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Abstract To prepare a landslide susceptibility map is

essential to identify hazardous regions, construct appropriate

mitigation facilities, and plan emergency measures for a

region prone to landslides triggered by rainfall. The con-

ventional mapping methods require much information about

past landslides records and contributing terrace and rainfall.

They also rely heavily on the quantity and quality of acces-

sible information and subjectively of the map builder. This

paper contributes to a systematic and quantitative assessment

of mapping landslide hazards over a region. Geographical

Information System is implemented to retrieve relevant

parameters from data layers, including the spatial distribu-

tion of transient fluid pressures, which is estimated using the

TRIGRS program. The factor of safety of each pixel in the

study region is calculated analytically. Monte Carlo simu-

lation of random variables is conducted to process the

estimation of fluid pressure and factor of safety for multiple

times. The failure probability of each pixel is thus estimated.

These procedures of mapping landslide potential are dem-

onstrated in a case history. The analysis results reveal a

positive correlation between landslide probability and

accumulated rainfall. This approach gives simulation results

compared to field records. The location and size of actual

landslide are well predicted. An explanation for some of the

inconsistencies is also provided to emphasize the importance

of site information on the accuracy of mapping results.

Keywords Landslide � Rainfall � Mapping � Probability �
Fluid pressure

List of symbols

c0 effective cohesion

D index parameter for simulation accuracy
�D normalized, d

Do diffusivity

FS factor of safety

I indicator function

IRsim; i
simulated reliability of pixel i

Iz initial infiltration rate

Kz conductivity

Nrealization number of realizations

PF failure probability

u fluid pressure

Z sliding depth

a slope angle

/0 effective friction angle

Introduction

Rainfall-triggered landslides are a recurring problem in

Taiwan. They cause traffic disruption and economic dam-

age or even claim catastrophic losses of human life.

Therefore assessment of landslide susceptibility in specific

areas is an important issue. A rational regional mapping for

the susceptibility of rainfall-triggered landslides is espe-

cially necessary to provide information for the hazard

reduction and community development, such as mitigation

facilities, warning systems, regulation and management of

land use, etc.

Landslide susceptibility zoning maps have been pre-

pared using different methods, which can be grouped into

statistical and analytical approaches. The statistical

approach can be further divided into qualitative and
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quantitative analyses. In qualitative analysis methods, such

as the index method or the weighting method (Anbalagan

and Singh 1996; Gupta and Anbalagan 1997; Saha et al.

2002; Ayalew et al. 2004), the various parameters and the

relative significance of one parameter against another to the

landslide are assigned by the users. The landslide potential

is classified according to combination of these indices and

weights. Therefore, qualitative methods have the disad-

vantage of subjectivity in assigning of indexes and weights

based on the experience of experts. In quantitative analysis,

the historical and observational data for landslides are

collected as the dependent factors while several key vari-

ables contributing to these landslides are independent

factors. Various statistical methods, such as bivariate

analysis, multivariate statistical analysis (Carrara et al.

1991; He et al. 2003), or neural networks (Arora et al.

2004), have been employed. They are used to derive

quantitative relationships between dependent and inde-

pendent variables using linear or nonlinear models. The

application of a quantitative approach provides objectivity

over qualitative analysis. However, sufficient and accurate

information about the landslide and contributing parame-

ters are needed to construct this model. For example,

Western et al. (2006) present concerns about the quality

and quantity of landslide information for the generation of

hazard zonation maps since such data are often limited in

extent, imperfect or have variable quality. Thus the map-

ping results based on such data may lead to unreliable

results. The analytical approach is usually conducted

through slope stability analysis. The factor of safety of

each pixel is calculated and combined together to map the

distribution of severity for landslide hazards in the study

region. For example, Luzi and Pergalani (1996), Pack et al.

