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Abstract In this paper, a simple, effective drought

monitoring method is developed using two dimensional

spectral space obtained from reflectance of near-infra-

red (NIR) and Red wavelengths. First, NIR–Red

reflectance space is established using atmospheric and

geometric corrected ETM+ data, which is manifested by

a triangle shape and in which different surface targets

possess certain spatial distribution rules. Second,

perpendicular drought index (PDI) is developed on the

basis of spatial characteristics of moisture distribution in

NIR–Red space, as well as the relationships between

PDI and soil moisture is examined. Validation work

includes: comparison of PDI with in-situ drought index

obtained from field measured data in the study area

which includes bulk soil moisture content at different

soil depths, field moisture capacity and wilting coeffi-

cient, etc.; and comparison of PDI with other recognized

drought monitoring methods such as LST/NDVI and

vegetation temperature condition index (VTCI). It is

evident from the results that graph of PDI of field

measured plots demonstrates very similar trends

with ground truth drought data, LST/NDVI and VTCI.

PDI is highly correlated with in-situ drought values

calculated from 0 to 20 cm mean soil moisture with

correlation coefficients of R2 = 0.49 (r = 0.75). This

paper concludes that PDI has a potential in remote

estimation of drought phenomenon as a simple, effec-

tive drought monitoring index.

Keywords NIR–Red spectral space � Perpendicular

drought index (PDI) � Drought monitoring

Introduction

Drought may be described as a chronic, potential

natural disaster characterized by prolonged and

abnormal water shortage. During the last few decades,

a good variety of drought monitoring models have

been invented, for example, the Palmer drought

severity index (PDSI) (Palmer 1965), the rainfall

anomaly index (RAI) (van Rooy 1965), the crop

moisture index (Palmer 1968), the Bhalme–Mooley

index (BMDI) (Bhalme and Mooley 1980), the NOAA

drought index (NDI) (Strommen et al. 1980), the sur-

face water supply index (Shafer and Dezman 1982), the

standardized anomaly index (Katz and Glantz 1986),

the standardized precipitation index (SPI) (McKee

et al. 1993), the normalized difference vegetation index

(NDVI) based vegetation condition index (VCI) (Ko-

gan 1995a) and temperature condition index (TCI)

(Kogan 1995b). Su et al. (2003) summarized these

methods into meteorological based indices (e.g., the

standardized precipitation index), process based indi-

ces (e.g., evaporative fraction, EF), and satellite based

indices (e.g., vegetation indices). Some of them are

derived from climate factors and less relative to surface

water characteristics and crop conditions while some

only consider single surface factors like soil moisture

content neglecting plant water demand, completely

different results may be achieved from the same input

parameters.

Drought could affect surface radiation, heat and

water balance via changing surface bio-physical factors
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like NDVI, albedo and land surface temperature

(LST). In general, with the development of drought,

NDVI decreases, albedo and surface temperature in-

crease, and soil moisture decreases provided that the

other factors are stable. Combination of those param-

eters may provide useful methods for quantitative

detection of spatial and temporal distribution of

drought. LST and NDVI can provide the information

on vegetation and surface moisture. Goward and Hope

(1989) and Price (1990) developed LST–NDVI feature

space. Since then, LST–NDVI spectral space has been

widely used in land surface classification, soil moisture

monitoring, estimation of live fuel moisture content

and surface energy fluxes (Carlson and Sanchez-Az-

ofeifa 1999; Carlson and Arthur 2000; Chuvieco et al.

2004, Gillies and Carlson 1995; Gillies et al. 1997;

Goetz 1997; Han et al. 2005; Lambin and Rhrlich 1996;

Nemani and Running 1989; Ridd 1995; Owen et al.

1998; Wan et al. 2004). Being calculated from whole

shortwave reflectance data, surface broadband albedo

is a more informative factor than any other indexes

obtained by combination of limited band reflectance in

the optical domain. Ghulam et al. (2004a) tried to

substitute LST with albedo in LST–NDVI space, and

explored the drought conditions using the slope of

broadband albedo and NDVI scatter plot, and more

recently developed vegetation condition albedo

drought index (VCADI) (Ghulam 2006). However, as

the location of a pixel in the LST–NDVI space is

influenced by many factors, surface types may have

different LST/NDVI slope and intercept for equal

atmospheric and surface moisture conditions (Sandholt

et al. 2002). In addition, different spatial resolution of

visible, infrared and thermal band data of some sensors

such as TM/ETM+, MODIS are not the same; more

useful information is lost as a result of spectral sam-

pling which should be carried out to construct spectral

space using NDVI and LST products. Then, retrieval

of surface albedo and LST contains uncertainties roo-

ted from atmospheric correction of satellite data,

decomposition of mixed pixel information, bi-direc-

tional reflectance distribution function (BRDF) mod-

eling and spectral remedy by narrowband to

broadband conversion (Liang 2003; Pokrovsky and

Roujean 2002; Zhao et al. 2000). Therefore, the final

error on extraction and quantifying of drought infor-

mation would be magnified. Furthermore, NDVI, LST

and albedo are after-effect indicators of drought and,

out of interest when the focus must be the real time

monitoring of drought conditions instead of hysteresis.

