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Abstract
Objective To develop and validate a deep convolutional neural network (CNN) method capable of (1) selecting a specific
shoulder sagittal MR image (Y-view) and (2) automatically segmenting rotator cuff (RC) muscles on a Y-view.We hypothesized
a CNN approach can accurately perform both tasks compared with manual reference standards.
Material and methods We created 2 models: model A for Y-view selection and model B for muscle segmentation. For model A,
we manually selected shoulder sagittal T1 Y-views from 258 cases as ground truth to train a classification CNN (Keras/
Tensorflow, Inception v3, 16 batch, 100 epochs, dropout 0.2, learning rate 0.001, RMSprop). A top-3 success rate evaluated
model A on 100 internal and 50 external test cases. For model B, we manually segmented subscapularis, supraspinatus, and
infraspinatus/teres minor on 1048 sagittal T1 Y-views. After histogram equalization and data augmentation, the model was
trained from scratch (U-Net, 8 batch, 50 epochs, dropout 0.25, learning rate 0.0001, softmax). Dice (F1) score determined
segmentation accuracy on 105 internal and 50 external test images.
Results Model A showed top-3 accuracy > 98% to select an appropriate Y-view. Model B produced accurate RC muscle
segmentations with mean Dice scores > 0.93. Individual muscle Dice scores on internal/external datasets were as follows:
subscapularis 0.96/0.93, supraspinatus 0.97/0.96, and infraspinatus/teres minor 0.97/0.95.
Conclusions Our results show overall accurate Y-view selection and automated RCmuscle segmentation using a combination of
deep CNN algorithms.
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Introduction

Rotator cuff (RC) tendon tears are associated with varied
degrees of muscle atrophy, manifested by decreased muscle
bulk and fatty infiltration [1, 2]. Atrophy of RCmusculature
is linked to higher rates of repair failure and overall worse
clinical outcomes [3–6]. MRI is the reference standard for
imaging RC tendons for tears, severity of cuff abnormali-
ties, and postoperative healing [7, 8]. Further, MRI is the

preferred method to evaluate RC muscles, enabling quanti-
fication and longitudinal assessment of atrophy [2, 9, 10].
Fatty infiltration and degree of atrophy of the supraspinatus
muscle have received most attention in studies correlating
surgical decision-making and prognostic factors [5, 10, 11].
Importantly, tears of subscapularis and infraspinatus ten-
dons may also occur, and atrophy of their muscles also
carries important implications to functionality and postop-
erative outcome [4].

Although multiple approaches have been described for es-
timation of RC muscle atrophy, they are qualitative or semi-
quantitative, with limitations in their reproducibility [1, 9, 10].
On the other hand, quantitative methods require accurate man-
ual or semi-automated segmentation strategies that are time-
consuming and may exhibit variability across operators
[12–14]. Further, some of these techniques require water-fat
separation sequences, which are not typically included in rou-
tine shoulder examinations [14, 15]. Consequently, their
adoption for clinical management is limited, highlighting the
need for reliable automated methodologies.
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Recently, automated segmentation of shoulder MRI im-
ages using deep learning techniques has been limited to
supraspinatus muscle [16] and shoulder girdle muscles in
birth-related brachial plexus palsy [17]. Previously, deep
learning methods for segmentation of other muscles have also
been reported on ultrasound [18] and MRI [19]. However,
prior studies have not evaluated an automated workflow to
select a specific shoulder image for segmentation and generate
cross-sectional areas of multiple RC muscles. The purpose of
our study was to develop deep convolutional neural networks
(CNN) to identify a scapular Y-view (hereafter referred to as
Y-view) from a routine sagittal T1-weighted shoulder MRI
and another CNN to segment subscapularis, supraspinatus,
and infraspinatus/teres minor muscles on a Y-view. We hy-
pothesized that Y-view selection using the Inception v3 archi-
tecture [20] and multi-class segmentation using a modified U-
net [21] would achieve high accuracy as compared with a
reference standard of manual Y-view selection and manual
muscle segmentation, respectively.