(1998), and Zhou et al. (2003) used infinite slope analysis

and the ordinary slice method to generate slope stability

maps for Italy, Canada, and Japan, respectively. On the

other hand, some researchers build landslide hazard map

probabilistically. For example, Coe et al. (2000) used

Poisson probability model to analyze historical records of

landslides for estimating the statistical properties of each

pixel to build the landslide potential map. Chit et al. (2004)

used historical landslides and rainfall data to estimate the

annual probability of a 15-day accumulated rainfall

exceeding the threshold value triggering a landslide. Zhou

et al. (2003) considered the uncertainties in the soil

strength properties to perform probabilistic analysis for

potential slope failures.

There are many sources of uncertainty associated with

mapping landslide susceptibility. For example, the accu-

racy of information about past landslides and contributing

parameters (elevation, slope angle, aspect, rainfall, etc)

for the statistical approach is significantly dependent on

the precision and version of remote sensing results. The

parameters (strength properties, pore water pressure, failure

surface, etc) applied in an analytical approach for esti-

mating the factor of safety for slopes are also inherently

spatially heterogeneous. Thus, the quality and quantity of

available data affect the exactness of generated landslide

hazard map. A deterministic map showing the spatial dis-

tribution of level (class, or factor of safety, etc) of landslide

hazard is not sufficient to consider these uncertainties. For

showing landslide occurrence potential (or probability), it

is more appropriate to use a map that includes the spatial

and temporal uncertainties of the data used for the map

generation. The goal of this study is to conduct probabi-

listic analysis to evaluate the probability of landslide

occurrence triggered primarily by rainfall. In this paper, the

analysis procedures include the application of analytical

method, calculation of factor of safety, conduction of

Monte Carlo simulation, evaluation of slope failure prob-

ability, and generation of hazard map. The landslide

susceptibility map of a case site is built to demonstrate the

manipulation of proposed methodology.

Methodology

The approach of mapping regional landslide hazards begins

by calculating the factor of safety of each pixel. The Monte

Carlo method is incorporated in the calculation of factor of

safety by multiple simulations until the failure probability

of each pixel is obtained. The simulation process of eval-

uating the failure probability of each pixel in the study

region is flow charted in Fig. 1. The details of perform-

ing stability analysis and simulation are presented in this

section.

Mapping factor of safety using TRIGRS

Transient rainfall infiltration and grid-based regional slope-

stability (TRIGRS), developed by the USGS (Baum et al.

2002), is a Fortran program to estimate the spatial and

temporal distribution for the factors of safety over a study

region. TRIGRS uses the simplified analytical solution of

Richard’s equation developed by Iverson (2000) to calcu-

late the fluid pressure distribution within a slope during

rainfall. The total fluid pressure, u, is superimposed by

steady and transient pressures. In TRIGRS the study region

is divided into multiple square pixels, which are indepen-

dent from each other. The factor of safety for each pixel is

calculated using the infinite slope method. The factors of

safety for all pixels are combined to present a spatial dis-

tribution of the factors of safety over the study region.

TRIGRS also has features to include a heterogeneous dis-

tribution of mechanical and hydrological properties, and to
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calculate spatial and temporal distribution of fluid pressure

within the slope. With these features, it is becoming a

popular numerical code for rainfall-induced landslide

hazard mapping. For example, Baum et al. (2005) used

TRIGRS to study the temporal correlation of factor of

safety, pore water pressure, failure time and rainfall dura-

tion of a failure case in Seattle. Similarly, Chen et al.

(2005) also used TRIGRS to generate a spatial landslide

susceptibility map of Tienliao in Taiwan.

Monte Carlo simulation of slope failure probability

The factor of safety is an index of the level of stability. The

intent of a factor of safety is to account for uncertainty in

design and analysis. Uncertainty in a factor of safety arises

from uncertainty in the individual variables. The sources of

uncertainties include shear strength (c0, /0), the fluid

pressure (u), the unit weight of soil (c), slope angle (a), and

sliding depth (Z). Furthermore, the uncertainty in fluid

pressure comes from uncertainties in conductivity (Kz),

diffusivity (Do), and initial infiltration rate (Iz). Therefore,

the actual landslide reliability is not known from a deter-

ministic value due to uncertainty in the calculation of

factor of safety.

