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Abstract This study shows the construction of a hazard

map for presumptive ground subsidence around abandoned

underground coal mines (AUCMs) at Samcheok City in

Korea using an artificial neural network, with a geographic

information system (GIS). To evaluate the factors

governing ground subsidence, an image database was

constructed from a topographical map, geological map,

mining tunnel map, global positioning system (GPS) data,

land use map, digital elevation model (DEM) data, and

borehole data. An attribute database was also constructed

by employing field investigations and reinforcement

working reports for the existing ground subsidence areas at

the study site. Seven major factors controlling ground

subsidence were determined from the probability analysis

of the existing ground subsidence area. Depth of drift from

the mining tunnel map, DEM and slope gradient obtained

from the topographical map, groundwater level and per-

meability from borehole data, geology and land use. These

factors were employed by with artificial neural networks to

analyze ground subsidence hazard. Each factor’s weight

was determined by the back-propagation training method.

Then the ground subsidence hazard indices were calculated

using the trained back-propagation weights, and the ground

subsidence hazard map was created by GIS. Ground sub-

sidence locations were used to verify results of the ground

subsidence hazard map and the verification results showed

96.06% accuracy. The verification results exhibited suffi-

cient agreement between the presumptive hazard map and

the existing data on ground subsidence area.
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Introduction

The occurrence of ground subsidence around abandoned

coal mine areas has recently become a serious social

problem in Korea, since almost all underground coal mines

have been abandoned, and few remain since 1989. How-

ever, the effort of quantitative assessment of predicted

ground subsidence areas is very few, especially in coal

mining areas where the structures of the geology and min-

ing are complex. For this reason, the purpose of the present

study was to assess and predict ground subsidence for

hazard mapping near an abandoned underground coal mines

(AUCMs) area using an artificial neural networks and GIS.

A method that predicts the probability of ground sub-

sidence empirically, within surprisingly narrow limits

considering the form of the input data, has been suggested

(Goel and Page 1982) using (1) the intact strength of the

rock, (2) the stress field, (3) the geological structure, (4) the

depth of the mining horizon, (5) the extent of the mined

area, and (6) the volume extracted per unit area of mining.

The National Coal Board has published a basic technique

to determine the estimated area influenced by ground

subsidence based on the height of the cavity, the width of
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the mined panel, and the angle of inclination of the coal

seam (National Coal Board 1975). The method used to

predict the subsidence area is dependent on the structure of

the local geology and the coal-mining method used, and the

empirical methods discussed above were developed for

conditions involving horizontal coal seams and longwall

working, which are predominant in Europe. However, in

Korea, due to the heterogeneous structure of the geology,

there are coal seams of various widths, and irregularly

inclined coal seams and strata, so the slant-chute block

caving method has been used. As a result, a sinkhole type

of subsidence is usual, and therefore a different estimation

of ground subsidence is necessary. Table 1 shows the

factors that commonly affect sink-hole-type ground subsi-

dence over time (Coal Industry Promotion Board 1997).

Furthermore, quantitative analysis of presumptive ground

subsidence near AUCMs in Korea has not been well

studied heretofore. However, Kim et al. (2006) have

studied using probabilistic and statistic model in GIS

environment. The fundamental difference of the study from

that of Kim et al. (2006) is to apply artificial neural net-

works in GIS environment.

When choosing a study area, field investigations and

reinforcement reports related to ground subsidence were

carefully assessed. In this study, a site called Magyori was

chosen, where 21 signs of ground subsidence have been

identified near an AUCM at Samcheok City (Coal Industry

Promotion Board 1999). The study site is located between

longitudes 129� 20 4000 and 129� 30 3000 and latitudes 37� 140

2600 and 37� 150 2400. The coal resource of South Korea

consists almost entirely of anthracite, 85% of which was

deposited during the Upper Paleozoic and the Lower

Mesozoic in the Jangseong Formation of the Pyeongan

Supergroup (The Geological Society of Korea 1999). The

Oship Fault, Youngdong railroad, and no. 38 local road

pass along the study area (Coal Industry Promotion Board

1997). The location map of this study site with ground

subsidence areas is given in Fig. 1.

