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Abstract
Objective The objective was to develop tools for automat-
ing the identification of bony structures, to assess the
reliability of this technique against manual raters, and to
validate the resulting regions of interest against physical
surface scans obtained from the same specimen.
Materials and methods Artificial intelligence-based algo-
rithms have been used for image segmentation, specifically
artificial neural networks (ANNs). For this study, an ANN
was created and trained to identify the phalanges of the
human hand.
Results The relative overlap between the ANN and a
manual tracer was 0.87, 0.82, and 0.76, for the proximal,
middle, and distal index phalanx bones respectively.

Compared with the physical surface scans, the ANN-
generated surface representations differed on average by
0.35 mm, 0.29 mm, and 0.40 mm for the proximal, middle,
and distal phalanges respectively. Furthermore, the ANN
proved to segment the structures in less than one-tenth of
the time required by a manual rater.
Conclusions The ANN has proven to be a reliable and valid
means of segmenting the phalanx bones from CT images.
Employing automated methods such as the ANN for
segmentation, eliminates the likelihood of rater drift and
inter-rater variability. Automated methods also decrease the
amount of time and manual effort required to extract the
data of interest, thereby making the feasibility of patient-
specific modeling a reality.
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Introduction

Over the past 25 years, image analysis has made significant
advancements in the fields of radiology and biomedical
engineering. Three-dimensional anatomic models often-
times rely on CT and MR datasets for their geometric
definitions. Segmentation techniques are used to distinguish
structures of interest from the remainder of the image. A
major class of image segmentation techniques incorporates
thresholding. Threshold techniques, which make decisions
based on local pixel information, are effective when there is
a bimodal distribution of the histogram between the region
of interest and background. The readily distinguishable
intensities of bone make threshold techniques a common
exercise for orthopedic applications. Because spatial infor-
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mation is neglected, however, indistinct region boundaries
can prove problematic. While thresholding-based algo-
rithms are easy to employ, significant manual intervention
is often required to provide reliable and anatomically
correct structural borders. This proves especially true at
the bony articulations.

A number of algorithms have been employed to date to
automatically segment bony regions of interest from 3D
medical images. This has included the use of filtering
approaches [1], application of 3D Markov Random Fields
[2], active contour models [3, 4], watershed segmentation
[5], fast marching and level sets [6], and atlas-based
segmentation [7]. The breadth of applicable segmentation
algorithms is shown in these examples. The majority of
these algorithms have been applied to relatively large bony
regions including the hip and knee.

A recent trend in the field of image segmentation has
been toward artificial intelligence-based algorithms [8–26].
Artificial neural networks (ANNs), a form of artificial
intelligence inspired by neurophysiology, have shown great
potential for segmenting medical images. Unlike other
artificial intelligence systems, ANNs require no explicit
rule generation or pre-programming. Instead, they are
trained using example data with known output. The ANN
learns through the training process, and develops implicit
rules for analysis. The effect of training can then be
measured using a separate set of data where the results
are known, but not provided to the ANN.

Artificial neural networks are collections of mathemat-
ical models that emulate some of the observed properties of
biological nervous systems and draw on the analogies of
adaptive learning. The key element of the ANN paradigm is
the structure of the information processing system. It is
composed of a large number of highly interconnected
processing elements that are analogous to neurons and are
tied together with weighted connections (fixed or variable)
analogous to synapses. Learning in biological systems
involves adjustments to the synaptic connections that exist
between the neurons. This is true of ANNs as well.
Learning typically occurs by example through training, or
exposure to a truthed set of input/output data where the
training algorithm iteratively adjusts the connection
weights. These connection weights store the knowledge
necessary to solve specific problems. The storage of
information across the network weights enables general-
izations to be made. Consequently, appropriate classifica-
tions are made even for input patterns not actually included
in the training set, provided that the training set covered a
representative group of patterns. This ability to learn and
generalize allows neural networks to solve image-process-
ing problems that are not readily tractable using rule-based
conventional classifiers. Neural networks have been applied
to the field of image segmentation by including probability

information and signal intensity information for a voxel and
its local neighborhood [17, 22].