Monte Carlo simulation repeatedly samples values from

the probability distributions for the uncertain variables then

puts them into a model to calculate the corresponding

outcome. It is a useful tool to approximate the probability

when the analytical results are difficult to obtain. For

example, Liu and Chen (2006) applied it to simulate the

spatial distribution of CPT measurement to map the liq-

uefaction potential over Yuanlin town in Taiwan. Monte

Carlo simulation is also popular for mapping slope stabil-

ity. For example, Zhou et al. (2003) used it to simulate the

strength parameters to build a map of landslide probability.

Wang et al. (2006) used 3D slope-stability analysis models

and Monte Carlo simulation to identify the locations of

potential landslides.

In this analysis, the Monte Carlo simulation technique is

implemented into the TRIGRS program. The mean value

and variance of random variables of each element are input

to form a specific probability distribution. The information

of mean value and standard deviation is to provide both the

most possible value of a variable and its variation. Ran-

domly sampled values from these probability distributions

along with deterministic variables are input into TRIGRS

to calculate the fluid pressures as a function of time and

location, while the factor of safety of each pixel corre-

sponding to these parameters is calculated in the infinite

slope approach. The procedures for generating random

numbers, calculation of fluid pressures, and evaluation of

factor of safety, are repeated many times in one set of

Monte-Carlo simulations. The failure probability for pixel

i, PF,i, is calculated from the simulation results as follows:

PF;i ¼
XNrealization

j¼1

Ij

 !
=Nrealization ð1Þ

where Nrealization is the number of realizations conducted; Ij

is an indicator function with a value of 1.0 if the factor of

safety is smaller than unity and a value of 0.0 otherwise.

Landslide susceptibility map: case study

Route Nantou 71 is in the central Taiwan. The section

between the WuJai tribe and Fachi village (Fig. 2) suffered

severe damage due to landslide during Typhoon Toraji on

30/07/2001. The hourly rainfall histogram along with

accumulated rainfall of this storm is shown in Fig. 3. The

landslides in that section were characterized as shallow,

planar slope failure. The landslide susceptibility of this

region corresponding to this storm event will be mapped

using the approach proposed in this study. The study area

Start analysis 
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properties of pixel 

rainfallTRIGRS
analysis 

Random generation of 
engineering properties 

Geometry of 
pixel

Factor of 
safety of pixel 

simulate 
N times 

Obtain indicator function
value (I) of pixel 

Calculation failure 
probability (PF) of pixel 

Collect failure probability of 
each pixel to generate PF map 

Fig. 1 The process of building the regional failure probability map in

the study
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covers a region of about 1 km2 (1,120 m · 720 m).

According to the geological map provided by the Central

Geological Survey, this area is composed of Chiayuan

formations. The regional geological context is not com-

plex. Field observations and investigation borehole logs

reveal that the site is overlain by weathered residual,soil,

which is derived from strong weathering process. Imme-

diately underneath this loose compacted residual soil are

colluvium deposits and less weathered slates mixed with

sandstone and siltstone. The colluvium originated from the

previous landslides. This layer is underlain by fresh,

unweathered rock formations. The terrain map of this study

region is shown in Fig. 2, indicating that hillslopes in the

study area are moderate to steep.

Preparing data for analysis

Several investigations were done to collect the soil prop-

erties, hydrologic and geological information. After the

landslides occurred on 30/07/2001, a total of 21 geotech-

nical investigation boreholes were drilled and 5 reflection

seismic surveys along 5 profiles (total length is 460 m)

were conducted for site exploration. The locations of

investigation boreholes and profiles are shown in Fig. 2.

Data from investigation boreholes confirms the geological

stratification of the study region is composed of topsoil,

colluvium and weathering layer, and rock. The topsoils and

weathered layer deposits on the rock surface to varying

thickness, generally between 1 and 16 m. The soil speci-

mens sampled from different depths of each borehole were

brought back to laboratory for direct shear testing to esti-

mate the shear strength parameters (c0 and /0). There were

21 specimens each for topsoil, colluvium and weathering

layer, and rock layer. The mechanical test results are shown

in Table 1. It can be noted there is some variation in the

test results, especially for the colluvium and weathering

layers. This variation was attributed to heterogeneity in the

colluvium, and this variation has also been reported by

others (Luzi and Pergalani 1996; Duncan 2000; Thurner

and Schweiger 2000; Refice and Capolongo 2002; Zhou

et al. 2003). The reported coefficients of variation (cov) in

the unit weight, friction angle, and cohesion are 3–7, 2–20,

and 5–30%, respectively.