Theory: artificial neural networks

An artificial neural network is a ‘‘computational mecha-

nism able to acquire, represent, and compute a mapping

from one multivariate space of information to another,

given a set of data representing that mapping’’ (Garrett

1994). The back-propagation training algorithm is the most

Table 1 Factors affect sink-hole type ground subsidence (Coal

Industry Promotion Board 1997)

Occurrence of ground

subsidence

Progress Ground

collapse

During time after abandoned mine

Mechanical character

of rock mass

Flow of ground water Depth of mining

Flow of ground water Structural geology Height of cavity

Structural geology

(joint, fault, dyke)

Rate of cubical expansion

Excavation method Rate of mining

Rate of excavation

Back filling
Fig. 1 Study area
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frequently used neural networks method (Lee et al. 2004;

Sonmez et al. 2006; Tunusluoglu et al. 2007; Zorlu et al.

2008; Nefeslioglu et al. 2008) and is the method used in

this study. The back-propagation training algorithm is

trained using a set of examples of associated input and

output values. The purpose of artificial neural networks is

to build a model of the data-generating process, so that the

networks can generalize and predict outputs from inputs

that it has not previously seen. This learning algorithm is

multi-layered neural networks, which consists of an input

layer, hidden layers, and an output layer. The hidden and

output layer neurons process their inputs by multiplying

each input by a corresponding weight, summing the prod-

uct, then processing the sum using a nonlinear transfer

function to produce a result. The artificial neural networks

‘‘learns’’ by adjusting the weights between the neurons in

response to the errors between the actual output values and

the target output values. At the end of this training phase,

the neural networks provide a model that should be able to

predict a target value from a given input value.

Paola and Schwengerdt (1995) indicated that there are

two stages involved in using neural networks for multi-

source classification: the training stage, in which the

internal weights are adjusted and the classifying stage.

Typically, the back-propagation algorithm trains the net-

works until some targeted minimal error is achieved

between the desired and actual output values of the net-

works. Once the training is complete, the networks are used

as a feed-forward structure to produce a classification for

the entire data (Paola and Schwengerdt 1995).

The neural networks consist of a number of intercon-

nected nodes. Each node is a simple processing element

that responds to the weighted inputs it receives from other

nodes. The arrangement of the nodes is referred to as the

networks architecture (Fig. 2). The receiving node sums

the weighted signals from all the nodes that it is connected

to in the preceding layer. Formally, the input that a single

node receives is weighted according to Eq. 1.

netj ¼
X

i

wij � oi ð1Þ

where wij represents the weights between nodes i and j, and

oi is the output from node j, given by

oj ¼ f ðnetjÞ: ð2Þ
The function f is usually a nonlinear sigmoid function

that is applied to the weighted sum of inputs before the

signal propagates to the next layer. One advantage of a

sigmoid function is that its derivative can be expressed in

terms of the function itself:

f 0ðnetjÞ ¼ f ðnetjÞð1� f ðnetjÞÞ: ð3Þ

The networks used in this study consisted of three

layers. The first layer is the input layer, where the nodes

were the elements of a feature vector. The second layer is

the internal or ‘‘hidden’’ layer. The third layer is the output

layer that presents the output data. Each node in the hidden

layer is interconnected to nodes in both the preceding and

following layers by weighted connections (Atkinson and

Tatnall 1997).

The error, E, for an input training pattern, d, is a func-

tion of the desired output vector, and the actual output

vector, o, given by:

E ¼ 1

2

X

k

ðdk � okÞ: ð4Þ

The error is propagated back through the neural

networks and is minimized by adjusting the weights

between layers. The weight adjustment is expressed as:

wijðnþ 1Þ ¼ gðdj � oiÞ þ aDwij ð5Þ

where g is the learning rate parameter (set to g = 0.01 in this

study), dj is an index of the rate of change of the error, and a is

the momentum parameter (set to a = 0.01 in this study).

The factor dj is dependent on the layer type. For

example,

for hidden layers; dj ¼ ð
X

dkwjkÞf 0ðnetjÞ ð6Þ

and for output layers; dj ¼ ðdk � okÞf 0ðnetkÞ: ð7Þ

This process of feeding forward signals and back-

propagating the error is repeated iteratively until the error

of the networks as a whole is minimized or reaches an

acceptable magnitude.