Such automated routines have been used in the identi-
fication of bone, chest, and breast lesions [10–14, 18, 21,
24, 26], brain structures [9, 15, 17, 19, 20, 22–25], and
cardiovascular regions [8–11, 13, 15–17, 19, 20, 23, 25,
26]. Recent advances have further expanded this technique
to segment orbit [27] and abdominal regions [14, 27, 28].
These image segmentation algorithms have played a role in
many biomedical applications including the quantification
of tissue volumes, diagnosis, localization of pathology,
study of anatomical structures, treatment planning, and
computer-integrated surgery [8, 28]. However, ANNs have
yet to be used specifically for orthopedic applications.

The objective of this study was to develop tools for
automating the identification of bony structures, to assess
the reliability of this technique against manual raters, and to
validate the resulting defined regions of interest against
physical surface scans obtained from the same specimen.
For this study, an ANN was created and trained to
recognize the phalanx bones of the human index finger.

The phalanges were chosen as the structures of interest
for several reasons. First and foremost, the ability to collect
a large amount of data (i.e., multiple bones) in a single scan
as opposed to a single bone, made the phalanges an ideal
choice. Furthermore, by initiating with the bones of the
human hand, the bounds of the methodology were being
tested. Each finger (excluding the thumb) consists of three
long, slender bones: the proximal, middle, and distal bones.
These bones are small and within close proximity to one
another. This close proximity tested the ability of the ANN
to distinguish a bone from its adjacent neighbor(s). Lastly,
the geometric similarities of the individual bones would
provide the ability to test bones of similar shape, but
differing in size, which would help account for variability
among individuals. Tools capable of handling such com-
plexities of this region make them readily applicable to
virtually any other structure/joint of the human body.

Materials and methods

Fifteen arms from 8 donors, amputated at the elbow, were
obtained from Anatomy Gifts Registry located in Hanover,
MD, USA. The donor set consisted of 13 female and 2 male
specimens with a mean age of 73.7 years. Aside from being
thawed for the scanning procedures, the specimens were
frozen and stored at −20°C.

Each of the arms came with a ten-character identifying
code. The ten characters included two letters followed by
eight digits. These codes became the basis for the
identifying scheme used for the project. The fingers were
numbered sequentially beginning with the index finger,
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labeling the index finger 1, the middle finger 2, the ring
finger 3, and the little finger 4. The letter P was used to
represent a proximal phalanx bone, M to represent a middle
phalanx bone, and D to represent a distal phalanx bone.
Finally, either the letter R or the letter L was assigned to the
identifying code to indicate a right or left hand.

CT data acquisition

For conformity during the scanning procedure, each
specimen was individually affixed to a customized Plexi-
glas fixture. The neutral hand position was defined by
placing the palm of the hand on the flat surface of the
construct and aligning the third metacarpal with the long
axis of the forearm [29]. A dashed line, drawn longitudi-
nally down the center of the fixture was used to align the
specimen. An outline of a human hand was also included
on the construct for ease of alignment. Nine holes were
drilled in the fixture, one between each finger and one on
either side of the thumb and wrist. Locking cable ties were
used to strap the fingers and wrist securely to the Plexiglas
plate.

Images of each specimen were obtained on a Siemens
Sensation 64 CT scanner (matrix=512×512, FOV=
172 mm, KVP=120, current=94 mA, exposure=105 mA)
with an in-plane resolution of 0.34 mm and a slice
thickness of 0.4 mm. Following image acquisition, the data
were processed using BRAINS2 software [30, 31]. The
images were resampled to 0.2-mm isotropic voxels and
spatially normalized such that the vertical plane of the
frame was aligned superiorly/inferiorly in the coronal view,
vertically aligning the third metacarpal. The images were
cropped to contain only the phalanx and carpal bones for
ease of data management.

Manually segmented surface definitions

Two trained technicians (referenced as Tracer1 and Tracer2)
manually traced 15 index fingers using BRAINS2 software.
The regions of interest (ROIs) defining the distal, middle,
and proximal bones were manually traced by each
technician. The average time required to manually segment
the three bones of the index finger was 58.5 min, ranging
from 40 to 83 min. In order to ensure minimal inter-rater
variability, a study was conducted to compare the perfor-
mance of the two tracers by determining the relative
overlap (Eq. 1).

