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Artificial intelligence-assisted interpretation of bone age radiographs
improves accuracy and decreases variability
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Abstract
Objective Radiographic bone age assessment (BAA) is used in the evaluation of pediatric endocrine and metabolic disorders.We
previously developed an automated artificial intelligence (AI) deep learning algorithm to perform BAA using convolutional
neural networks. We compared the BAA performance of a cohort of pediatric radiologists with and without AI assistance.
Materials and methods Six board-certified, subspecialty trained pediatric radiologists interpreted 280 age- and gender-matched bone
age radiographs ranging from5 to 18 years. Three of those radiologists then performedBAAwithAI assistance. Bone age accuracy and
root mean squared error (RMSE) were used as measures of accuracy. Intraclass correlation coefficient evaluated inter-rater variation.
Results AI BAA accuracy was 68.2% overall and 98.6% within 1 year, and the mean six-reader cohort accuracy was 63.6 and
97.4% within 1 year. AI RMSE was 0.601 years, while mean single-reader RMSE was 0.661 years. Pooled RMSE decreased
from 0.661 to 0.508 years, all individually decreasing with AI assistance. ICC without AI was 0.9914 and with AI was 0.9951.
Conclusions AI improves radiologist’s bone age assessment by increasing accuracy and decreasing variability and RMSE. The
utilization of AI by radiologists improves performance compared to AI alone, a radiologist alone, or a pooled cohort of experts.
This suggests that AI may optimally be utilized as an adjunct to radiologist interpretation of imaging studies to improve
performance.
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Introduction

Machine learning has emerged as a powerful technique in
computer science to teach computers to autonomously find
patterns in data and now underlies many large-scale software
products including Google Translate [1], Alexa speech recog-
nition [2], and mastering the game of Go [3]. Intense research

has focused on applying these techniques to medical applica-
tions with recent successes in detecting diabetic retinopathy [4]
and detecting malignant melanomas with an accuracy rivaling
that of board-certified dermatologists [5]. While there has been
much discussion in the lay press about the role of machine
learning in radiology [6–8], no direct assessment of the impact
of a machine-learning algorithm on the performance of a co-
hort of radiologists has been performed.

Radiographic bone age assessment (BAA) is a central part
of the clinical workup of pediatric endocrine and metabolic
disorders, in which the patient’s chronologic age is compared
with their level of skeletal maturity based on a standardized
reference. BAA in clinical practice is typically performed
using either the Greulich and Pyle [9] or Tanner–Whitehouse
[10] (TW2) methods by comparing a radiograph of the hand
and wrist to an age-based atlas or determining age based on
scoring specific radiographic features. In both cases, BAA is
time-consuming and contains significant interrater variability
among radiologists. BAA is an ideal application for automated
image evaluation, as there is a single image—the left hand and
wrist—and relatively standardized findings.

This work has been accepted for presentation at RSNA 2017 and awarded
an RSNATrainee Research Prize.

* Shahein H. Tajmir
shahein@stajmir.com

1 Department of Radiology, Massachusetts General Hospital,
Boston, MA, USA

2 Harvard Medical School, Boston, MA, USA
3 Harvard John A. Paulson School of Engineering and Applied

Sciences, Cambridge, MA, USA
4 The Billings Clinic, Billings, MT, USA
5 Children’s Hospital of Philadelphia, Philadelphia, PA, USA

Skeletal Radiology (2019) 48:275–283
https://doi.org/10.1007/s00256-018-3033-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s00256-018-3033-2&domain=pdf
mailto:shahein@stajmir.com


We have previously developed a fully automated, deep
learning algorithm to perform bone age assessment (BAA)
using convolutional neural networks (CNN) that achieved
mean accuracies of 92.3% within 1 year for the female and
male cohorts compared with radiology report reference [11].
As AI based interpretation tools enter radiology clinical prac-
tice, important unanswered questions include how these tools
compare with radiologist performance and how they are best
integrated into radiology practice.

The purpose of this study is to compare the performance of
a deep learning-based BAA algorithm to a cohort of pediatric
radiologists and evaluate the impact of the implementation of
a deep learning-based BAA algorithm on radiologist accuracy
and variability when performing BAA on a set of standardized
cases with and without access to AI interpretation (Fig. 1).

Methods

Patients

IRB approval was obtained for this retrospective, HIPAA-
compliant study. We constructed a balanced cohort with ten
representative cases for each class and gender, representing
280 cases ranging from 5 to 18 years from a cohort of 8325
radiographs previously used to train a deep learning CNN. The
CNN was trained and validated (85:15) again without these
280 cases. These radiographs were then interpreted by the
CNN, creating a predicted bone age and attention map for each.

