
the two femoral, tibial, and full leg length measurements 
were – 0.01 ± 0.17 cm, – 0.02 ± 0.17 cm, and 0.05 ± 0.18 cm, 
respectively. The 95% limits of agreement (LoA) between 
the two femoral, tibial, and full leg length measurements 
ranged from – 0.35 to 0.34, – 0.34 to 0.31, and – 0.31 to 
0.40, respectively (Fig. 3).

The DL-based system’s high measurement accuracy was 
also observed with the MSE, MAE, and RMSE (femoral 
length, MSE = 0.03 cm, MAE = 0.14 cm, RMSE = 0.17 cm; 
tibial length, MSE = 0.03  cm, MAE = 0.13  cm, 
RMSE = 0.17  cm; and full leg length, MSE = 0.04  cm, 
MAE = 0.15 cm, RMSE = 0.19 cm) (Table 3).

Subgroup analysis

The DL-based measurement system’s performance was not 
influenced by the presence of internal fixation devices in the 
pelvis, knees, or ankles. For both subgroups, it was observed 
that the two measurements correlated significantly (sub-
group 1, CCC = 0.99, 0.99, and 1.0; r = 0.99, 0.99, and 1.0 
for femoral, tibial, full leg lengths, respectively; subgroup 2, 
CCC = 0.99, 0.99, and 1.0; r = 0.99, 0.99, and 1.0 for femo-
ral, tibial, and full leg lengths, respectively; P < 0.001 for all 
correlations) (Table 3).

The Bland–Altman plots also demonstrated that the 
accuracy and reliability of the DL-based leg length meas-
urements were not affected by the internal fixation devices 
that were implanted in patients’ lower limbs (Fig.  3). 
For subgroup 1, the mean differences ± standard devia-
tion between the two femoral, tibial, and full leg length 
measurements were – 0.01 ± 0.18 cm (95% LoA: − 0.37 
to 0.35); 0.06 ± 0.14  cm (95% LoA: − 0.32 to 0.21); 
and − 0.05 ± 0.21 cm (95% LoA: − 0.47 to 0.36), respec-
tively. For subgroup 2, the mean differences between the 
two femoral, tibial, and full leg length measurements were 
0.00 ± 0.17 cm (95% LoA: − 0.34 to 0.33); − 0.01 ± 0.17 cm 
(95% LoA: − 0.34 to 0.33); and 0.05 ± 0.18  cm (95% 
LoA: − 0.31 to 0.40), respectively.

For subgroup 1, the RMSEs for the femoral, tibial, 
and full leg lengths were 0.18 cm, 0.15 cm, and 0.22 cm, 
respectively, whereas the corresponding errors of the 

Table 3   Correlation between the leg lengths that were calculated using deep learning and the reference standard

*  P values for correlations are P < .001
SD standard deviation

Variables Femoral length Tibial length Full leg length

Subgroup 1 Subgroup 2 Total Subgroup 1 Subgroup 2 Total Subgroup 1 Subgroup 2 Total

Concordance 
correlation 
coefficient 
(cm)

0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00

Pearson 
correlation 
coefficient 
(cm)*

0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00

Mean differ-
ence ± SD 
(cm)

 − 0.01 ± 0.18  − 0.00 ± 0.17  − 0.01 ± 0.17  − 0.06 ± 0.14  − 0.01 ± 0.17  − 0.02 ± 0.17  − 0.05 ± 0.21 0.08 ± 0.16 0.05 ± 0.18

95% limit of 
agreement 
(cm)

(− 0.37, 0.35) (− 0.34, 0.33) (− 0.35, 0.34) (− 0.32, 0.21) (− 0.34, 0.33) (− 0.34, 0.31) (− 0.47, 0.36) (− 0.24, 0.39) (− 0.31, 0.40)

Mean square 
error (cm)

0.03 0.03 0.03 0.02 0.03 0.03 0.05 0.03 0.04

Mean absolute 
error (cm)