The main objective of this paper is to develop a new

operational, drought monitoring method–perpendicu-

lar drought index (PDI), which is obtained from

NIR–Red spectral reflectance space. PDI is validated

with field obtained data and relationships between PDI

and drought indexes such as LST–NDVI, albedo-

NDVI, VTCI are explored.

Test site and data collection

Landsat Enhanced Thematic Mapper plus (ETM+)

data registered on April 17, 2001 over Beijing, China is

used in the paper. The Shun Yi remote sensing

experiment field (E 116�26¢–117�E, N 40�–40�21¢) in

Beijing, China was selected as the study area (Fig. 1).

Four core test sites named as the central site (labeled

C1–C5), the northwest site (labeled NW1–NW5), the

northeast site (labeled NE1–NE5) and the southeast

site (labeled SE1–SE5) were designed following a

stratified sampling scheme covering different surface

conditions. Each site was defined by five sampling

fields corresponding to bare soil and croplands planted

winter wheat with different drought and fertilization

conditions, respectively. Soil moisture data from dif-

ferent soil depths of 5, 10, 20, 40, 60 and 100 cm were

collected by both the CNC-503DR—intelligent water

neutron meter and the weighing-after-drying method

in over the fields NW1, NW2, NW3, NW4, NW5 the

northwest test site, which corresponds with normal

watered and fertilized bare soil, water stressed, over

watered, fertilizer lacked and over fertilized croplands.

A total of 25 ground measuring plots were deployed

over those fields; 16 plots were in fields of NW1, NW2,

NW3 and 9 in NW4, NW5 during the time the satellite

made its overpass on April 17, 2001. In the weighing-

after-drying method, soil moisture content (%) is cal-

culated by dividing the water content of a 1,000 gm

sample of earth by its dried earth counterpart and then

multiplying by 100.

Method

Fundamental theory and spectral features of the NIR–

Red spectral space can be found in the earlier work of

Richardson and Wiegand (1977) and recent reports of

Zhan et al. (2006) and Ghulam (2006). Vegetation

lamina tissues strongly absorb incident radiances in

blue, purple and red wavelengths and intensively re-

flect the near infrared (NIR) spectrum. The thicker the

vegetation density, the smaller the reflectance in Red

and the higher the reflectance in NIR bands become.

Because the absorption of the Red range is saturated

quickly, only the increase of reflectance in the NIR

region could reflect the increase of vegetation. Then,
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from Red to NIR spectral region, the reflectance of

bare soil is high but increases slowly. However, due to

the strongest absorption by water, bare soil reflectance

decreases distinctly with the increasing of soil moisture

especially in the near infrared domain. Therefore, any

mathematical operation which could strengthen the

difference between NIR and Red could be used to

describe the vegetation, surface drought status and

discriminate the soil information from the vegetated

pixel. Vegetation indices such as RVI, DVI, and

NDVI, etc. are based on this theory.

Sub-image covering the Shun Yi district of Beijing,

which has been the remote sensing experiment field of

this project, was subset after geometric correction.

Digital numbers (DNs) were converted into spectral

radiance and top of the atmosphere (TOA) reflectance.

Subsequently, atmospheric correction by the 6S code

(Vermote et al. 1997) for visible and near infrared data

and Modtran 4 for thermal infrared data were carried

out to eliminate the atmospheric perturbation and

obtain the reflectance and land surface temperature.

Considering the spectral characteristics of surface targets

Fig. 1 ETM+ image of
Beijing Shunyi (April 17,
2001)
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and ETM+ spectral features, ETM+ band 3 (Red, 630–

690 nm) and band 4 (NIR, 780–900 nm) were selected

to construct the NIR–Red spectral space. The scatter

plot of the atmospheric corrected NIR, Red reflectance

spectrum demonstrated a typical triangle shape

(Fig. 2), which was different from previously reported

LST–NDVI spectral space. Different land cover types

manifested certain regular distribution in the NIR–Red

spectral space. Not only the vegetation coverage can be

described, but also the surface drought severity can be

characterized quantitatively in the space.