Materials and methods

Our study was IRB-approved and complied with Health
Insurance Portability and Accountability Act (HIPAA) guide-
lines with exemption status for individual informed consent.
MRI examinations obtained between October 2018 and
January 2020 were collected retrospectively, regardless of in-
dication. The shoulder MRIs were performed using 1.16-T,
1.5-T, and 3.0-T scanners (General Electric, Waukesha, WI,
USA; Hitachi Medical Corporation, Tokyo, Japan; Siemens
Healthcare, Erlangen, Germany; Philips Healthcare,
Amsterdam, Netherlands) within our institution (hereafter re-
ferred to as “internal”). In addition, we separately collected
shoulder MRIs performed at non-affiliated imaging facilities
that were uploaded to our hospital’s database for clinical con-
sultation (“external”).

Shoulder MRIs were obtained with the patient in supine
position, head first, and using a dedicated shoulder coil. The
field-of-view was adapted to the patient’s body habitus. Only
T1-weighted sagittal images were used for our study. They
were prescribed parallel to the glenoid articular surface, with
standard acquisition parameters: repetition time (TR) 400–775
ms, echo time (TE) 8–25 ms, field-of-view (FOV) 140–180
cm, number of excitations (NEX) 0.5–3, bandwidth 61–325
Hz, slice thickness 3–4.5 mm, and inter-slice gap 20–25% of
slice thickness.

We defined the Y-view as the most lateral image showing
contact between scapular spine and posterior glenoid, forming
a Y-letter shape [3, 14] (Fig. 1a). This image was used as it is
recognizable, provides a representative cross section of RC
muscles, and has been used in previous studies [3, 14, 16, 17].

No cases had intra-articular or intra-venous contrast injec-
tion. One-hundred and ninety scans were excluded due to the
following: motion artifacts that severely degraded anatomic
detail (N = 42), inadequate field-of-view for RC muscles (N
= 97), and inadequate slice coverage of T1 sagittal images not
including a proper Y-view (N = 51).

Two models were developed:

Model A (classifier), for Y-view selection; and,
Model B (segmentation), for RC muscle segmentation at
a Y-view.

Model A (Y-view selection)

Ground truth labeling

T1-weighted sagittal shoulder MRI images were grouped into
3 anatomical zones in order to balance the classification task
(Fig. 1b):

& Zone 1 , f r om mos t l a t e r a l image to l a t e r a l
acromioclavicular (AC) joint;

& Zone 2, from AC joint up to Y-view; and
& Zone 3, from Y-view to most medial image.

The AC joint and Y-view were selected as boundaries for
each anatomical zone for being easily identifiable. These 3
zones were the ground truth labels for their respective images.
An equal number of images in each zone was used to create
model A.

To better characterize model A’s cohort, two investigators
classified Y-view images as either normal or pathologic, using
the Goutallier grading system modified by Fuchs et al. [2]:
normal, grade 1 images; pathologic, grades 2 and 3 (moderate
and advanced fatty infiltration). Images were scored by con-
sensus of two investigators with 6 years of medical image
analysis and 10 years of clinical orthopedic experience. This
data was not used for model development.

Training and testing

Contrast limited adaptive histogram equalization (CLAHE)
was performed on all grayscale images and saved as Tag
Image File Format (TIFF) files. For this classification task,
we used the GoogLeNet Inception v3 CNN architecture,
which was developed by Szegedy et al. [20]. Briefly, this
architecture comprises 42 layers, incorporating three varieties
of Inception modules that help reduce computation time rela-
tive to other architectures [20]. Input images were 299 × 299
pixels and 8-bit 3-channel grayscale. All images were normal-
ized to the training dataset mean and standard deviation.
Model A was trained using Python 3.6 (Python Software
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Foundation, Beaverton, OR) and the Keras library (v2.2.4,
https://keras.io) with Tensorflow 1.13.1 (Google, Mountain
View, CA) backend [22]. The training dataset was split as
80% training and 20% validation images. Inline image
augmentation was performed using the Keras built-in image
generator, including rotation, magnification, cropping, hori-
zontal flipping, and horizontal/vertical shifting. Batch size
was 16 and we used the RMSprop optimizer (learning rate,
0.001; rho = 0.9). The model trained for 100 epochs on a
Linux workstation (Ubuntu 14.04) with 4 NVIDIA Titan Xp
Graphic Processing Units. We ran the training procedure in
triplicate to produce 3 versions of model A and generate an
average testing performance.

Each version of model A was tested on sagittal T1-
weighted series of internal and external MRI studies. Each full
sagittal T1-weighted series was examined individually, in
which its images were sequentially tested to predict anatomic
zone assignment. The most lateral slice predicted as zone 3
was considered the model’s prediction for a Y-view.