0.14 0.14 0.14 0.11 0.14 0.13 0.16 0.15 0.15

Root mean 
square error 
(cm)

0.18 0.17 0.17 0.15 0.17 0.17 0.22 0.18 0.19
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femoral, tibial, and full leg lengths in subgroup 2 were 
0.17 cm, 0.17 cm, and 0.18 cm, respectively. Both MAE 
and MSE also showed similar levels of errors as RMSE. 
The results from the performance evaluation are summa-
rized in Fig. 3 and Table 3, and examples cases of leg 
lengths that are calculated using the DL-based system are 
presented in Fig. 4.

Discussion

We developed and validated a deep learning–based fully 
automated leg length measurement system using full leg 
standing anteroposterior view radiographs that included 
both lower extremities from the hips to the ankles. For 
all the testing data that randomly included patients who 

did or did not have internal fixation devices in the pel-
vis, knees, or ankles, the ability of the DL-based system 
for detecting and segmenting regions of interest was 
excellent (mean average precision = 0.98, average Dice 
score = 0.98). Additionally, strong correlations were 
observed between the reference standard and separated 
femur, tibia, and full leg lengths that were calculated 
using deep learning (femoral length, r = 0.99 (P < 0.001), 
root mean square error (RMSE) = 0.17 cm, mean absolute 
error (MAE) = 0.14 cm, mean difference − 0.01 ± 0.17 cm, 
95% limit of agreement (LoA) − 0.35 to 0.34; tibial length, 
r = 0.99 (P < 0.001), RMSE = 0.17 cm, MAE = 0.13 cm, 
mean difference − 0.02 ± 0.17 cm, 95% LoA − 0.34 to 0.31; 
and full leg length, r = 1.0 (P < 0.001), RMSE = 0.19 cm, 
MAE = 0.15 cm, mean difference 0.05 ± 0.18 cm, 95% 
LoA – 0.31 to 0.40). The average measurement time 

Fig. 3   Bland–Altman plots of the reference leg lengths and leg 
lengths that were calculated using DL. The x-axis represents the 
mean of the reference and DL-calculated lengths (cm), whereas the 

y-axis represents the difference between the reference and DL-calcu-
lated lengths (cm). A All the testing data; B subgroup 1; C subgroup 
2. DL deep learning, SD standard deviation
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Fig. 4   Radiographic images 
with the DL-calculated leg 
lengths. The lines were gener-
ated by a DL-based automatic 
leg length measurement system. 
The blue line represents the 
femoral length, and the red line 
represents the tibial line. The 
green line represents the full leg 
length. Images on the right side 
demonstrated that the DL-based 
system was able to accurately 
and reliably identify relevant 
landmarks that were required 
to measure the leg length. A A 
patient with no orthopedic hard-
ware implanted; B A patient 
with internal fixation devices 
implanted in the pelvis and 
knees; C A patient with internal 
fixation devices implanted in the 
ankle. RLL right full leg length, 
RFL right femoral length, RTL 
right tibial length, LLL left full 
leg length, LFL left femoral 
length, LTL left tibial length, 
DL deep learning

a

b

c
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per radiograph for the deep learning–based system was 
8.68 ± 0.18 s. There were no significant differences in per-
formance when the subgroups were assessed according 
to the presence of internal fixation devices (subgroup 1, 
r = 0.99 (P < 0.001), 0.99 (P < 0.001), and 1.0 (P < 0.001); 
RMSE = 0.18 cm, 0.15 cm, and 0.22 cm; MAE = 0.14 cm, 
0.11  cm, 0.16  cm for the femoral, tibial, and full leg 
lengths, respectively; subgroup 2, r = 0.99 (P < 0.001), 
0.99 (P < 0.001), and 1.0 (P < 0.001); RMSE = 0.17 cm, 
0.17 cm, and 0.18 cm; MAE = 0.14 cm, 0.14 cm, 0.15 cm 
for the femoral, tibial, full leg lengths, respectively). For 
subgroups 1 and 2, the mean differences between the two 
measurements were small with a 95% confidence interval 
in femoral, tibial, and full leg lengths (subgroup 1, − 0.0
1 ± 0.18 cm, − 0.06 ± 0.14 cm, and − 0.05 ± 0.21 cm; 95% 
LoA − 0.37 to 0.35, − 0.32 to 0.21, and − 0.47 to 0.36, 
respectively; subgroup 2, 0.00 ± 0.17 cm, − 0.01 ± 0.17 c
m, and 0.08 ± 0.16 cm; 95% LoA − 0.34 to 0.33, − 0.34 
to 0.33, and − 0.24 to 0.39, respectively). These findings 
indicated that there was no systematic bias between the 
two measurements.