Patient characteristics and indications

Self-reported demographic data for the 280 test cases are pre-
sented in Table 1. The distribution of chronologic ages rough-
ly matches that of the bone age- and gender-matched test bone
age cohort—ten patients per class and gender (Appendix
Table 5). The predominant indications for BAAwere evalua-
tion of short stature (92/280 = 33%), monitoring of growth

hormone therapy (52/280 = 19%), precocious puberty (57/
280 = 20%), and research (38/280 = 19%). Please see appen-
dix Fig. 6 for a detailed list of indications and appendix Table
5 for a graph of chronological age distribution.

Image processing and training

Our architecture first normalizes input images to have black
backgrounds and a uniform size (512 × 512 pixels), then uses a
preliminary segmentation CNN based on LeNet-5 with a 32 ×
32 imaging patch size and stride of 4 to automatically segment
the hand and remove extraneous data such as background ar-
tifacts, collimation, and annotation markers. The segmented
and normalized image then enters the vision pipeline and has
contrast-limited adaptive histogram equalization (CLAHE),
denoising, and sharpening applied to enhance bony details,
and finally is passed to the classification CNN for skeletal
age classification. The classification CNN is based on an
ImageNet pre-trained GoogLeNet fine-tuned on our train
dataset by applying data augmentation with geometric (rota-
tion, resizing, and shearing) and photometric (contrast and
brightness) transformations to avoid overfitting. After holding
out 280 images for testing, 15% of images were randomly
selected for validation, and the remaining 6838 were utilized
to train the CNN. All training was performed with a mini-batch
stochastic gradient descent with a mini-batch size of 96 using

Fig. 1 Process flow map comparing CNN-based BAA and manual BAA

Table 1 Self-reported
patient ethnicities for
patients in the evaluation
cohort

Race N (%)

White 188 (67%)

Hispanic 42 (15%)

Black 23 (8%)

Asian 12 (4%)

Middle East 7 (3%)

Southeast Asian 5 (2%)

Declined to respond 3 (1%)

Total 280 (100%)
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0.001 base learning rate, gamma of 0.1, and momentum term
of 0.9, and weight decay of 0.005. The best CNNmodels were
selected based on the validation loss values.

For visualization of the network as well as to provide AI
interpretive information for the radiologists, attention maps
were generated using the occlusion method [12]. This method
iteratively slides a small patch across an image, presents the
occluded images to the network, and creates two-dimensional
attentionmaps based on the change in classification probability.

Image interpretation

Six board-certified, subspecialty trained pediatric radiologists
from three academicmedical centers with amean of 13.8 years
clinical experience (S.J.W. 21 years, R.L. 18 years, R.S.
16 years, M.S.G. 14 years, J. N. 9 years, and H.I.G. 5 years)
interpreted the 280 test radiographs first using the GP atlas
method. Three radiologists were randomly chosen to be pre-
sented the automated BAA results (including attention maps)
and asked to report the BAA using the GP atlas and the addi-
tional AI information to test the effect of AI on BAA.

Reference standard

Bone age is ultimately a consensus evaluation with reference
to a representative atlas, making it difficult to define a true
gold standard reference. As a result, reference bone ages were
determined using two different methods: (1) an independent
reviewer and (2) a normalized mean. The independent review-
er was a radiologist (initials [removed for peer review]) who
was not part of the six-member cohort. This reviewer had
access to AI attention maps, AI bone age, individual rater
cohort scores, and the clinical reports. The reviewer also com-
pared all of these results to Gilsanz and Ratib’s Digital Atlas of
Skeletal Maturity [13], and selected the GP atlas timepoint
closest to the GR BAA. The second method used the

normalized mean by taking the mean of the six raters and
selecting the closest GP time point.

Statistical analysis

Quantitative variables are presented as means with ranges.
Accuracies were reported as the exact same result or accuracy
within 1 year. Bone age accuracy and root mean squared error
(RMSE) were used as measures of accuracy. 2 was used to test
for exact accuracy statistical significance, and two-tailed t test
was used for RMSE statistical significance. Intraclass correla-
tion coefficient (ICC) based on two-way random average mea-
sures was chosen to evaluate inter-rater variation amongst the
radiologists without and with AI as a measure of variability.
Statistical differences were considered significant at p < 0.05.

