
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00256-021-03873-x

SCIENTIFIC ARTICLE

Automated detection and segmentation of sclerotic spinal lesions 
on body CTs using a deep convolutional neural network

Connie Y. Chang1   · Colleen Buckless1 · Kaitlyn J. Yeh1 · Martin Torriani1

Received: 18 May 2021 / Revised: 9 July 2021 / Accepted: 14 July 2021 
© ISS 2021

Abstract
Purpose  To develop a deep convolutional neural network capable of detecting spinal sclerotic metastases on body CTs.
Materials and methods  Our study was IRB-approved and HIPAA-compliant. Cases of confirmed sclerotic bone metastases 
in chest, abdomen, and pelvis CTs were identified. Images were manually segmented for 3 classes: background, normal 
bone, and sclerotic lesion(s). If multiple lesions were present on a slice, all lesions were segmented. A total of 600 images 
were obtained, with a 90/10 training/testing split. Images were stored as 128 × 128 pixel grayscale and the training dataset 
underwent a processing pipeline of histogram equalization and data augmentation. We trained our model from scratch on 
Keras/TensorFlow using an 80/20 training/validation split and a U-Net architecture (64 batch size, 100 epochs, dropout 0.25, 
initial learning rate 0.0001, sigmoid activation). We also tested our model’s true negative and false positive rate with 1104 
non-pathologic images. Global sensitivity measured model detection of any lesion on a single image, local sensitivity and 
positive predictive value (PPV) measured model detection of each lesion on a given image, and local specificity measured 
the false positive rate in non-pathologic bone.
Results  Dice scores were 0.83 for lesion, 0.96 for non-pathologic bone, and 0.99 for background. Global sensitivity was 95% 
(57/60), local sensitivity was 92% (89/97), local PPV was 97% (89/92), and local specificity was 87% (958/1104).
Conclusion  A deep convolutional neural network has the potential to assist in detecting sclerotic spinal metastases.
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Introduction

Osseous metastases are common, affecting approximately 
400,000 adults in the USA, often affecting patients with 
primary breast, prostate, or lung cancer, and are a source of 
morbidity and pain [1–3]. Detection of metastatic disease is 
also important for staging, outcome prediction, and treat-
ment planning [4–6]. The majority of these metastases occur 
in the axial skeleton, which is most commonly evaluated 
on chest, abdomen, and pelvic CTs, where findings can be 
subtle [3, 7]. In addition, these CTs are primarily interpreted 
by general radiologists or body radiologists, rather than mus-
culoskeletal radiologists.

It has been widely recognized that automated lesion 
detection could help improve radiologist sensitivity for 
osseous metastases, and multiple computer-aided detection 
(CAD) software systems have been developed [3, 8–12]. 
Although CNNs have been used to detect focal lesions in 
the brain, liver, teeth, lung, ocular fundus, skin, and breast, 
use of deep convolutional neural networks (CNNs) and other 
newer techniques has not been fully explored for this par-
ticular task [13–21]. We believe that CNNs can be more 
accurate than the previously developed models in detecting 
osseous metastases. Our purpose is to develop a deep CNN 
to accurately detect sclerotic spinal metastases.

Materials and methods

This study was IRB-approved and was Health Insurance and 
Portability and Accountability Act (HIPAA)-compliant, with 
exemption status for individual informed consent.
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Dataset

A retrospective search of an internal report search engine 
developed at our institution was performed for CT reports 
with “sclerotic lesion” in the report impression between 
December 2000 and December 2019. Only chest, abdomen, 
and pelvis CTs in patients with a history of malignancy 
were included. If a patient had more than one CT scan, then 
the timepoint where the lesions were the most visible was 
selected. If a lesion was visible on more than one slice, then 
only one slice per lesion was selected, in order to avoid over-
fitting the model to our dataset. For a similar reason, if there 
were more than one lesion in a vertebral level, only one slice 
was chosen per vertebral level. These lesions were confirmed 
across multiple contiguous slices, prior and/or follow-up 
imaging, and/or MRI. A total of 242 CT scans were used 
for the study, from which 600 unique images were collected. 
The images were divided into 90% training (N = 540) and 
10% test (N = 60) datasets. The 540 training images were 
augmented to 20,000 training images.