Additionally, one slice immediately lateral and one slice im-
mediately medial to the predicted Y-view were added, yield-
ing a 3-image prediction. The 3-image prediction was consid-
ered accurate if one of its images matched the ground truth Y-
view (Fig. 2).

Model B (muscle segmentation)

Ground truth labeling

Manual segmentation was performed using the Horos
DICOM viewer (version 6.5.2, www.horosproject.com) by a
single operator with 10 years of clinical experience, with all
images and segmentations inspected by a second investigator
with 23 years of clinical experience. As shown in Fig. 3,
examinations were segmented manually into 4 classes, as
follows: (1) background pixels (all pixels outside RCmuscles;
black); (2) subscapularis (blue); (3) supraspinatus (red); (4)
infraspinatus/teres minor (yellow).

Fig. 1 a Definition of sagittal Y-
view: we used the most lateral
image that showed contact
between scapular spine and
posterior glenoid (arrow),
forming a Y-letter shape (Refs. [3,
14]). b Grouping of sagittal im-
ages in 3 anatomic zones (1, 2,
and 3) that served as ground truth
labels for model A training and
classification
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Muscle segmentations comprised all pixels within the
muscle boundary, including intramuscular fatty septae. If a
muscle had severe fatty replacement, its fascial boundaries
were traced, rather than delineating individual preserved
fibers. The teres minor muscle was not individually seg-
mented given its limited surgical importance and poorly
defined boundaries with infraspinatus muscle. All segment-
ed images were anonymized TIFF, with color ground truth
masks being 8-bit 3-channel RGB. Corresponding gray-
scale images were 8-bit single-channel. All images were
resized to 384 × 384 pixels.

To better characterize model B’s cohort and understand
potential biases, images were classified for muscle status as
done for model A. This information was not used for model
development.

Training and testing

The training dataset was split as 80% training and 20% vali-
dation images. CLAHE was performed on all grayscale im-
ages, which were then saved as JPEG files, followed by image
augmentation of training dataset applying random rotation,
horizontal flipping, cropping, and scaling, to achieve a total
of N = 10,000. To further increase variability and improve
generalizability, we applied Poisson noise to randomly select-
ed 50% of augmented grayscale images. All images were
normalized to the training dataset mean and standard
deviation.

Model B employed a modified U-Net CNN architecture
[21]. Briefly, images were input in our U-Net structure that
consisted of five layers with four down-sampling steps

Fig. 2 Workflow for testing of model A. Images from a test T1 sagittal
series were sequentially exposed to model A. The most lateral zone 3
prediction was considered the model’s choice for a Y-view. One medial

and one lateral adjacent images were combined to yield a 3-slice predic-
tion, which was compared with the ground truth Y-view

Fig. 3 Example of manual ground truth segmentation. The sagittal T1-
weighted at the scapular Y-view (a) is manually segmented into multiple
muscles (b) resulting in a mask (c) with four classes: background pixels

(all pixels outside RCmuscles; black), subscapularis (blue), supraspinatus
(red), and infraspinatus/teres minor (yellow)
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followed by four up-sampling steps. Each step consisted of
two successive 3 × 3 padded convolutions, and in the down-
sizing steps, a dropout of 0.25 was applied. This was followed
by a rectified linear unit (ReLU) activation function and a
max-pooling operation with a 2 × 2 pixel kernel size. The
up-sampling operations were performed using a 2 × 2 trans-
posed convolution followed by a 3 × 3 filter size convolution,
after which the output concatenates with the corresponding
decoding step. The final layer consisted of a 1 × 1 convolution
followed by a sigmoid function, resulting in an output
pixelwise prediction score for each class.

Model B was trained in using the Python/Keras/
Tensorflow stack as previously described. During training,
the 4 classes were adjusted for imbalances by weighting prev-
alence, which penalized predictions of classes with highest
number of pixels (e.g., background). Batch size was 8 and
we used the Adadelta optimizer (learning rate, 0.0001). The
model trained for 25 epochs with early stopping enabled.
Multi-class Dice loss was used as cost function. Training
was performed on a Linux workstation (Ubuntu 14.04) with
4 NVIDIA Titan Xp Graphic Processing Units. We ran the
training procedure in triplicate to produce 3 versions of model
B and generate an average testing performance.

Model B was tested on internal and external Y-view im-
ages to output predictions in 4 classes (background,
subscapularis, supraspinatus, and infraspinatus/teres minor)
that were compared with manual segmentations using Dice
(F1) score [23].