Experimental environment

All experiments were run on a Devbox (NVIDIA Corp, Santa
Clara, CA, USA) containing four TITANXGPUswith 12GB of
memory perGPU [22], and onNvidia deep learning frameworks,
including Nvidia-Caffe (0.16.1) and Nvidia DIGITS (5.1). Excel
360 and MedCalc version 17.9 were used for statistical analysis.

Results

AI and cohort accuracies when compared
to the independent reviewer reference

AI RMSE was 0.548 years and mean single-reader RMSE
was 0.704 years, ranging from 0.544–0.902. AI exact accura-
cy was 73.2 and 98.9% within 1 year. Mean single-reader
accuracy was 62.6%, ranging from 50.7–74.6% (Table 2).
For context, the original clinical reports had an exact accuracy
of 68.6% and an RMSE of 0.633 years when compared to the
independent reviewer reference.

Table 2 Accuracies and root mean square error (RMSE) for the machine learning algorithm and individual raters when compared to both the
independent reviewer and normalized mean references

Rater Independent reviewer reference Normalized means

Exact accuracy
N (%)

Accuracy within 1 year
N (%)

RMSE (years) Exact accuracy
N (%)

Accuracy within 1 year
N (%)

RMSE (years)

AI 205 (73.2%) 277 (98.9%) 0.548 191 (68.2%) 276 (98.6%) 0.601

Rater 1 203 (72.5%) 278 (99.3%) 0.544 204 (72.9%) 278 (99.3%) 0.541

Rater 2 159 (56.8%) 269 (96.1%) 0.765 173 (61.8%) 273 (97.5%) 0.689

Rater 3 142 (50.7%) 260 (92.9%) 0.862 156 (55.7%) 270 (96.4%) 0.754

Rater 4 192 (68.6%) 275 (98.2%) 0.607 193 (68.9%) 279 (99.6%) 0.567

Rater 5 147 (52.5%) 255 (91.1%) 0.902 149 (53.2%) 259 (92.5%) 0.843

Rater 6 209 (74.6%) 276 (98.9%) 0.544 194 (69.3%) 278 (99.3%) 0.573
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Impact of pairing AI with radiologists

Radiologists who utilized AI had pooled RMSE decrease
from 0.684 to 0.525 years, all individually decreasing—
0.607 to 0.531 for rater 4, 0.902 to 0.551 for rater 5, 0.544
to 0.493 for rater 6 (Fig. 2). Combined AI and radiologist
interpretation resulted in higher accuracy than AI alone or
the six-reader cohort mean.

Effect persistence with an alternative measure
of ground truth

Similar improvements in accuracy and RMSE persisted when
normalized cohort mean rating was used as the reference

(Fig. 3). Radiologists paired with AI had increases in accuracy
and RMSE (Table 3).

Interrater variation

Intraclass coefficients ICC(2,k) were calculated amongst the
three radiologists exposed to AI. ICC without AI was 0.9914
(95% CI 0.9894 to 0.9930) and with AI was 0.9951 (95% CI
0.9940 to 0.9960). For comparison, ICC among the three radiol-
ogists who were not exposed to AI was 0.9908 (95% CI 0.9888
to 0.9925), similar to the other three radiologists without AI, but
worse than the AI-assisted radiologists. Bland–Altman plots
were generated and revealed decreased spread of ratings and
decreased limits of agreement when paired with AI (Fig. 4).

Fig. 2 Individual reader root
mean square error in years
without AI assistance. AI RMSE
was 0.548 years

Fig. 3 Individual reader exact and within 1 year accuracy in years without AI assistance. a Accuracy when compared to the independent reviewer
reference. b Accuracy when compared to normalized mean reference
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AI performance variation based on patient ethnicity

Performance of the AI algorithm was evaluated based on the
self-reported ethnicity/race of the patients. AI RMSE of the
combined cohort was 0.548 years, with 0.551 years in
Caucasian children and 0.542 years in non-Caucasian children
(Table 4; p = 0.891).

Discussion

Machine learning-derived approaches have great potential for
application in medicine, allowing rapid and scalable systems
to perform complex analysis of medical data [14]. While most
work has focused on applications of computer vision to natu-
ral images, these techniques can also be applied to medical
images such as detection of malignant skin lesions [5] or dia-
betic retinopathy screening [15]. Recent work has demonstrat-
ed systems to detect tuberculosis on chest radiographs [16],

stage and predict prognosis of COPD [17], and identify ana-
tomic structures on abdominal CT [18]. These techniques
have also been applied outside imaging by using a machine
learning model to perform automated stratification of indeter-
minate breast lesions into surgical and observation groups,
avoiding surgery in 30% of cases [19].