Relative Overlap ¼ Volume Tracer1 \ Tracer2ð Þ
Volume Tracer1 [ Tracer2ð Þ : ð1Þ

The relative overlap computed between the two raters was
0.89 for all the bones. The individual bones (proximal,

middle, and distal) had overlaps of 0.91, 0.90, and 0.87
respectively.

Architecture of the ANN

The ANN algorithm was implemented in four stages:

1. Probability map generation
2. Creation of training vectors
3. Neural network training
4. Application of the neural network [32]

A fully connected, feed-forward, three-layer ANN was
used in this study. The architecture for the ANN consisted
of 27 input elements (3 probability values, 3 spherical
coordinates, and 21 signal intensity values), 81 hidden
elements, and 3 output elements. The 21 signal intensity
values consist of 9 signal intensity values along the largest
gradient including the current voxel under examination, and
12 signal intensity values surrounding the voxel under
consideration (±2 voxels along the x, y, and z axes). The
three probability values represent the likelihood that each of
the bones (proximal, middle, and distal) exist at a given
spatial location. The three outputs were used to define each
of the three bones under consideration. Standard back-
propagation was used for training. Of the 15 manually
segmented index fingers, 10 of the fingers were used to
generate the probability map and train the ANN. The
remaining 5 fingers were used to evaluate the reliability of
the ANN.

Probability map generation

One of the inputs to the neural network is the probability of
each structure being segmented at a given spherical
coordinate location in the atlas space. Ultimately, the
ANN does not consider locations with zero probability.
The neural network was trained to define all three phalanx
bones simultaneously, thus allowing each finger to be
completely segmented with a single pass of the neural
network. The index finger of specimen MD05010306R was
chosen as the atlas space. Since the size varies across
fingers and specimens, the fingers were scaled to the size of
the atlas finger. To perform the scaling, a bounding box was
placed around the fingers and the corners of the extracted
image volume were used as the landmark locations to
define a thin-plate spline registration [33]. This registration
removed global scaling differences between the fingers. To
allow both the right and the left hands to contribute to the
probability map, the landmarks for the left hands had the
right and left corners swapped, resulting in a mirror image.
Once the global scaling was removed, all the fingers in the
dataset were registered to the atlas image using a Thirion’s
demons registration [34]. After registration, the manually
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defined binary segmentations were warped using the
resulting deformation field. Finally, the warped masks were
used to generate a probability map that was then filtered
using a Gaussian filter of 0.2 mm in size. In addition to
smoothing the probability map, the Gaussian filter intro-
duced dilation, which allowed unusual bony geometries to
be considered by the neural network.

Neural network training

The second step of the ANN application was the creation of
the training vectors. Essentially, this created a file with
known inputs (signal intensity, probability information, and
spatial location) and outputs based on manually defined
regions. These data were utilized in the third stage, the
training of the ANN. The first two stages were generally
quick and could be accomplished in approximately 1–2 h
depending on the number of specimens in the training set,
the image size, and the speed of the computer. The third
stage, the training of the neural net, was the most time-
consuming stage of the algorithm. On average it took
2 days to train the network. When the mean square error
reached an asymptote, the training was terminated and the
neural network weights were saved. The weights were
saved every 25 iterations, allowing the reliability to be
studied as a function of training by assessing the ability of
the resulting neural network to generalize to the testing set.
For this project, approximately one million training vectors
were used. The learning rate and momentum for the
backpropagation training were 0.3 and 0.15 respectively.
An asymptote during training was reached within 250
iterations of all one million training vectors.

Application of the neural network

To segment a new scan, only the final stage was required.
This stage is relatively fast and can be accomplished in
approximately 5 min. This stage warps the probability
information from the atlas space to the current scan. Only
voxels within the image that have a non-zero probability
were used to generate the input vectors for the ANN. The
saved weights of the networks were loaded and applied to
the current input vectors. The output is a binary mask for
each structure in the network configuration [32]. The binary
mask is generated by first filtering the network activation
function using a Gaussian filter of 0.05 mm and then
thresholding the resulting image at 0.5.