Despite some variation in the test results, they indicate

the unweathered rock formation is stronger than the top-

soils, weathering rock and colluvium. It is reasonable to

assume a failure triggered by rainfall would be located

within the weaker, more permeable stratifications. The

location of interface between fresh rock and the overlying

loosely packed layers at the site investigation (including

boreholes and reflection seismic tests) site was identified

based on the exploration profiles. These depths were

interpolated to prepare the spatial distribution of fresh rock

surface. Because the study region is very mountainous (as

shown in Fig. 2), the interpolated profile of the rock sur-

face presented some unreasonable results, such as the

elevation of rock surface being above the ground surface.
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This happened mostly at locations far from the site inves-

tigation points, i.e., far away from the reference points.

This defect was corrected, according to the approach pre-

sented in Chen et al. (2005), by adding some reference

points located at hilltops. The thickness of topsoil and

colluvium at these modifying points were assumed to be

small since the loosely packed soil material tends to slide

down from slope top. The thickness of loosely packed soil

layers was calculated as the difference of the elevation

between ground surface and rock surface. Figure 4 shows a

map of the estimated thickness of loosely packed soil layer

over the study region. About 90% of the slopes had a

sliding thickness less than 6 m. That is, most of the slopes

can be characterized with pattern of shallow slope failure.

The groundwater table was observed from 11 monitor-

ing wells (adopted from some boring holes) over 1 year.

The long-term observation data showed the ground water

table was usually between 25 and 39 m below the ground

surface, which is much deeper than the potential sliding

surface. This indicates the long-term ground water table

(i.e., steady fluid pressure) has no adverse influence on the

shallow slope stability discussed in this study. However,

perching water is expected to form during a heavy rainfall

on the interface of a permeable loosely packed soil layer

and the underlying rock that is more intact and less per-

meable. This perching water adds fluid pressure to the

potential sliding surface. It responds purely to the infiltra-

tion and its effect is transient. Therefore, only the transient

fluid pressure calculated using TRIGRS will influence the

stability analysis of infinite slope. For simplicity, the

groundwater table was assumed to be located at the same

level as the elevation between ground surface and rock

surface.

The hydrological parameters (conductivity Kz, diffu-

sivity Do, and initial infiltration rate Iz) are important

factors affecting the transient fluid pressure. The values of

hydraulic conductivity and diffusivity for colluvium and

weathered soil layer collected from the literature are listed

in Table 2. The hydraulic conductivity ranges between

1.2 · 10–6 and 1 · 10–3 since it is dependent on the size

and percentage of voids, fine content, soil density, etc.

These properties substantially differ from sample to sample

and are site specific. Therefore the range of hydraulic

conductivity listed in Table 2 is wide. Besides, because of

the very complex composition of soil particles, it is diffi-

cult to retrieve a representative sample from a very

heterogeneous field. Thus it is not easy to conduct a sat-

isfactory permeability test on colluvium, even for different

soils sampled from the same site. For example, as shown in

Table 2, the cov in the hydraulic conductivity reported by

Gui et al. (2000) and by Montgomery et al. (2002) is 31 and

76%, respectively. The reported diffusivity values also

range widely, between 1 · 10–2 and 5 · 10–5. In this study,

it is observed that the value of diffusivity is about 10–

500 times the value of hydraulic conductivity, and so the

Do value is assumed to be 200 times the Kz of soil. Ref-

erences to initial infiltration (Iz) rate are scarce in the

literature. Generally, the concept is that this parameter

describes the soil moisture condition. If the soil is satu-

rated, it can be assumed to be the same as hydraulic

conductivity, while this value can be 0 for the soil in a very

arid region. However, the discrepancy is still significant in

defining its value even for regions with similar climates.