The CTs were performed using multi-detector CT scan-
ners (General Electric, Waukesha, WI, USA; Siemens 
Healthcare, Erlangen, Germany) at our institution. Stud-
ies with and without contrast enhancement were included. 
Patients were scanned supine, headfirst, and with arms over-
head to decrease streak artifact.

Ground truth labeling (manual segmentation)

All studies were reviewed by two investigators with 1 and 
6 years of medical image analysis experience, supervised by 
a musculoskeletal radiologist with 10 years of experience to 
identify sclerotic osseous lesions—presumably metastases. 
Lesions were considered sclerotic if denser than adjacent 
unaffected marrow. Only lesions that were 100% sclerotic 
were included in the study; mixed lytic-sclerotic lesions 
were excluded. For each vertebra with a sclerotic lesion, a 

single axial image at the largest cross-sectional diameter was 
used for segmentation.

Manual and semi-automated segmentation was performed 
using the Osirix DICOM viewer (version 6.5.2, www.​osirix-​
viewer.​com/​index.​html). Each image was segmented into 3 
classes:

(1)	 lesion (any number of well-defined abnormal sclerotic 
foci; green),

(2)	 bone (non-pathologic marrow and vertebral cortex, 
including osteophytes; magenta),

(3)	 background (all remaining image pixels; black).

Initial segmentation of the entire vertebral body was per-
formed using an extension of a previously established model 
[22]. Then, this segmentation was checked and fine-tuned 
by the two investigators with 1 (200 images) and 6 years 
(400 images) of medical image analysis experience. Only the 
spine (vertebral body and posterior elements) was included 
in the “bone” class. All other bones (ribs, pelvis) were con-
sidered “background.” If multiple lesions were present on 
a slice, they were all segmented separately, but all labeled 
as the same class (lesion) (Fig. 1). The segmented images 
were stored as Tag Image File Format (TIFF), with masks 
being 8-bit RGB and corresponding CT images were 8-bit 
single-channel grayscale. Finally, the images were manually 
cropped centered on the vertebrae with final dimensions of 
128 × 128 pixels.

Training

The dataset was randomly divided into 90% training and 
10% test datasets, ensuring fully segregated datasets with 
no overlap. Contrast-limited adaptive histogram equalization 
(CLAHE) was performed on all grayscale images, which 
were then saved as JPEG files. Image augmentation was 
performed on grayscale and ground truth pairs to enlarge 
the training dataset by applying random rotation, horizontal 

Fig. 1   Example of manual ground truth segmentation. The axial 
CT image of a vertebra (A) is manually segmented (B) resulting in 
a mask (C) with three classes: lesion (any number of well-defined 

abnormal sclerotic foci; green), bone (non-pathologic marrow and 
vertebral cortex, including osteophytes; magenta), and background 
(all remaining image pixels; black)
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flipping, cropping, and scaling (N = 20,000). To further 
increase variability and improve generalizability, we applied 
Poisson noise to 50% of randomly selected augmented gray-
scale images. All images were normalized to the training 
dataset mean and standard deviation.

We trained our model from scratch on Keras/Tensor-
Flow using an 80/20 training/validation split and a U-Net 
architecture (64 batch size, 100 epochs, dropout 0.25, ini-
tial learning rate 0.0001, sigmoid activation) [23]. Briefly, 
images were input in our U-Net pipeline that consisted of 
five layers with four down-sampling steps followed by four 
up-sampling steps. Each step consisted of two successive 
3 × 3 padded convolutions, and in the down-sizing steps, 
a dropout of 0.25 was applied. Next, a rectified linear unit 
(ReLU) activation function and a max-pooling operation 
with a 2 × 2 pixel kernel size. The up-sampling operations 
were performed using a 2 × 2 transposed convolution fol-
lowed by a 3 × 3 filter size convolution, after which the 
output concatenates with the corresponding decoding step. 
The final layer consisted of a 1 × 1 convolution followed by 
a sigmoid function, resulting in an output pixelwise predic-
tion score for each class.