Using the back-propagation training algorithm, the

weights of each factor can be determined and may be used

for classification of data (input vectors) that the networks

have not seen before. Zhou (1999) described a method for

determining the weights using back propagation. From

Eq. 2, the effect of an output, oj, from a hidden layer node, j,

on the output, ok, from an output layer (node k) can be rep-

resented by the partial derivative of ok with respect to oj as

ook

ooj
¼ f 0ðnetkÞ �

oðnetkÞ
ooj

¼ f 0ðnetkÞ � wjk: ð8ÞFig. 2 Architecture of neural networks for ground subsidence hazard

analysis
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Equation (8) produces both positive and negative values. If

the effect’s magnitude is all that is of interest, then the

importance (weight) of node j relative to another node j0 in

the hidden layer may be calculated as the ratio of the

absolute values derived from Eq. 8:

ookj j
ooj

�� �� =
ookj j
ooj0

�� �� ¼
f 0ðnetkÞ � wjk

�� ��
f 0ðnetkÞ � wj0k

�� �� ¼
wjk

�� ��
wj0k

�� �� : ð9Þ

We should mention that wj0k is simply another weight in

wjk other than wik.

For a given node in the output layer, the results of Eq. 9

show that the relative importance of a node in the hidden

layer is proportional to the absolute value of the weight

connecting the node to the output layer. When the networks

consists of output layers with more than one node, then

Equation (9) cannot be used to compare the importance of

two nodes in the hidden layer.

wj0k ¼
1

J
�
XJ

j¼1

wjk

�� �� ð10Þ

tjk ¼
wjk

�� ��
1
J �
PJ

j¼1 wjk

�� �� ¼
J � wjk

�� ��
PJ

j¼1 wjk

�� �� ð11Þ

Therefore, with respect to node k, each node in the

hidden layer has a value that is greater or smaller than

unity, depending on whether it is more or less important,

respectively, than an average value. All the nodes in the

hidden layer have a total importance with respect to the

same node, given by

XJ

j¼1

tjk ¼ J: ð12Þ

Consequently, the overall importance of node j with

respect to all the nodes in the output layer can be calculated by

tj ¼
1

K
�
XK

j¼1

tjk: ð13Þ

Similarly, with respect to node j in the hidden layer, the

normalized importance of node j in the input layer can be

defined by

sij ¼
xij

�� ��
1
I �
PI

i¼1 xij

�� �� ¼
I � xij

�� ��
PI

i¼1 xij

�� �� : ð14Þ

The overall importance of node i with respect to the

hidden layer is

si ¼
1

J
�
XJ

j¼1

sij: ð15Þ

Correspondingly, the overall importance of input node i

with respect to output node k is given by

sti ¼
1

J
�
XJ

j¼1

sij � tj: ð16Þ

Data

Many studies have identified important factors that con-

tribute to ground subsidence around coal mines, including

(Coal Industry Promotion Board 1997; Waltham 1989):

depth and height of the mined cavities, excavation method,

degree of inclination of the excavation, scope of mining,

structural geology and flow of groundwater. Therefore, the

factors governing the occurrence of ground subsidence

were collected in a vector-type spatial database. These

included a 1:50,000 scale geological map, 1:5,000 scale

topographic maps, 1:5,000 scale land use maps, 1:1,200

scale mined-tunnel maps, and borehole data. Reliable

accuracy of spatial database is indispensable in GIS envi-

ronment. For this reason, accurate maps authorized by

Korean government agencies were collected even though

the scales of each map were different. The data layers are

shown in Table 2.

The geology data were extracted from a 1:50,000 scale

geological map of the Korea Institute of Geoscience and

Mineral Resources. Contour and survey base points with

elevation values read from the topographic map were

extracted, and a digital elevation model (DEM) was con-

structed. Using the DEM, the slope gradients were

calculated. There are 14 classes of land use, which were

extracted from the land use map of the National Geographic

Information Institute. Most of the literature (Goel and Page

1982; National Coal Board 1975; Waltham 1989) maintains

that the major factor in ground subsidence is the scope of the

mined cavities. Therefore, constructing a database of the

depths and widths of mined cavities was very important

during this study. To achieve this object, (1) GPS (ProMark2

GPS system, less than 10 mm static survey accuracy) mea-

surements were used to determine the exact positions of

mine heads; (2) these were used to vectorize a hard copy of

the mined tunnel map; and (3) the vectorized mined tunnel

map was converted to an ASCII grid file, and subtracted with

the DEM raster data. There were 35 boreholes at the study

site, but some boreholes did not have values, so an inverse

distance weighting (IDW) interpolation method was used to

contour groundwater levels, and permeability factors.