For example, Zhou et al. (2003) set this value to be 0 for a

slope in Hong Kong while Chen et al. (2005) set this value

as the hydraulic conductivity for a case study in Taiwan.

The rainfall record of the WuJai station showed there was

not much rain before Typhoon Toraji (130 mm for the

Table 1 Mechanical properties of geological stratification

Type Unit weight (kN/m3) c0 (kPa) /0 (�)

Top soil 19.8–20.4 0–20 25

Colluvium and

weathering layer

20.4–26.1 20–98 25–40

Rock 26.1–26.8 294 25
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preceding 40 days) so the soil was probably dry at the

beginning of rainfall. Therefore the Iz can reasonably be

assumed to be 0.01 of the Kz for soil in this study. These

hydrological parameters are assumed to be uniform and

homogeneous within the loosely packed soil layer above

the sliding surface. The spatial and temporal distribution of

transient fluid pressure corresponding to the rainfall event

of Typhoon Toraji (Fig. 3) was calculated using the

TRIGRS program for further slope stability analysis.

To prepare the landslide susceptibility map, the study

region was divided into pixels. The study area is meshed

into 8,064 pixels for landslide potential mapping. The

dimension of each pixel is 10 m (length) · 10 m (width).

The data layers of potential sliding depth and fluid pres-

sure, as described in the previous paragraphs, were

prepared for the GIS system to capture values for each

pixel. Digital elevation model data were used to lay out the

topographical parameters. For more accurate calculations,

the original 40 m · 40 m digital elevation model (DEM)

published by the Agriculture and Forestry Aerial Survey

Institute in 1994 was refined to 10 m · 10 m by using the

inverse distance weighting (IDW) model that is embedded

in Arcview 3.2.

The attributes and statistical properties of parameters

input for analysis are listed in Table 3. The shear strength

parameters (c0, /0) and soil unit weight (c were treated as

normally distributed random variables (Lumb 1966). The

hydraulic conductivity (Kz) was treated as lognormally

distributed random variables (Freeze 1975; Hoeksema and

Kitanidis 1985; Sudicky 1986; Yang et al. 1996). As

described in the previous section, initial infiltration rate (Iz)

and diffusivity (Do) were assumed to be 0.01 and 200 of

Kz. Therefore their probabilistic distributions were also

log–normal. The slope angle and sliding surface were

assumed to be deterministic but not homogeneous. Since

they were spatially distributed over the study region, the

potential failure surface and slope angle were different for

each pixel. These values were captured from data layers

(Figs. 4, 5) by using a GIS system. Though the statistical

properties of each parameter listed in Table 3 refer to the

test results, site investigation results, and information col-

lected from previous researches, it is noteworthy that

certain extent of uncertainty exist in these parameters

because of the insufficiency, subjective judgment or even

errors in the process of data preparation. The effects of

these design parameters on the landslide susceptibility will

be discussed later.

Mapping slope failure susceptibility over study region

Following the procedures presented in Fig. 1, randomly

generated numbers were assigned into the cumulative

density function of c0, /0, c, and Kz to generate the values

for these random variables and corresponding Iz and Do

variables. These hydrological parameters along with the

topographical data of each pixel, and the hourly rainfall

histogram recorded in WuJai station (Fig. 3) were input

into the TRIGRS program to simulate the resultant spatial

distribution of transient fluid pressure. The infinite slope

method imbedded in TRIGRS was used to calculate the

factor of safety of landslide of each pixel for this realiza-

tion. The simulated statistical estimators of four random

variables, c0, /0, c, and Kz for different number of simu-

lations (N) are compared with the input statistical

properties. The results show that 2,000 simulations are

appropriate for the N value in this analysis. Therefore the

above procedures for evaluating factor of safety in all

pixels were repeated for 2,000 realizations. The 2,000

factors of safety of each pixel were collected to calculate

the failure potential by using Eq. 1. It should be noted the

temporal distribution of temporal fluid pressure can be

estimated, so the calculation of landslide potential of study

area during rainfall is also feasible.