It can be seen from Fig. 2 that the distribution fea-

tures of vegetation in the space is similar with what

Richardson and Wiegand (1977) reported. Here, the

AD line represents the change of surface vegetation

from the full cover (A) and the partial cover (E) to

bare soil (D) while BC refers soil moisture status for

wet area (B), semi-arid surface to extremely drought

surface (C). As can be seen, BC shows the direction of

drought severity. There are close but complex rela-

tionships between the surface spectrum and land cover

types and surface drought conditions. This encouraged

the authors to build a NIR–Red spectral reflectance

space based drought monitoring index which may be

rather simple and effective compared to the LST–

NDVI and albedo-NDVI space based methods in

which retrieval of albedo and LST is quite expensive

and problematic.

The soil line is made up of plots characterizing the

spectral behavior of non-vegetated pixels and whose

moisture varies obviously. It is not difficult to see from

the Fig. 2 that the drought severity gradually rises from

B to C, and reaches its climax at C. Here BC represents

the soil line of the research area, supposing that the

mathematical expression of the soil line can be ex-

pressed by the following equation.

Rs;NIR ¼MRs;red þ I: ð1Þ

Here, Rs, red, Rs, NIR refer to the atmospherically cor-

rected reflectance of NIR band and red band, respec-

tively, while M refers to the slope of the soil line, I is

the interception on the vertical axis.

A line L, which disects the coordinate origin and is

vertical to the soil line, can be delineated on Fig. 3.

Therefore, as to the normal function of a line, L can be

mathematically formulated from the soil line expres-

sion.

RNIR ¼ �
1

M
Rred: ð2Þ

For bare soil, the distance from any points in the NIR–

Red reflectance space to the line L represents the

drought severity of the non-vegetated surface. With the

increasing amount of vegetation, the plots shift upward

along the direction vertical to the soil line while they

do the same along the direction parallel to the soil line

and orthogonal to normal line L with the increasing of

the soil moisture. For a vegetated surface, the distance

from L to any points in the NIR–Red spectral space

may indicate the drought severity of a mixed pixel.

That is, the farther the distance, the stronger the

drought, and the less the soil moisture or vice versa.

Thereby, it is possible to formulate the drought

severity using the mathematical expression of the

Fig. 2 Construction of NIR–Red spectral space using ETM+
data Fig. 3 Sketch map of PDI
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distance from point to line. Taking a random point, a

pixel E (Rred, RNIR) in the NIR–Red reflectance space,

the vertical distance from E (Rred, RNIR) to line L

(PDI) can be written as the following.

PDI ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ 1
p ðRred þMRNIRÞ: ð3Þ

With respect to a black body, the distance is the least

amount which almost equals zero, and it is located just

at the coordinate origin. In the case of other objects

with some reflectance, the higher moisture content the

target possesses, the nearer it is located to the coor-

dinate origin. Generally speaking, objects placed near

the line L are always bodies of water or are extremely

wet regions and the drought value infinitely closes to 0,

whereas in the most distant area from the line L in the

space represents an extremely dry surface. In this case,

drought value infinitely closes to 1.

M = 1.40426 and I = –0.0703 are determined from

soil line equation which is extracted with atmospheric

corrected NIR, Red reflectance of study area. Intro-

ducing M into formula (3), the final equation of PDI

for this test site can be written as

PDI ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:40422 þ 1
p ðRred þ 1:40426RNIRÞ: ð4Þ

Results and discussion

Validation of PDI

The comprehensive drought index (K) derived from in-

situ measurements was used to validate PDI. K can be

expressed as the following (Zhan et al. 1999).

K ¼ 1� W �Wp

Wh �Wp
: ð5Þ

Here, W (%) is effective soil moisture; Wh (%) rep-

resents field moisture capacity; and Wp refers wilting

coefficient. When crops obtain enough water, no

drought occurs, and here K = 0. If W = Wp, effective

soil moisture equals to zero, crops cannot absorb any

water from the soil and tend to die away; this time

K = 1. Thus, it can be seen that K represents well the

field obtained drought data.

Then, what is the effective depth of satellite moni-

toring of soil moisture? Field measurement data from

what depth should be taken into account for the cal-

culation of K to compare with PDI? Ghulam et al.