Reliability and validation of the neural network

Once the ANN was trained on the ten training images, the
reliability of the network was evaluated using the five scans
designated the testing set. The resulting binary segmenta-

tions were compared with the traces from the manual raters.
Relative overlap (Eq. 1) was used to compare the two
defined regions of interest. In addition to measuring the
reliability of the neural network, the validity of the ANN
segmentation was also determined. Once the region of
interest has been segmented from the source image data set,
a triangulated isosurface of the bone was generated and
exported in stereo-lithography (STL) format. This neural
network-driven bony surface representation was then
compared with the three-dimensional physical surface
(laser) scan of the corresponding cadaveric specimen. Four
of the reliability index fingers were available for physical
surface scanning. These four specimens were prepared and
scanned as described in the next section. The various
weights generated by the ANN during training were
assessed and it was determined that the weights
corresponding to 250 iterations produced superior results
to those generated with less training. The results from the
250 iterations of training are reported here.

Cadaveric preparation and surface scanning procedures

In preparation for the physical scanning procedure, the
bones were carefully dissected from each hand. Care was
taken not to alter the bony surface during dissection due to
nicking or scratching by instruments. The majority of the
surrounding soft tissue was removed during dissection.
What tissue remained post-dissection was removed follow-
ing the defleshing process prescribed by Donahue et al.
[35]. The bones were placed in a 5.25% sodium hypochlo-
rite (bleach) solution for approximately 4–6 h to remove the
remaining tissue [35]. The bones were examined hourly to
avoid decalcification and to remove any extraneous loose
tissue. Once denuded, the bones were degreased in a soapy
water solution followed by a period of air-drying. Due to
the natural color and porous texture of bone, a negligible
layer of white primer was applied to the surface prior to
scanning, thereby improving the scanner’s ability to detect
the bony surface. Three-dimensional surface scans of each

Table 1 Overlap of manual and neural network segmentation

Specimen ID Proximal
overlap

Middle
overlap

Distal
overlap

Index finger
overlap

CA05042124R 0.91 0.79 0.79 0.83
CA05042125L 0.91 0.88 0.84 0.87
MD05021815R 0.85 0.83 0.78 0.82
MD05042226L 0.86 0.81 0.68 0.79
SC05030303R 0.84 0.78 0.72 0.78
All specimens 0.87 0.82 0.76 0.82
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physical specimen were ascertained using a Roland LPX-
250 3D laser scanner (0.2-mm resolution).

Surface comparisons

In order to compare the ANN and laser-scanned surface
definitions, the axes of the bony surface representations
were aligned to account for the differences in the axes of
the laser and CT scanners. The axes of the ANN surfaces
were oriented to correspond with the axes of the scanned
surface. Once reoriented, the ANN surface was co-
registered to the laser-scanned surface using a rigid,
iterative closest point (ICP) algorithm [36] that was
initialized by aligning the center of masses for the two
surfaces. After the surfaces were in correspondence, the
distance between the two surfaces was measured. A
distance map was created for the surface based on the
Euclidean distance metric, or the shortest distance from a
source point to a target surface [37]. The source was always
the physical surface scan, while the ANN surface repre-
sentations were considered the target surfaces. This enabled
each specimen to act as its own control to establish the
validity of the ANN-defined regions of interest.

Results

The reliability of the neural network for the proximal,
middle, and distal phalanges of the index fingers is
summarized in Table 1. The relative overlap between the
ANN and a manual tracer was 0.87, 0.82, and 0.76, for the
proximal, middle, and distal index phalanx bones respec-
tively. The average relative overlap for an entire index
finger was 0.82. Specimen CA05042125L had the greatest
overlap in the study, with a result of 0.87 for the entire
finger. A visual comparison between the neural network
output and the manual segmentation is shown in Fig. 1 for
one specimen in the reliability set.

After the reliability between the neural network and the
tracers was determined, the validity of the neural network
output was evaluated. The average distances between the
laser-scanned surfaces and the ANN-generated surfaces are
shown in Table 2. The middle and proximal phalanx bones
had the smallest average distances, measuring 0.29 mm and
0.35 mm respectively, while the average distance of the
distal phalanx bones was 0.40 mm. The index finger
referenced as CA05042125L had the smallest average
distance overall at 0.28 mm, while finger MD05042226L
had the largest average distance of 0.46 mm.