Table 2 Ranges of hydraulic conductivity and diffusivity for collu-

vium and weathered soil layer

Reference Hydraulic

conductivity

[cov] (m/s)

Diffusivity

(m2/s)

Gui et al. (2000) 2.9 · 10–6 [31%] –

Iverson (2000) 1 · 10–4 1 · 10–3

Montgomery et al. (2002) 1 · 10–4 [76%] –

Lancaster et al. (2002) 1 · 10–3–1 · 10–4 3.2 · 10–3

D’Odorico et al. (2005) 1 · 10–5 1 · 10–3

Lan et al. (2005) 1.5 · 10–4–1.2 · 10–6 7 · 10–2–6 · 10–4

Baum et al. (2005) 1 · 10–5–5 · 10–5 1 · 10–4–5 · 10–5

Chen at al. (2005) 1 · 10–4–1 · 10–5 1 · 10–2

Table 3 Characteristic of design parameters in this study

Parameter (unit) Type Mean

value

Cov

(%)

Cohesion, c0 (kPa) Normal 24.5 7

Friction angle, /0 (kPa) Normal 30 18

Soil unit weight, c (kN/m3) Normal 19.6 2.5

Hydraulic conductivity, Kz (m/s) Log–normal 10–4 74

Initial infiltration rate, Iz (m/s) Log–normal 0.01 Kz –

Diffusivity, Do (m2/s) Log–normal 200 Kz –

Sliding surface, Z (m) Deterministic Fig. 4

Slope angle, a (�) Deterministic Fig. 5 –
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The failure probability over the study region corre-

sponding to 0, 5, 10, 15, 20, and 25 h subsequent to the

initiation (2001/07/29/1500) of the Typhoon Toraji rainfall

event is shown in Fig. 6. It shows the initial state of this

region is generally stable. The area ratios for failure

probability (PF) smaller than 10%, between 10 and 50%,

and larger than 50%, are about 93, 4, and 3%, respectively.

As the rainfall begins, landslide susceptibility begins to

increase. The area ratio for very stable (PF\ 10%) pixels

decreases while the area ratio for unstable pixels increases.

The increase of area ratio is more significant for the pixels

of higher failure potential. For example, after 15 h of

rainfall, the area ratios for failure probability between 50

and 90%, and larger than 90%, increase by 4 and 6%,

respectively. The average failure probability over the

whole study region was calculated and plotted versus the

rainfall histogram (Fig. 3) to show the positive correlation

between accumulated rainfall and failure susceptibility.

This trend changes 15 h after the initiation of rainfall. The

decreased failure probability results from the decrease

of transient fluid pressure after most of the intense rainfall

had occurred during the 15 h span. The landslide potential

map of 0 and 15 h after rainfall are shown in Fig. 7 to

illustrate the comparison of landslide potential suscepti-

bility between the status prior to the rainfall and the most

critical status triggered by the rainfall.

The landslide potential map at 15 h after rainfall initi-

ation is compared with the field records of landslides

triggered by this rainfall event (Fig. 8). It shows that

locations of clusters of higher landslide potential are

comparable to the location and shape of the observed

landslide phenomena after Typhoon Toraji. The average

landslide probability for the 911 pixels in which a landslide

did occur is 48.4%, while it is only 8.8% for the

7,153 pixels in which a landslide did not occur. To quan-

titatively compare the simulated landslide potential, an

index parameter D is introduced. D is defined as the total

least square of the difference between the simulated land-

slide potential and the observed landslide phenomena

(Fig. 8):

D ¼
Xn

i¼1

IRsim; i
� IRobs; i

� �2 ð2Þ

where IRsim; i
is the simulated reliability of pixel i, and IRobs; i

is the observed reliability of pixel i. Corresponding to the

field observed phenomena at grid I, IRobs; i
is set to be zero

and 1.0, respectively. The D value can be normalized as �D
by the number of pixels (n). A smaller �D value indicates

that the simulated landslide potential distribution compares

better with field observation, and vice versa. The �D values

for the landslide probability map corresponding to 15 h

after the initiation of rainfall is 0.04. This value quantita-

tively indicates the mapping results compare very well with

field observations.