(2004b) believes that visible and near infrared spectral

data have a close relationship with soil moisture at

10 cm soil depth. Using the in-situ data gathered over

25 control points, K5, K10, K10, K0–20 are obtained with

soil moisture at 5, 10, 20 cm and mean values of 0–

20 cm by Eq. 5. Thanks to high spatial resolution of

ETM+ data, pixels representing ground control points

can be easily identified via latitude and longitude of

those plots. Therefore, PDI are calculated for every

ground points with Eq. 4 using atmospheric corrected

spectral reflectance. PDI, K were normalized between

0 and 1, because the value of K could be greater than 1

where there was some ground measured soil moisture

greater than field moisture capacity. Comparison re-

sults as shown in Fig. 4 exhibit that PDI are highly

accordant with K. Among them, correlations between

PDI and K0–20 are the strongest (R2 = 0.49), next is K10

and then the worst is K5. As ground measurements of

surface moisture content by intelligent water neutron

meter (CNC-503DR), particularly at 0–5 cm soil depth,

is affected by surface wind speed and other external

conditions, it is normal to obtain relatively poor cor-

relation between PDI and K5 compared to those with

K10, K20 and K0–20.

Comparison of several drought indexes

With the occurrence of drought, surface vegetation

coverage may be destroyed; in further effect, it will

induce rising of surface albdeo, and heat flux. Ergo,

drought process is not only denoted as deterioration of

vegetation coverage and biomass but also is manifested

as maladjustment of energy and water circulation as

well as the variation of surface temperature and soil

moisture. These variations can be directly reflected in

LST–NDVI, albedo–NDVI spectral space. They are

very often used in land cover classification, regional

drought monitoring (Price 1990; Gillies and Carlson

1995; Su et al. 2003, Ghulam et al. 2004a; Wang et al.

2005). Here, a comparison between PDI and slope of

LST–NDVI, albedo–NDVI and vegetation tempera-

ture condition index (VTCI) referenced from Wang

et al. 2001 were conducted.

After geometric and atmospheric correction, LST is

retrieved by ETM+ thermal band data using equation

provided by Qin et al. (2001) and downscaled to 30 m

resolution. Land surface broadband albedo is estimated

using the method provided by Zhao et al. (2000) from

visible and near infrared bands. Drought conditions in

LST–NDVI, albedo–NDVI spectral space is quantified

simply by implementation of LST/NDVI, albedo/NDVI

operation; and values of four different indexes are

normalized within 0–1 through statistical computation.

It is evident from the results shown in Fig. 5 that trends
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of all graphs are quite similar. PDI stands neutral

among those indexes. In other words, PDI values are

below the VTCI, above the albedo–NDVI and just very

close to LST–NDVI which is well-recognized and ac-

cepted as effective drought monitoring index by the

science community. PDI is achieved from reflectance

data while other indexes need to retrieve the LST,

NDVI and surface albedo to be calculated. Retrieval of

LST and albedo is very expensive and always resulted

in greater uncertainties imposed from atmospheric

correction and BRDF modeling. Therefore, it can be

concluded that PDI is effective but easy to obtain

compared to other drought indexes.

Summary

In this paper, an operational, effective method for

drought monitoring—PDI is developed using spectral

space derived from reflectance of near infrared and red

wavelengths.

Perpendicular drought index was validated with field

measured data and inter-comparison with other well

recognized methods such as LST–NDVI, albedo–

NDVI and VTCI. Results indicated that PDI is highly

consistent with ground truth drought data reckoned

from soil hydrologic factors such as soil moisture at

different depths, field moisture capacity and wilting

coefficient, graphs tendency of PDI, field measured

and other commonly used drought indexes is quite

identical (Fig. 5), correlation coefficient between PDI

and field obtained drought values over 25 plots reaches
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0.75 at the best case. Although the number of the field

measurements were limited, they allowed the confir-

mation that the PDI provides, as stated in the theo-

retical design, correct information on surface drought

conditions, which is robust over different surface types.

It is recommended, however, that the PDI should be

validated further with more field measurements in

additional ecosystems.

Soil variability in reflectance is very important.

Mathematical expression of PDI is established on the

case of existing fixed soil line; however, the distribution

of the soil line is highly dependent on soil type and

fertilization, etc.; and bright-wet soils have higher

reflectance in the red and near-infrared than do dark-

dry soils. Therefore, the soil line does not monotoni-

cally increase with soil dryness in some cases, especially

in large-scale drought monitoring for different soil

types. The potential influence from soil colour varia-

tions on the Red, NIR bands need to be further studied.

In summary, taking the advantage of multidimen-

sional information, PDI characterizes well the surface

cover types, water and energy circulation and its dy-

namic changes, as well as has a clear biophysical con-

notation. PDI based on NIR-Red spectral space is

rather simple, effective, and easy to obtain and oper-

ate. Future work of this paper will be focused to handle

those problems and improve the performance of PDI

via introducing the short wave infrared band, which is

sensitive to water content in soil and vegetation, with

the taking into account the effect of plant/soil multiple

scattering on PDI.
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