Zheng et al. [10] demonstrated that the measurement of 
LLD in pediatric patients on radiographs could be auto-
mated and performed rapidly by deep learning algorithm 
(CCC = 0.99, r = 0.99 (P < 0.001), MAE = 0.45  cm for 
separated femur and tibia lengths; CCC = 0.99, r = 0.99 
(P < 0.001), MAE = 0.45 cm for the full leg length). Our 
findings similarly suggest that automated and precise 
measuring of leg length on full leg standing radiographs 
of diverse patients, including those with orthopedic hard-
ware implanted for surgical treatment, can be enabled by 
deep learning algorithms. As in our study, Zheng et al.’s 
approach employed a multi-step process for image segmen-
tation, in which the DL model first roughly split radiographs 
into left and right leg images, then finely segmented femurs 
and tibias on the unilateral full-limb images. However, there 
were differences in our methodology. We believe that these 
differences were the key to our system’s improved generali-
zation capability. First, to accurately recognize and local-
ize relevant landmarks on the hips, knees, and ankles, we 
included the radiographs of both pre- and postoperative 
patients who had internal orthopedic hardware implanted 
for training DL models. To the best of our knowledge, this 
is the first study to assess the effectiveness of DL-based 
leg length measurements for patients with internal fixation 
devices. Second, instead of exploring the entire image to 
segment the femurs and tibias, our approach only allowed 
ROIs that enclosed relevant landmarks (e.g., POIs) to be 
considered; thus, it was more effective in capturing dis-
criminative local features. Third, we adopted state-of-the-
art attention mechanisms to enable the fine segmentation of 
ROIs where prostheses were present.

This study had some limitations. First, we did not eval-
uate the DL models by using external datasets that are 
completely independent from those used for model train-
ing. Utilizing additional data from multiple institutions 
for model training is needed to improve the DL models’ 
generalizability. Second, patients with skeletal dysplasia 
were not included in either training or testing. Third, we 
did not consider the angulation of the femoral and tibial 
axes. Fourth, we used only a single model of the equip-
ment for X-ray scanogram acquisition.

In conclusion, we developed and evaluated a clini-
cally relevant deep learning–based leg length measure-
ment system that performed similar to radiologists in 
terms of accuracy and reliability. The performance of 
our system was not influenced by the orthopedic hard-
ware implanted in lower extremity limbs of patients. 
This will be helpful in reducing repetitive and time-
consuming task of leg length measurement required for 
surgical planning and for the diagnosis and prognosis 
of relevant disease. Further prospective studies should 
be performed to extend this deep learning–based system 
to provide comprehensive set of leg geometry measure-
ments by increasing diversity of and numbers contained 
in the training data for deep learning models, as well as 
by enhancing feature learning capability of deep learn-
ing models.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00256-​021-​03928-z.

References

	 1.	 Gurney B.  Leg length discrepancy.  Gait  Posture. 
2002;15:195–206.

	 2.	 Yong M, Park S. Leg length discrepancy to influence on kin-
ematic changes of the pelvis and the hip during gait. J Kor Phys 
Ther. 2019;31:368–71.