Our model was written and trained in Python 3.7 (Python 
Software Foundation, Beaverton, OR) using the Keras 
library (v2.2.4, https://​keras.​io) with TensorFlow 1.13.1 
(Google, Mountain View, CA, USA) [24]. During training, 
the 3 classes were adjusted for imbalances by weighting 
prevalence, penalizing predictions of classes with highest 
pixel count (e.g., background). Batch size was 64 and we 
used the Adadelta optimizer (initial learning rate, 0.0001). 
The model trained for 100 epochs with early stopping 
enabled. Multi-class Dice loss was used as cost function. 
Training was performed using a Linux workstation (Ubuntu 
14.04) with 4 NVIDIA Titan Xp Graphic Processing Units.

Testing and further validation

The Dice (F1) score was used to assess similarity between 
the manual segmentations and the CNN-predicted segmen-
tations [25]. A Dice score of 1.00 is a perfect similarity. To 
further examine model performance, we tested 1104 images 
of vertebrae from CTs of the chest, abdomen, and pelvis 
without bone pathology based on report and confirmed to 
be non-pathologic bone by one of the authors (hereafter 
referred to as the “non-pathologic dataset”). These images 
did not contain sclerotic foci suggestive of metastases.

Statistical analysis

Sensitivity was defined as TP / (TP + FN), PPV was defined 
as TP / (TP + FP), and specificity was defined as TN / 
(FP + TN).

In the lesion test dataset, each image and lesion were 
evaluated as follows:

•	 global sensitivity: a measure to identify one or more 
lesions on an image

–	 True positive (TP) if the model correctly captured 
any lesion in that image.

–	 False negative (FN) if the model failed to identify 
any lesion within an image.

local sensitivity and positive predictive value (PPV): 
measures to identify each lesion separately in a given 
image

–	 True positive if each lesion was captured regardless 
of segmentation accuracy.

–	 False positive (FP) if the model assigned “lesion” 
class to non-pathologic bone.

–	 False negative if the model assigned “bone” class to 
a lesion.

In the non-pathologic test dataset, each image was eval-
uated as follows:

•	 local specificity: a measure to identify the false positive 
rate in non-pathologic bone.

–	 True negative if non-pathologic bone was correctly 
identified as such.

–	 False positive if the model assigned the “lesion” 
class to non-pathologic bone.

Results

Among the 600 images, there were 13 (2%) cervical, 384 
(64%) thoracic, and 203 (34%) lumbar vertebral images. 
Lesions predominantly involved the vertebral body (497, 
83%), followed by posterior elements (48, 8%), and images 
with lesions in both vertebral body and posterior elements 
(55, 9%).

Lesion test dataset

Dice scores were 0.83 for lesion, 0.96 for non-pathologic 
bone, and 0.99 for background (Fig. 2). Global sensitiv-
ity was 95% (57/60), with a false negative rate of 5% (3/60 
images, each containing one missed lesion). Local sensitiv-
ity was 92% (89/97) with 3 false positive lesions: a pro-
nounced anterior osteophyte (Fig. 3A), volume averaging 
from the pedicle, and an area of heterogeneous bone mar-
row (Fig. 3B). Local PPV was 97% (89/92). We observed 
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Fig. 2   Examples of accurate 
lesion segmentation using our 
deep CNN. Each row shows 
distinct test images with varied 
lesion sizes and count (A, B, C). 
Manual, manual tracing; Deep 
CNN, model prediction

Fig. 3   Prediction errors on 2 
distinct test images (one per 
row) from the lesion dataset, 
showing 3 false positive lesions. 
(A) Pronounced anterior osteo-
phyte (arrowhead) was misla-
beled as a lesion. (B) Volume 
averaging from the right pedicle 
(arrow) and an area of heteroge-
neous bone marrow (arrowhead) 
were mislabeled as lesions. 
Manual, manual tracing; Deep 
CNN, model prediction
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8/97 (8%) local false negative rate comprising 5 images, 
which are shown in Fig. 4. In 2 of the 5 images, lesions were 
missed in the context of multiple lesions, most of which 
were identified. In 3 of the 5 images, missed lesions were 
near cortical bone.