Statistical analysis

Descriptive statistics are reported in terms of percentages and
means ± standard deviations (SD). For model A, a top-3 suc-
cess rate was used to evaluate performance. The top-3 success
rate was determined by comparing the manually selected

ground truth Y-view to the 3-image prediction. The 3-image
prediction was considered accurate if one of its images
matched the ground truth Y-view. For model B, the Dice
(F1) score was used to assess similarity between the manual
segmentations and the CNN predicted segmentations [23]. A
Dice score of 1.00 is a perfect similarity. We also obtained
mean precision (positive predictive value) and mean recall
(sensitivity) for model B tests.

Results

Model A

Model A was trained on 258 scans (N = 4320 images) from
patients with mean age 56.2 ± 14.3 years. Each of 3 shoulder
anatomic zones was represented by an equal number of im-
ages (N = 1440 images per zone). Model A was tested on 100
internal scans (N = 3197 images; mean age, 56.0 ± 15.0 years)
and separately on 50 external scans (N = 1205 images; mean
age, 55.0 ± 17.2 years). Cohort characteristics regarding RC
muscle status in training and test datasets for model A are
outlined in Table 1. Overall, the subscapularis muscle was
more frequently normal, followed by supraspinatus and
infraspinatus/teres minor.

Training took 1 h 20min per run (training was run 3 times).
Mean top-3 success rates to detect a proper Y-view were 98.7
± 1.0% (internal test dataset) and 99.7 ± 1.0% (external). The
few errors observed were due to the predicted Y-view being 2
slices apart from the manually determined Y-view. Mean top-
1 success rates to detect the singular ground truth Y-viewwere
80.0 ± 3.0% (internal) and 91.0 ± 3.0% (external). On our
workstation, detecting a Y-view took 1.8 s per test scan (each
scan contained a full T1 sagittal series).

Table 1 Cohort characteristics:
rotator cuff muscle status in
training, internal testing, and
external testing datasets

Subscapularis Supraspinatus Infraspinatus

Model A

Training (258 scans) Normal 239 (92.6%) 229 (88.8%) 199 (77.1%)

Pathologic 19 (7.4%) 29 (11.2%) 59 (22.9%)

Internal testing (100 scans) Normal 90 (90%) 87 (87%) 82 (82%)

Pathologic 10 (10%) 13 (13%) 18 (18%)

Model B

Training (943 scans) Normal 860 (91.2%) 818 (86.7%) 717 (76.0%)

Pathologic 83 (8.8%) 125 (13.2%) 226 (24.0%)

Internal testing (105 scans) Normal 96 (91.4%) 89 (84.8%) 77 (73.3%)

Pathologic 9 (8.6%) 16 (15.3%) 28 (26.7%)

Model A and model B

External testing (50 scans) Normal 44 (88%) 40 (80%) 36 (72%)

Pathologic 6 (12%) 10 (20%) 14 (28%)
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Model B

A total of 1048 scans, fromwhich one Y-view imagewas used
per scan, were collected from 1030 patients (mean age of 56.1
± 14.5 years). The images were divided into 90% training (N =
943) and 10% test (N = 105) datasets. Cohort characteristics
regarding RC muscle status were similar to model A (i.e.,
larger proportion of normal subscapularis muscle) (Table 2).
External test cases for model B were the same used to test
model A.

Manual segmentations were accomplished in approximate-
ly 5–10min per image. Training took 1 h per run (training was

performed 3 times). Overall, mean muscle segmentation Dice
scores for internal and external test datasets were > 0.93 and
are outlined in Table 2. Figure 4 shows examples of accurate
CNN muscle segmentations. Although overall accuracy was
high on internal and external test datasets, minor prediction
errors were seen especially along the inferior contour of the
subscapularis, where teres major/latissimus dorsi and axillary
artery produce challenging boundaries (Fig. 5). There was
only one instance—from a total of 155 test cases—in which
the model misclassified a larger muscle area (Fig. 6). On our
workstation, each automated segmentation was accomplished
in 0.02 s per test image.