Method

This study was conducted using GIS, artificial neural

networks with factors that may cause ground subsidence.

An image database and an attribute database for ground
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subsidence were constructed. When using this approach the

principal assumption is that the potential ground subsi-

dence (occurrence possibility) will be similar to the actual

frequency of ground subsidence. After the study site was

selected, areas of ground subsidence were detected at the

study site by field surveys. A map of existing ground

subsidence was developed, and this was used to evaluate

the frequency and distribution of ground subsidence at the

study site.

For the study, first, maps relevant to ground subsidence

occurrence were used to construct a vector-type spatial

database using the GIS software package, ARC/INFO.

Second, ground subsidence occurrence areas were detected

in the study area by interpretation of field surveys. A map

of the ground subsidence locations were constructed to

spatial database using GIS. Third, for the calculation of the

weight, the ground subsidence factors were converted to

grid (ARC/INFO grid-type), and then converted to ASCII

data for use with an artificial neural networks program.

And the ASCII datasets were normalized between 0.1 and

0.9 since the value of sigmoid function used in artificial

neural networks varies from 0 to 1. Then, using detected

ground subsidence locations, the weights of each factor

were determined by neural networks method. The weight

of each factor was determined after training using artificial

neural networks program that was developed using MAT-

LAB (Demuth et al. 2005). For the weight determination

using the artificial neural networks, the location where the

ground subsidence occurred was assigned as a training area

and the artificial neural networks had been trained. When

the weights converged to a proper value, the weights were

determinate by back propagation between the neural net-

works layers. After then, the results of the analysis were

converted to grid data using the GIS. Finally, ground

subsidence hazard mapping was carried out using the

weight together in our study and the analytical results were

verified using the ground subsidence locations.

In this study, the GIS software ArcView 3.3 and ARC/

INFO version 9.0 were used as the basic analysis tools for

spatial management and data manipulation.

Prediction of ground subsidence using the artificial

neural networks

Figure 3 is the flowchart of the neural networks training for

the weight determination. The weights between layers that

acquired by training of the neural networks were calculated

reversely and the contribution or importance of each factor

was calculated. So, weights that are contribution or

importance of each factor were determined. For the cal-

culation of the weight, program developed by Hines (1997)

was used and for the interpretation of the weight, a newly

developed program was used.

The seven factors listed in Table 2 were used as the

input data. The factors were converted to a 1 9 1 m2 grid

and the total cell number was 2,102,594, and the ground

subsidence occurrence cell number was 10,369. Using GIS

software, a grid of 1,207 rows and 1,742 columns, with a

point spacing of 1 m, was used (Fig. 4).

The subsidence-prone (occurrence) locations and the

locations that were not prone to subsidence were selected

as training sites. Cells from each of the two classes were

randomly selected as training cells, with 3,000 cells

Table 2 Constructed GIS database including factors conneted with ground subsidence of study area

Category Factors Remark

Geology Geology Stratigraphic unit

Topography Slope Analyze slope by degree

Land use Land use 14 types of land use

Mining tunnel map Depth of drift DEM minus height above sea level of drift

Distance from drift 1 m interval buffering of drift

Boreholea Depth of groundwater IDW interpolated from bore holes, DEM minus groundwater level

Permeability IDW interpolated from bore holes

a 35 Boreholes from investigation in 1999, some boreholes do not have value of relating factors

Fig. 3 The flow chart of neural networks training for weight

determination
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Fig. 4 Input factors
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denoting areas where subsidence not occurred or occur-

red. First, areas where the subsidence was not occurred

were classified as ‘‘areas not prone to subsidence’’ and

areas where subsidence was known to exist were assigned

to an ‘‘areas prone to subsidence’’ training set. The

training sites were processed ten times to identify any

changes that might occur due to the assignment of ran-

dom initial weights.