Non‑pathologic test dataset

Additional testing performed on 1104 images without 
lesions covered the following anatomic regions: 21/1104 
(2%) cervical, 787/1104 (69%) thoracic, and 318 (29%) 

Fig. 4   Prediction errors on 5 
distinct test images (one per 
row) showing 8 false nega-
tive lesions. (A) Single lesion 
in bone marrow (arrowhead). 
(B) Two lesions (arrowhead 
and arrow) in bone marrow. 
(C) Single lesion adjacent 
to endplate (arrowhead). (D) 
Single lesion adjacent to left 
costovertebral junction (arrow-
head). (E) Three lesions, one 
in bone marrow (black arrow), 
one in right transverse process 
(white arrow), and one in left 
transverse process (arrowhead). 
Manual, manual tracing; Deep 
CNN, model prediction
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lumbar spine. Local specificity was 87% (958/1104). At 
least one false positive lesion was noted in 146/1104 (13%) 
images, of which 47/146 (32%) were 4 pixels or fewer, con-
sidered to be below detection threshold (Fig. 5A). A single 
pixel for a given class was not reliably visualized upon quali-
tative inspection of images and could represent a spurious 
prediction. Therefore, we used the next step larger in scale 
that had a square aspect ratio, which is comprised of 4 pix-
els. The most common location for false positive lesions 
was the vertebral body (131/1104, 12%), most commonly at 
the endplate or in regions of increased sclerosis secondary 
to endplate degenerative change (73/131, 56%) (Fig. 5B), 
as well as osteophytes (25/131, 19%) (Fig. 5C). The second 
most common location for false positive lesions was the pos-
terior elements (36/1104, 3%), with volume averaging in the 
pedicle (18/36, 50%) (Fig. 5D) and lamina (8/36, 22%) being 
more frequent. Other likely reasons for false positive lesions 
included disc calcification, facet degenerative change, and 
intravenous contrast in adjacent blood vessels (Fig. 5E).

Discussion

This study aimed to develop a deep CNN capable of detect-
ing spinal sclerotic metastases on body CTs. We found our 
proposed technique yielded high Dice scores for lesion 
detection and high global and local sensitivity. Further, 
examination of a non-pathologic dataset showed a high 
local specificity. Altogether, our study showed that a deep 
CNN has the potential to assist in detecting sclerotic spinal 
metastases.

The earliest applications of artificial intelligence in detec-
tion of focal lesions on imaging were in the fields of breast 
imaging (computer-assisted diagnosis or CAD) and CT colo-
nography [14, 18]. CAD software packages have also been 
developed to detect focal bone lesions. Burns et al. used a 
“watershed algorithm” originally designed for detection of 
lytic lesions to evaluate the entire vertebral body for lesion 
candidates [3]. Additional algorithms using graph cuts and 
threshold levels were used to refine the segmentations. 
This CAD system detected 439 out of 532 (83%) lesions in 
49 patients, with a testing set sensitivity of 79% (95% CI: 
74–84%) [3]. Huang and Chiang described a CAD system 
for PET/CT able to detect both lytic and sclerotic lesions 
with a sensitivity, specificity, and accuracy of 85%, 92%, 
and 90%, respectively [26]. Hammon et al. described another 
CAD system able to detect sclerotic and lytic lesions on CT 
with a sensitivity by case of 83% for sclerotic lesions [8]. 
In comparison, our neural network had a global sensitivity 
of 95% and local sensitivity of 92%. The model accurately 
predicted the borders of the lesions, which was reflected in 
the high Dice scores (Fig. 2). The 8 missed lesions in the 
5 images were in locations of higher difficulty to detect. 
In the first instance, the lesion was slightly denser than the 
background marrow and was difficult to identify on a sin-
gle axial slice (Fig. 4A). In the second instance, there were 
5 lesions on the image, and the model identified 3 out of 
5 lesions. The two that were not identified were also only 
slightly denser than the surrounding bone marrow (Fig. 4B). 
In the third instance, the lesion was adjacent to the endplate, 
and there was also disc and the adjacent vertebral body on 
the same image (Fig. 4C). In the fourth instance, the model 

Fig. 5   Examples of model false 
positive lesions in the non-path-
ologic test dataset. (A) Single 
pixel in the left transverse pro-
cess (arrowhead) was consid-
ered below detection threshold 
(< 4 pixels). (B) Vertebral body 
endplate change (arrowheads) 
was the most common loca-
tion for false positive lesions 
(arrowheads). (C) Osteophytes 
(arrowhead) were the second 
most common, followed by (D) 
volume averaging in the poste-
rior elements (arrowhead), and 
(E) contrast in adjacent vessels 
(arrowhead). Deep CNN, model 
prediction
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missed a small lesion adjacent to the left costovertebral 
junction (Fig. 4D). In the fifth instance, the model identi-
fied 4 out of 7 lesions. Two of the missed lesions were in 
the posterior elements, which is a less common location for 
lesions than the vertebral body (Fig. 4E). Additional training 
images focused on these challenging areas may be helpful to 
improve detection in these areas.