Table 2 Mean Dice, precision,
and recall scores for model B
segmentation on internal and
external test datasets. Values are
mean ± SD from testing on
models generated in 3 distinct
runs

Background Subscapularis Supraspinatus Infraspinatus

Internal test dataset (105 images)

Dice (F1 score) 0.994 ± 0.001 0.957 ± 0.001 0.965 ± 0.001 0.968 ± 0.001

Precision 0.994 ± 0.001 0.957 ± 0.001 0.971 ± 0.001 0.967 ± 0.002

Recall 0.994 ± 0.001 0.959 ± 0.002 0.961 ± 0.001 0.969 ± 0.001

External test dataset (50 images)

Dice (F1 score) 0.989 ± 0.001 0.933 ± 0.050 0.964 ± 0.022 0.951 ± 0.033

Precision 0.985 ± 0.001 0.963 ± 0.019 0.975 ± 0.009 0.959 ± 0.026

Recall 0.994 ± 0.001 0.919 ± 0.066 0.957 ± 0.033 0.947 ± 0.041

Fig. 4 Examples of accurate
muscle segmentation using model
B, with each row containing test
images from different patients,
with normal rotator cuff muscle
appearance (a), and varied
degrees of muscle atrophy and
fatty infiltration (b, c). In
grayscale images from all 3 cases,
note the challenging boundaries
between infraspinatus and teres
minor. Manual, manual tracing;
Model B (U-Net), model
prediction by CNN
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Discussion

The findings of our study are twofold: (1) a CNN classifica-
tion method is able to accurately select an appropriate shoul-
der Y-view and (2) another U-Net-based CNN is able to ac-
curately segment multiple RC muscles at that level.
Importantly, our results show the feasibility of these methods
in a large cohort of randomly selected shoulderMRIs obtained
both inside and outside our institution.

RC muscle atrophy affects the repairability of tendons,
with greater muscle atrophy predisposing higher rates of re-
tear and unfavorable outcomes [3–6]. Prior qualitative [1, 9]
and quantitative [10] studies have graded fatty infiltration
and atrophy of RC muscles. A commonly used qualitative
system is the Goutallier classification [1], originally de-
scribed on non-contrast shoulder CT scans and later adapted
for MRI [2] using Y-view T1-weighted images, yielding
wide interobserver [2, 24–27] and intra-observer [24–27]
reliability measures. Subsequently, the tangent sign was in-
troduced as a binary qualitative assessment of supraspinatus
muscle atrophy [9], and Thomazeau et al. [10] proposed an
occupation ratio to determine supraspinatus muscle atro-
phy. Taken together, although these methods provide

insight into RC muscle status, their limitations include sub-
jective prescription of anatomic landmarks and manual trac-
ings, which are time-consuming and present variability
across operators [12–14]. These factors represent draw-
backs for broader implementation of quantitative RC mus-
cle measures in clinical care.

In our study, we focused on the Y-view for its familiar
bony landmarks, good representation of RC muscle status,
and frequent use in RC muscle atrophy studies [3, 14].
Automatic slice selection methods have been previously de-
scribed to identify anatomical landmarks using atlas-based
approaches and deep learning [28–30]. For musculoskeletal
applications, Zhou et al. [31] had success using a CNN to
select a knee sagittal slice for anterior cruciate ligament tear
classification with an accuracy of 0.98. Our results are novel
in presenting accurate methods for Y-view selection that can
be the initial step in a workflow for automated RC muscle
segmentation at that level.

Our automated segmentation of RC muscles showed an
accuracy comparable or better to other deep learning method-
ologies. For example, Kim et al. [16] manually selected a Y-
view on 240 patients and found Dice scores of 0.95 for
supraspinatus muscle and 0.97 for supraspinatus fossa.

Fig. 5 Prediction errors on test
images from 3 different subjects
(one per row). Errors at caudal
contour of subscapularis muscle
(arrowheads), due to challenging
muscle boundaries with teres
major/latissimus dorsi (a) and ax-
illary artery (b). c
Underestimation of supraspinatus
segmentation (arrow) and overes-
timation of infraspinatus/teres
minor (white arrowhead), with
model misclassifying portion of
trapezius (black arrowhead).
Manual, manual tracing; Model B
(U-Net), model prediction by
CNN
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Similarly, Conze et al. [17] used a CNN to obtain volumetric
segmentations from 24 pediatric healthy and pathological
shoulder exams finding Dice scores of 0.71, 0.83, and 0.82
for supraspinatus, subscapularis, and infraspinatus, respective-
ly. They also noted an improved performance when images of
pathological shoulders were combined with images of unaf-
fected shoulders [17].