Discussion and conclusions

This paper provides a practical approach for mapping land-

slide susceptibility of each pixel in an area. Compared with

the defects of subjectivity embedded in qualitative approa-

ches and the imperfect or limited historical landslide data in

quantitative approaches, this approach is based on solid

consideration of analytical analysis. The study region was

meshed into pixels and the important random parameters

were simulated according to their statistical characteristics.

The temporal and spatial distribution of transient fluid

pressure was evaluated using Richard’s equation by syn-

thesizing the information on hydrological parameters,

topography, and rainfall data. The factor of safety of each

pixel is calculated by using the infinite slope method with the

inputs of fluid pressure, strength parameters, and geometrical

data. Monte Carlo simulation is implemented into the

TRIGRS program to conduct multiple simulations of factor

of safety and thus to evaluate the corresponding failure
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probability. A case history of landslides actually triggered by

Typhoon Toraji in Taiwan was used to demonstrate how to

manipulate the approach. It shows the landslide probability

over the study region increasing with the accumulation of

rainfall. The simulated potential map is generally compara-

ble to the field observations. The landslide probability map

built in this study is superior to the map built by using a factor

of safety approach in the following aspects: (1) it gives more

detailed information regarding locations and potential for

landslides (2) it consider uncertainty in the parameters con-

tributing to a landslide, and (3) it provides the failure

probability to do quantitative analysis of reliability-based
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risk evaluation and decision-making for mitigation and

emergency measures.

There are two main limitations in the approach proposed

in this study. Firstly, significant changes may have occur-

red to the terrain because some slopes on this site are prone

to be unstable. Therefore the precision of available aerial

photos and digital elevation model are of questionable. The

second limitation is the justification of infinite slope

assumption. It is noteworthy the proposed approach is

valuable only when updated remote sensing maps can be

applied on appropriate sites which satisfy the characteris-

tics of infinite slope.

References

Anbalagan R, Singh B (1996) Landslide hazard and risk assessment

mapping of mountainous terrains—a case study from Kumaun

Himalaya, India. Eng Geol 43:237–246

Arora MK, Das Gupta AS, Gupta RP (2004) An artificial neural

network approach for landslide hazard zonation in the Bhagirathi

(Ganga) Valley, Himalayas. Int J Remote Sens 25:559–572

Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility

mapping using GIS-based weighted linear combination, the case

in Tsugawa area of Agano River, Niigata Prefecture, Japan.

Landslides 1:73–81

Baum RL, Savage WZ, Godt JW (2002) TRIGRS—a Fortran program

for transient rainfall infiltration and grid-based regional slope-

stability analysis. In: U.S. geological survey open-file report 02–

424

Baum RL, Coe JA, Godt JW, Harp EL, Reid ME, Savage WZ, Schulz

WH, Brien DL, Chleborad AF, McKenna JP, Michael JA (2005)

Regional landslide-hazard assessment for Seattle, Washington,

USA. Landslides 2(4):266–279

Carrara AM, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach

P (1991) GIS techniques and statistical models in evaluating

landslide hazard. Earth Surf Process Landforms 16:427–445

Chen CY, Chen TC, Yu FC, Lin SC (2005) Analysis of time-varying

rainfall infiltration induced landslide. Environ Geol 48:466–479

Chit KK, Flentje P, Chowdhury R (2004) Interpretation of probability

of landsliding triggered by rainfall. Landslides 1:263–275

Coe JA, Michael JA, Crovelli RA, Savage WZ (2000) Preliminary

map showing landslide densities, mean recurrence intervals, and

exceedance probabilities as determined from historic records,

Seattle, Washington. In: USGS open-file report 00-303, on-line

edition

D’Odorico P, Fagherazzi S, Rigon R (2005) Potential for landsliding:

Dependence on hyetograph characteristics. J Geophys Res

110:F01007. doi:10.1029/2004JF000127

Duncan JM (2000) Factors of safety and reliability in geotechnical

engineering. J Geotech Geoenviron Eng 126:307–316

Freeze RA (1975) A stochastic-conceptual analysis of one-dimen-

sional groundwater flow in nonuniform homogeneous media.