Fig. 4 continued
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The back-propagation algorithm was then applied to

calculate the weights between the input layer and the

hidden layer, and between the hidden layer and the output

layer, by modifying the number of hidden node and the

learning rate. Three-layered feed-forward networks were

implemented using the MATLAB software package. Here,

‘‘feed-forward’’ denotes that the interconnections between

the layers propagate forward to the next layer. The number

of hidden layers and the number of nodes in a hidden layer

required for a particular classification problem are not easy

to deduce. In this study, a 7 9 15 9 1 structure was

selected for the networks, with input data normalized in the

range 0.1–0.9. The nominal and interval class group data

were converted to continuous values ranging between 0.1

and 0.9. Therefore, the continuous values were not ordinal

data, but nominal data, and the numbers denote the clas-

sification of the input data.

The learning rate was set to 0.01, and the initial weights

were randomly selected to values between 0.1 and 0.9. The

weights calculated from 10 test cases were compared to

determine whether the variation in the final weights was

dependent on the selection of the initial weights. The back-

propagation algorithm was used to minimize the error

between the predicted output values and the calculated

output values. The algorithm propagated the error back-

wards, and iteratively adjusted the weights. The number of

epochs was set to 5,000, and the root mean square error

(RMSE) value used for the stopping criterion was set to

0.1. Most of the training data sets met the 0.1 RMSE goal.

However, if the RMSE value was not achieved, then the

maximum number of iterations was terminated at 5,000

epochs. When the latter case occurred, then the maximum

RMSE value was\0.216. The final weights between layers

acquired during training of the neural networks and the

contribution or importance of each of the seven factors

used to predict ground subsidence hazard are shown in

Table 3. The results were not the same, as the initial

weights were assigned random values. Therefore, in this

study, the calculations were repeated ten times, to allow the

results to achieve similar values. The standard deviation of

the results was in the range 0.0153–0.0343, and therefore,

the random sampling did not have a large effect on the

results. For easy interpretation, the average values were

calculated, and these values were divided by the average of

the weights of the some factor that had a minimum value.

The slope value was the minimum value, 1.00, and the

depth of groundwater value was the maximum value,

2.0908. Finally, the weights were applied to the entire

study area, and the ground subsidence hazard map was

created (Fig. 5). The values were classified by equal areas

and grouped into four classes for visual interpretation.

Verification

The subsidence hazard analysis results were verified using

known ground subsidence locations. Verification was per-

formed by comparing the known ground subsidence

location data with the subsidence hazard map. Each factor

used and its frequency ratio were compared. Rate curves

were created and the areas under the curves were calculated

for two cases. The rate explains how well the model and

the factor predict the subsidence. To obtain the relative

rank for each prediction pattern, the calculated index val-

ues for all cells in the study area were sorted in descending

order. The ordered cell values were then divided into 100

classes, at accumulated 1% intervals. The rate verification

results appear as a line in Fig. 6. For example, the 90–

100% (10%) class of the study area where the subsidence

hazard index had a high rank could explain 91% of all

subsidence. The 80–100% (20%) class of the study area

where the subsidence hazard index had a high rank could

explain 95% of subsidence.

The area under the curve can quantitative estimate the

prediction accuracy. So, to compare the results quantita-

tively, the areas under the curves were recalculated as a

Table 3 Weights of each factor estimated by neural networks considered in this study

Run factors 1 2 3 4 5 6 7 8 9 10 Mean SD NWa

Geology 0.0818 0.1236 0.0921 0.1465 0.0942 0.1445 0.0776 0.0937 0.0895 0.1283 0.1072 0.0260 1.0577

Slope 0.0998 0.1178 0.0783 0.1311 0.0920 0.1337 0.1293 0.0938 0.0953 0.1055 0.1077 0.0192 1.0625

Land use 0.1286 0.1610 0.1793 0.1515 0.1585 0.1722 0.1794 0.1316 0.1525 0.1456 0.1560 0.0179 1.5397

Depth of drift 0.1174 0.0925 0.0960 0.1266 0.0848 0.1021 0.1124 0.0727 0.0770 0.1318 0.1013 0.0204 1.0000

Distance from drift 0.2237 0.1833 0.2362 0.1675 0.2486 0.1688 0.2144 0.2524 0.2452 0.1785 0.2119 0.0343 2.0908

Depth of ground water 0.1631 0.1414 0.1513 0.1337 0.1434 0.1135 0.1285 0.1627 0.1516 0.1326 0.1422 0.0157 1.4031

Permeability 0.1856 0.1803 0.1667 0.1433 0.1786 0.1652 0.1584 0.1930 0.1890 0.1777 0.1738 0.0153 1.7150

SD Standard deviation
a Normalized weight with respect to slope
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total area of 1, which means perfect prediction accuracy.