In our study, both models were trained and tested on
datasets containing a variety of RC muscle conditions
(i.e., normal, moderate, and severe atrophy). Although our
accuracy and short analysis time per image for model B are
promising, areas of over- and underestimation were seen.
Some minor errors occurred most commonly at muscle
boundaries with adjacent fat planes and likely represent
low-impact quantitative issues. More prominent errors were
noted along the inferior contour of subscapularis (adjacent
to axillary vessels) and inferior contour of infraspinatus/
teres minor. Despite high overall and per-muscle Dice
scores, strategies to improve these errors should include
expanding training datasets with more cases containing
confounding features in those areas. Inclusion of a larger
variety of supraspinatus atrophy states may also benefit seg-
mentation performance. As noted by Kim et al. [16], a pos-
sible explanation for lower supraspinatus muscle Dice score

is due to variations in cross-sectional area caused by
supraspinatus tendon tears and atrophy.

Strengths of our study include successful slice selection
using a classification algorithm and demonstration of accurate
automated RC muscle segmentations on routine T1 sagittal
MRIs from a large and varied cohort. This simple yet robust
technique has not been previously described and yielded ex-
cellent results. Importantly, both our models were tested on
datasets from studies obtained outside our institution, render-
ing comparable accuracies. The size of our training and testing
dataset is another advantage as compared with prior studies
[16, 17]. Further, although Conze et al. [17] examined a pedi-
atric population, our work investigated a wider range of adult
shoulder MRI images.

An important focus of our study was to separately validate
methods for proper Y-view selection (model A) and accurate
muscle boundary determination (model B).We did not test the
performance of an integrated pipeline across both models;
therefore, our top-3 performance for model A should not im-
ply passing a 3-image dataset to model B would be used in
such a workflow. An integrated pipeline, currently in devel-
opment by our group, requires specific procedures and mod-
ifications to training and testing datasets that were beyond the
scope of the current study. Our algorithm was not designed to

Fig. 6 Prediction errors on test
images from 3 different subjects
(one subject per row). a Although
most atrophied subscapularis
(white arrowhead) was correctly
predicted by the model, its cranial
portion was missed and a stray
incorrect prediction is noted in
this area (red pixels, black
arrowhead). Note the correct
inclusion of atrophied teres minor
(white arrows) in infraspinatus/
teres minor segmentation (yel-
low). b Underestimation of
subscapularis segmentation
(arrowheads) in area of pulsation
artifact from axillary artery. c
Rare example of model uncer-
tainty assigning an area of
subscapularis as belonging to
infraspinatus/teres minor class
(arrowheads). Manual, manual
tracing; Model B (U-Net), model
prediction by CNN
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quantify the degree of atrophy in each muscle, which will
require an additional stage of thresholding muscle vs. fat
pixels within each segmentation. This desirable feature will
be the subject of future development, which, however, relies
first on robust and reliable localization of muscle boundaries,
which was the key effort in our study. Our manual tracing also
included fatty septae and fat replacement within the bound-
aries of each cross-sectional area, with the future expectation
of separating muscle from fat pixels using dedicated methods.
In principle, a similar procedure could be adopted to more
accurately separate the infraspinatus from teres minor.
Altogether, such developments may allow prompt determina-
tion of rotator cuff muscle cross-sectional area in clinical
workstations, which could automatically provide overlays on
specific images and data on dictation platforms.

Limitations of our study include model B being trained
on a single standardized sagittal image. Volumetric (3D)
muscle quantification using a CNN approach has been
demonstrated in prior studies [17]. The use of 3D mea-
sures of RC muscle volume produces more accurate mea-
sures, which however require multiple slice segmentation
and longer imaging time to cover the entire shoulder gir-
dle, which is rarely accomplished in clinical practice [13].
Furthermore, previous studies have found that a single
slice is appropriate for clinical assessment of fatty infil-
tration [13]. Another limitation is a relatively lower pro-
portion of severely atrophic RC muscles in our datasets.
Although this reflected the typical patient population at
our imaging/clinical services, future work will develop
models on datasets with higher degrees of fatty infiltra-
tion. For this reason, performance of our method could
vary in a cohort with higher prevalence of severe RC
muscle atrophy.

In conclusion, we demonstrate novel and accurate methods
to select a Y-view image and segment multiple RC muscles
using a combination of CNN models. Our work extends prior
studies examining a larger and diverse cohort of patients. By
offering automated and reliable muscle area quantification,
our methods have potential use in surgical outcomes research
and clinical assessment of RC pathology.
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