Fully automated BAA for use in the clinical setting has
been a goal in computer vision and radiology research dating
back to at least 1989 [20]. While most prior approaches have
utilized hand-crafted features extracted from regions of inter-
est [21], our approach utilizes transfer learning with a pre-
trained CNN to automatically extract key features from all
bones present in the hand and wrist, without the limitations
imposed by hand-crafted features.

One of the challenges in BAA study design is the inherent
variability in radiologist clinical interpretation of bone age ra-
diographs, which makes selection of an appropriate reference
standard difficult. For our study, we chose two different refer-
ence standards: (1) an independent radiologist reviewer and (2)

Table 3 Effect of AI on reader performance

Independent reviewer reference Normalized means

Rater 4 Rater 5 Rater 6 Rater 4 Rater 5 Rater 6

(−) AI (+) AI (−) AI (+) AI (−) AI (+) AI (−) AI (+) AI (−) AI (+) AI (−) AI (+) AI

Exact accuracy 68.6% 75.0% 52.5% 73.9% 74.6% 78.9% 68.9% 77.1% 53.2% 72.9% 69.3% 73.6%

X2 p = 0.091 p = 0.0001 p = 0.230 p = 0.029 p = 0.0001 p = 0.2617

RMSE (years) 0.607 0.531 0.902 0.551 0.544 0.493 0.567 0.478 0.843 0.521 0.573 0.524

t test p value p = 0.0005 p < 10−11 p = 0.0051 p = 0.00003 p = 10−10 p = 0.005

Limit of agreement (95%) ±1.17 ±1.01 ±1.73 ±1.08 ±1.03 ±0.93 ±1.12 ±0.95 ±1.59 ±1.02 ±1.12 ±1.03

Exact accuracy, root mean square error in years, and 95% limit of agreement with and without AI assistance. Bolded values are statistically significant

Fig. 4 Bland–Altman plots for the three raters who utilized AI. Axes are reported in years. Use of AI was associated with increased ICC and decreased
variability in BAA assessment
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a normalized mean cohort value from the six pediatric radiol-
ogists. We believe that a cohort-based reference standard is the
most valid reference that best reflects the range of BAA in
clinical practice. The six pediatric radiologists spanned three
large academic medical centers and enabled a robust assess-
ment of BAA intrinsic variation (measured as RMSE). Our six-
radiologist mean cohort RMSE for BAA without AI was
0.661 years, comparable to previously published RMSE
values—ranging from a mean RMSE of 0.96 years in a
British cohort [22] and 0.59 years in the ATLAS dataset [23]
to 0.51 ± 0.44 years [24] in a recent analysis in a Korean
cohort. Thus we believe that our baseline radiologist BAA
performance can be considered consistent with standard clini-
cal radiologist performance.

An important result of our work is that AI BAAperformance
is at a level comparable to pediatric radiologists, similar to
recently reported work by Larson et al. [8]. AI achieved an
RMSE of 0.601 years, which was not significantly different
from the cohort mean RMSE and is comparable with the pre-
viously reported values of RMSE intrinsic to BAA. In addition,
AI had comparable BAA accuracy compared to the pediatric
radiologist reader cohort, with no significant difference in exact
(68.2 and 63.6%) or within 1 year (98.6 and 97.4%) accuracies,
respectively. The slight but not significantly increased accuracy

achieved by AI compared to the reader cohort could reflect a
small degree of overfitting given that four of the six raters also
provided interpretations for the initial training dataset.

Another goal of our study was to assess the impact of AI on
pediatric radiologist BAA performance. To do this, we asked
pediatric radiologists to interpret bone age radiographs before
and after access to AI input. Our results also show that access to
AI improves the accuracy and decreases the variability of
subspecialty-trained pediatric radiologists BAA. Among the
three radiologists who were paired with AI, the mean RMSE
decreased from 0.661 to 0.508 years. Mean accuracy increased
from 63.8 to 74.5% when compared to AI accuracy of 68.2%.
All individual radiologist+AI RMSEs statistically decreased be-
low that of AI or the radiologists alone, while accuracy statisti-
cally increased for two out of the three (Table 3). Importantly,
the improvement that AI provides for pediatric radiologist BAA
accuracy and variability is observed when compared with two
different reference standards (both an independent reviewer and
normalized cohort mean). Our study design (six independent
evaluations of 280 standardized cases) accounts for the fact that
a true reference BAA standard in clinical practice should incor-
porate both accuracy as well as intrinsic variation among differ-
ent radiologists. These results build on recent data by Kim et al.
[25] demonstrating that AI can help trainees improve their