Therefore, the area under a curve can be used to assess the

prediction accuracy quantitatively. The area ratio was

0.9606, so we can say that the prediction accuracy is

96.06%.

Results and discussions

Ground subsidence is one the most hazardous event among

the artificial disasters. Government and research institu-

tions worldwide have attempted for years to assess

subsidence hazards and risks, and to show their spatial

distribution. In this study, a data mining approach to

identifying hazardous areas of subsidence using GIS shows

considerable promise. Ground subsidence map was con-

structed using artificial neural networks. This showed

prediction accuracy, 96.06%. Thus, the result showed very

high prediction accuracy. GIS data was used to efficiently

analyze the large volume of data, and the artificial neural

networks proved to be an effective tool to analyze ground

subsidence hazard.

The weights calculated from ten test cases were com-

pared to determine whether the variation in the final

weights was dependent on the selection of the initial

weights. The results show that the initial weights did not

have an influence on the final weight under the conditions

used.

As shown in Table 3, depth of groundwater, land use,

permeability and geology have relatively high weights to

analyze ground subsidence near AUCM. The surveyed

subsidence areas of this study are located around railroad,

road, and other facilities above a shallow mined tunnel.

Therefore, land use, geology and depth of the mined

tunnel are important factors, as well as the groundwater

level.

Correlation between the flow of groundwater and the

depth of mined tunnel is meaningful in this study.

Because the study area where depth of groundwater is

shallower than depth of mined tunnel shows that the area

has higher subsidence hazard index than the other areas.

And therefore, relative high weights for depth of

groundwater and permeability factor can be explained

here (Table 3).

The data on groundwater levels were obtained during

field surveys, without considering the amount of rainfall at

the time. However, it is a meaningful value and should be

considered in calculating the safety of a base rock.
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Fig. 5 Ground subsidence hazard map using artificial nueral

networks

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
um

m
ul

at
iv

e 
%

 o
f g

ro
un

d 
su

bs
id

en
ce

Ground subsidence hazard index rank(%)

Neural Network

Fig. 6 Cumulative frequency diagram showing ground subsidence

hazard rank occurring in cumulative percent of ground subsidence

occurrence

Environ Geol (2009) 58:61–70 69

123



References

Atkinson PM, Tatnall ARL (1997) Neural networks in remote

sensing. Int J Remote Sens 18:699–709

Coal Industry Promotion Board, CIPB (1997) A study on the

mechanism of subsidence over abandoned mine area and the

construction method of subsidence prevention. Coal Industry

Promoton Board, Seoul, 97–06, pp 1–67

Coal Industry Promotion Board, CIPB (1999) Fundamental investi-

gation report of the stability test for Gosari. Coal Industry

Promotion Board, Seoul, 99–06, pp 7–22

Demuth H, Beale M, Hagan M (2005) MATLAB version 7.3.0.267;

Neural network toolbox for use with Matlab, the Mathworks,

p 348

Garrett J (1994) Where and why artificial neural networks are

applicable in civil engineering. J Comput Civil Eng 8:129–130

Goel SC, Page CH (1982) An empirical method for predicting the

probability of Chimney Cave occurrence over a mining area. Int

J Rock Mech Min Sci Geomech Abstr 19:325–337

Kim KD, Lee S, Oh HJ, Choi JK, Won JS (2006) Assessment of

ground subsidence hazard near an abandoned underground coal

mine using GIS. Environ Geol 50:1183–1191

Hines JW (1997) Fuzzy and neural approaches in engineering. Wiley,

New York, p 209

Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and

application of the weights for landslide susceptibility mapping

using an artificial neural network. Eng Geol 71(3/4):289–302

Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on

the use of logistic regression and artificial neural networks with

different sampling strategies for the preparation of landslide

susceptibility maps. Eng Geol 97(3/4):171–191

National Coal Board (1975) Subsidence engineer’s handbook.

National Coal Board Mining Department, London, p 111

Paola JD, Schowengerdt RA (1995) A review and analysis of

backpropagation neural networks for classificatioin of remotely

sensed multi-spectral imagery. Int J Remote Sens 16:3033–3058

Sonmez H, Gokceoglu C, Kayabaşı A, Nefeslioğlu HA (2006)
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