Water Resour Res 11:725–741

Gui SX, Zhang R, John PT (2000) Probabilistic slope stability

analysis with stochastic soil hydraulic conductivity. J Geotech

Geoenviron Eng 126:1–9

Gupta P, Anbalagan R (1997) Slope stability of Tehri Dam reservoir

area, India, using landslide hazard zonation (LHZ) mapping. Eng

Geol 30:27–36

He YP, Xie AH, Cui AP, Wei AFQ, Zhong ADL, Gardner AJS (2003)

GIS-based hazard mapping and zonation of debris flows in

Xiaojiang Basin, southwestern China. Environ Geol 45:286–293

Hoeksema RJ, Kitanidis PK (1985) Analysis of the spatial structure of

properties of selected aquifers. Water Resour Res 21:563–572

Iverson RM (2000) Landslide triggering by rain infiltration. Water

Resour Res 36:1897–1910

Lan HX, Lee CF, Zhou CH, Martin CD (2005) Dynamic character-

istics analysis of shallow landslides in response to rainfall event

using GIS. Environ Geol 47:254–267

Lancaster ST, Hayes SK, Grant GE (2002) Modeling sediment and

wood storage and dynamics in small mountainous watersheds.

Geomorphic Processes Riverine Habitat Water Sci Appl 4:85–

102

Liu CN, Chen JH (2006) Mapping liquefaction potential considering

spatial correlations of CPT measurements. J Geotech Geoenvi-

ron Eng 132:1178–1187

Lumb P (1966) The variability of natural soils. Can Geotech J 3:74–

97

Luzi L, Pergalani F (1996) Applications of statistical and GIS

techniques to slope instability zonation (1:50000 Fabriano

geological map sheet). Soil Dyn Earthquake Eng 15:83–94

Montgomery DR, Dietrich WE, Heffne JT (2002) Piezometric

response in shallow bedrock at CB1:Implications for runoff

generation and landsliding. Water Resour Res 38(12):1274. doi:

10.1029/2002WR001429

Pack RT, Tarboton DG, Goodwin CN (1998) The SINMAP approach

to terrain stability mapping. In: Proceedings of 8th congress of

the international association of engineering geology, pp 1157–

1165

Refice A, Capolongo D (2002) Probabilistic modeling of uncertainties

in earthquake-induced landslide hazard assessment. Comput

Geosci 28:735–749

Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard

zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J

Remote Sens 23:357–369

Sudicky EA (1986) A natural gradient experiment on solute transport

in a sand aquifer: spatial variability of hydraulic conductivity

and its role in the dispersion process. Water Resour Res

22:2069–2083

Thurner R, Schweiger HF (2000) Reliability analysis for geotechnical

problems via finite elements—a practical application. Extended

Abstracts Int Conf Geotech and Geol Eng Aust Melbourne

11:1–6

Wang C, Esaki T, Xie M, Qiu C (2006) Landslide and debris-flow

hazard analysis and prediction using GIS in Minamata–Hou-

gawachi area, Japan. Environ Geol 51:91–102

Western van CJ, Asch van TWJ, Soeters R (2006) Landslide hazard

and risk zonation—why is it still so difficult?. Bull Eng Geol

Environ 65:167–184

Yang J, Zhang R, Wu J, Allen MB (1996) Stochastic analysis of

adsorbing solute transport in two-dimensional unsaturated soil.

Water Resour Res 32:2747–2756

Zhou G, Esaki T, Mitani Y, Xie M, Mori J (2003) Spatial probabilitic

modeling of slope failure using an integrated GIS Monte Carlo

simulation approach. Eng Geol 68:373–386

Environ Geol (2008) 55:907–915 915

123

http://dx.doi.org/10.1029/2004JF000127
http://dx.doi.org/10.1029/2002WR001429

	Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach
	Abstract
	Introduction
	Methodology
	Mapping factor of safety using TRIGRS
	Monte Carlo simulation of slope failure probability

	Landslide susceptibility map: case study
	Preparing data for analysis
	Mapping slope failure susceptibility over study region

	Discussion and conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