A distance map between the 3D physical surface scan
and the ANN output is shown in Fig. 2. The blue color

Fig. 1 a, b Two coronal and c, d two sagittal views of the manual
(red) and automated (blue) regions of interest for specimen
CA05042125L

Table 2 Average distances (standard deviation) between the laser-scanned surfaces and artificial neural network (ANN)-generated surfaces

Specimen ID Proximal phalanx (mm) Middle phalanx (mm) Distal phalanx (mm) Finger average (mm)

CA05042125L 0.29 (0.18) 0.23 (0.16) 0.31 (0.20) 0.28
MD05021815R 0.39 (0.18) 0.34 (0.23) 0.34 (0.21) 0.36
MD05042226L 0.43 (0.22) 0.28 (0.21) 0.66 (0.88) 0.46
SC05030303R 0.31 (0.22) 0.29 (0.21) 0.27 (0.19) 0.29
Bone average 0.35 0.29 0.40

Fig. 2 Representative distance maps between the artificial neural
network (ANN) output and the 3D physical surface scans of the a
distal, b middle, and c proximal phalanges. Distances are represented
in mm
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represents a complete intersection or a crossing of the
surfaces, while any discrepancy greater than 1.0 mm is
represented in white.

Discussion

This initial evaluation of ANN-based segmentation of bony
regions of interest shows great promise. Even in the
relatively small phalanx bones of the finger, the neural
network provided reliable estimates (average relative
overlap of 0.82) of the bony regions. Furthermore, the
ANN proved to segment the structures in less than one-
tenth of the time (on average) required for a manual rater to
define these structures and only required the user to define
a bounding box around the entire finger. One specimen
(MD05042226L) demonstrated poor reliability, especially
of the distal phalange. Upon inspection, a bony growth was
clearly evident. This abnormality was not present on any of
the training images, and hence a portion of this bone
exceeded the bounds of the probability map. To reliably
apply the network to such pathological regions in the
future, additional training images would be required that
exhibit this condition.

In addition to providing a reliable and automated
estimate of the phalanx bones, the neural network also
generated a valid representation of the bone surface. When
compared with a three-dimensional surface scan of the
same specimen, the surface was on average the distance of
a voxel from the physical laser scan. The average distances
for the proximal, middle, and distal phalanges were
0.35 mm, 0.29 mm, and 0.40 mm respectively. We have
previously reported on the validation of manual raters to
define these regions compared with the physical laser scan
[38]. The average distances for the manual raters were 0.19,
0.20, and 0.21 mm for the proximal, middle, and distal
phalanges respectively. Orthopedic imaging provides a
unique opportunity to evaluate the validity of automated
segmentation algorithms since the bony regions of interest
can be extracted from cadaveric specimens and scanned
using a 3D surface scanner.

While the initial results are promising, we believe that
there is room for further improvement of the results,
allowing the neural network to provide the same reliability
as manual raters. The neural network parameter space has
not yet been fully explored. Several parameters such as the
smoothing of the probability map and the network
configuration (number of hidden nodes) could be tuned to
further improve these results. These issues will be explored
to optimize the network architecture for the segmentation of
orthopedic regions of interest. The training images for the
neural network should also include a wider subject
population that incorporates different pathologies. Ulti-

mately, the neural network should be able to discriminate
between fine differences in finger geometry regardless of
pathology. Expansion of this project will also attempt to
include segmentation from different imaging modalities
such as MRI. In addition, other artificial segmentation
algorithms such as support vector machines (SVM) will be
explored. The advantage of SVM algorithms is that only the
input features need to be selected. For this study, the ANN
architecture was chosen over other machine learning
algorithms such as SVM for two reasons. First, we have a
previous history of applying the ANN to segment regions
of the brain [17, 39]. Second, we have compared the
reliability of the ANN- and SVM-based segmentation
algorithms for segmentation of brain regions and have
found that the algorithms performed similarly, with the
ANN being faster for segmentation after the initial training
was completed [39]. By using automated methods such as
the ANN for segmentation, the likelihood of rater drift and
inter-rater variation is eliminated. Automated methods also
decrease the amount of time and manual effort required to
extract the data of interest. The prohibitive barrier of time
would no longer be an issue in 3D model development,
allowing patient-specific modeling to become a reality.
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