Table 4 Accuracies and RMSE
for the machine learning
algorithm when comparing
Caucasian versus non-Caucasian
children

Exact accuracy

N (%)

Accuracy within 1 year

N (%)

RMSE (years)

All 205 (73.2%) 277 (98.9%) 0.548

Caucasian 140 (74.5%) 185 (100.0%) 0.551a

Non-Caucasian 65 (70.7%) 92 (100.0%) 0.542a

There were 188 Caucasian and 92 non-Caucasian children in the test dataset
a Two-tailed, two-sample equal variance t test, p = 0.891

Fig. 5 Screenshot of the bone age assessment tool with its outputs visually emphasized. This tool is directly embedded into PACS for use at point of care
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accuracy and interpretation speed when paired with a neural
network-based bone age classifier.

Much attention has been focused on the potential of AI to
replace humans in performing complex visual tasks, including
radiologic interpretation [6, 7]. Our results indicate that perfor-
mance is optimized when AI is deployed in conjunction with
radiologist interpretation. Further studies are needed to elucidate
the ways in which AI and radiologist image interpretation
synergizes, but it is likely that AI is more helpful in cases that
are not easilymapped to a specific timepoint. In thisway, perhaps
AI can be used in other areas of radiology as a time-saving tool to
allow radiologists to spend more time on challenging cases.

In addition, our dataset included an ethnically diverse pa-
tient population, allowing us to compare AI performance
across different ethnic groups. Our results show that AI dem-
onstrates similar BAA performance across different ethnici-
ties, providing good evidence of its generalizability.

Our system was directly embedded into both PACS and our
computerized dictation system to aid interpretation and reduce
burdens to use (Fig. 5). The system consists of a webapp that
allows the radiologist to view the AI BAA prediction, easily
scroll through the referenceGreulich and Pyle images, andmake
the final determination while generating a structured report with
Brush foundation standard deviations. The system saves time by
avoiding table lookups and transcription errors while also keep-
ing the radiologist focused on the images rather than distracting
their attention to the atlas or the reporting system.

Strengths of our system include a diverse population and
multiple experienced readers to provide a robust ground truth.
Limitations of our system include a single site as the source of
the training dataset and the intrinsic use of BAA in patients with
suspected disease. As our experimental design specifically tried
to determine the impact of AI’s interpretation on radiologist
accuracy and agreement, our study design required immediate
interpretation with and without AI, precluding time measure-
ments to compare interpretation acceleration. Additionally, our
retrospective design precludes evaluating the impact of higher
accuracy on subsequent patient care. Further investigations
should utilize multi-site training data and normal healthy pa-
tients, while preserving the ability to measure time-savings and
the impact of improved BAA on subsequent clinical care as
well as assessing whether improvement over time is consistent.

Conclusions

AI performs similarly to practicing pediatric radiologists for
BAA. The utilization of AI by radiologists improves perfor-
mance compared to AI alone, a radiologist alone, or a pooled
cohort of experts. This suggests that AI may optimally be
utilized as an adjunct to radiologist interpretation of imaging
studies, suggesting a model for how AI may best be utilized in
radiology.
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Appendices

Appendix 1

Table 5 Detailed indications for each of the 280 patients in the test
cohort

Indication N

Chronic steroids 1

Chronic steroids/cystic fibrosis 1

Chronic steroids/Duchenne muscular dystrophy 1

Congenital adrenal hyperplasia 2

Congenital anorchia 1

Congenital hypomagnesemia, hypercalcemia syndrome 1

Hypertension 1

Kallmann syndrome 2

Klinefelter syndrome 1

Leg length discrepancy 4

Malignancy/astrocytoma 1

Malignancy/brain tumor 1

Malignancy/craniopharyngioma 1

Malignancy/medulloblastoma 2

McCune Albright 1

Noonan syndrome on GH 1

Prader–Willi syndrome 1

Precocious puberty 56

Precocious puberty/NF1 1

Research 15

Research (anorexia) 1

Research (autism bone mass) 1

Research (depression) 1

Research (peak bone mass study) 20

Scoliosis 14

Secondary amenorrhea 1

Short stature 79

Short stature (GH treatment) 52

Short stature (mitochondrial disorder) 1

Short stature (Turners and GH) 1

Short stature (Turners) 1

Short stature Prader–Willi syndrome 2

Short stature, congenital adrenal hyperplasia 2

Short stature, delayed puberty 2

Short stature/IBD 1

Short stature/NF1 1

Short stature/Prader–Willi syndrome/GH treatment 2

Turner syndrome 3

Total 280
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