To our knowledge, there is no previous study using a deep 
CNN to help detect vertebral sclerotic lesions. Roth et al. 
used a CNN and random view aggregation to improve the 
performance of a CAD system [10]. However, specific lesion 
segmentation was not performed. There has been a single 
study by Klein et al. that looked at CNN segmentation of 
normal bone, and they achieved a Dice score of 0.95, similar 
to our study (0.96) [27]. Although segmentation of normal 
bone and background was not the goal of our study, this task 
could also have useful applications in trauma or osteoporosis 
screening [28, 29].

Using a CNN to detect focal lesions has been explored 
in other organ systems, including focal bladder lesions in 
CT urography, prostate cancer, and breast masses [30, 31]. 
CNNs have also been shown to be able to assist in the detec-
tion of non-neoplastic focal lesions such as strokes, multiple 
sclerosis plaques, focal cortical dysplasia, liver cirrhosis, 
and fatty liver disease [13, 32–41]. Other non-radiology 
medical fields using deep learning methods to detect focal 
lesions include focal esophageal lesions on endoscopy, seg-
mentation of cervical cancer cells in pathology, and diabetic 
retinopathy in ophthalmology [19, 42, 43]. These studies 
found that their deep learning algorithms can be helpful to 
physicians in improving lesion detection rate. For exam-
ple, Cai et al. sound that their model sensitivity values for 
the detection of early esophageal squamous cell carcinoma 
were 98%, 85%, 91%, 86%, and 98%, compared to diagnostic 
accuracy for 89% of a senior group of endoscopists, and 77% 
of a junior group of endoscopists [40]. The sensitivity of our 
model is similar to the results of these studies.

In this study, we observed 3 false positive lesions: a pro-
nounced anterior osteophyte, volume averaging from the 
pedicle, and an area of heterogeneous bone marrow (Fig. 3). 
This finding is similar to findings on prior CAD studies. 
In Burns et al., the most common causes for false positive 
lesions were endplate changes and vertebral endplate cortex. 
The most common cases for false negative findings were 
endplate proximity (and therefore volume averaging with 
the intervertebral disc), lower attenuation, and small size 
[3]. CAD errors were also most often near the endplates 
in Huang and Chiang [26]. Hammon et al. found that CAD 
errors were most commonly secondary to endplate changes, 
osteophytes, and small size [8].

The limitations of this study include the relatively small 
dataset that may impact generalizability, and the applica-
tion of the model only to sclerotic lesions, not evaluating 

its performance on lytic or mixed density lesions. Also, 
the model was trained and tested on single slices, rather 
than having to scan through a stack of contiguous spine 
images. Each scan was checked at multiple adjacent lev-
els by an experienced musculoskeletal radiologist prior 
to image selection for lesion identification. However, it is 
possible volume averaging artifacts may still be present in 
the selected images. The model inputs were also cropped 
to isolate vertebra, so that the sclerotic lesion represents 
a higher percentage of pixels on the image; in reality, the 
sclerotic lesion is a very small portion of the image on a 
full chest, abdomen, or pelvic CT slice. Further, the model 
is limited to lesions in the spine and not in other structures, 
such as the pelvic bones and ribs. Multiple lesions were 
used from the same patient, which has a risk of overfitting 
the data; however, this risk was minimized by using only 
one image per lesion and vertebral level. Finally, exter-
nal validation has not been performed on this model. As 
presented, this model is not sufficient to deploy in rou-
tine clinical practice. These limitations are hurdles that 
must be overcome in order to achieve a clinically useful 
application.

In conclusion, a deep CNN has the potential to assist in 
detecting sclerotic spinal metastases and could become an 
important component of radiology workflow in the inter-
pretation of body CTs. This model is highly accurate in 
defining lesions, non-pathologic bone, and background. 
Additional model training may help overcome areas prone 
to false positives, especially endplate degenerative changes 
and osteophytes.
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