	 3.	 Khamis S, Carmeli E. A new concept for measuring leg length 
discrepancy. J Orthop. 2017;14:276.

	 4.	 Meermans G, Malik A, Witt J, Haddad F. Preoperative radio-
graphic assessment of limb-length discrepancy in total hip 
arthroplasty. Clin Orthop Relat Res. 2011;469:1677–82.

	 5.	 Blake RL, Ferguson H. Limb length discrepancies. J Am Podiatr 
Med Assoc. 1992;82:33–8.

	 6.	 Rannisto S, Okuloff A, Uitti J, et al. Leg-length discrepancy 
is associated with low back pain among those who must stand 
while working. BMC Musculoskelet Disord. 2015;16:110.

	 7.	 Ahmed K. Leg length discrepancy: assessment and secondary 
effects. Ortho & Rheum Open Access. 2017;5:555678.

	 8.	 Sabharwal S, Kumar A. Methods for assessing leg length dis-
crepancy. Clin Orthop Relat Res. 2008;466:2910–22.

	 9.	 Murray KJ, Azari MF. Leg length discrepancy and osteo-
arthritis in the knee and lumbar spine. J Can Chiropr Assoc. 
2015;59:226–37.

1015Skeletal Radiology (2022) 51:1007–1016

https://doi.org/10.1007/s00256-021-03928-z


1 3

	10.	 Zheng Q, Shellikeri S, Huang H, Hwang M, Sze RW. Deep learn-
ing measurement of leg length discrepancy in children based on 
radiographs. Radiology. 2020;296:152–8.

	11.	 Rungprai C, Goetz JE, Arunakul M, et al. Validation and repro-
ducibility with a biplanar imaging system versus conventional 
radiography. Foot Ankle Int. 2014;35:1166–75.

	12.	 Liu W, Anguelov D, Erhan D et al (2016) SSD: Single shot multi-
box dector. In: Leibe B., Matas J., Sebe N., Welling M. (eds) 
Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in 
Computer Science, Springer, Cham. 9905:21–37.

	13.	 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional 
networks for biomedical image segmentation. In: Navab N., 

Hornegger J., Wells W., Frangi A. (eds) Medical Image Comput-
ing and Computer-Assisted Intervention – MICCAI 2015. MIC-
CAI 2015. Lecture Notes in Computer Science, Springer, Cham. 
9351:234–241

	14.	 Zhang P, Su W (2012) Statistical inference on recall, precision and 
average precision under random selection. Proceedings of 2012 
9th International Conference on Fuzzy Systems and Knowledge 
Discovery (FSKD), Chongqing, China. 1348–1352

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Chan Su Lee1 · Mu Sook Lee2 · Shi Sub Byon1 · Sung Hyun Kim3 · Byoung Il Lee1 · Byoung‑Dai Lee4 

1	 AI Lab, HealthHub, Co. Ltd, 623, Gangnam‑daero, 
Seocho‑gu, Seoul 06524, Republic of Korea

2	 Department of Radiology, Keimyung University Dongsan 
Hospital, 1035, Dalgubeol‑daero, Sindang‑dong, 
Daegu 42601, Republic of Korea

3	 Human Medical Imaging and Intervention Center, 621, 
Gangnam‑daero, Seocho‑gu, Seoul 06524, Republic of Korea

4	 Division of AI Computer Science and Engineering, Kyonggi 
University, 154‑42, Gwanggyosan‑ro, Yeongtong‑gu, 
Suwon‑si, Gyeonggi‑do 16227, Republic of Korea

1016 Skeletal Radiology (2022) 51:1007–1016

http://orcid.org/0000-0002-4028-6168

	Computer-aided automatic measurement of leg length on full leg radiographs
	Abstract
	Objectives 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Study population and dataset
	Reference standard for leg length measurements
	Development of the DL-based, fully automated, leg length measurement system
	Statistical analysis

	Results
	Study participants
	Performance of the DL models for ROI detection and segmentation
	Accuracy and reliability of DL-based leg length measurements
	Subgroup analysis

	Discussion
	References


