
Abstract Bayesian frameworks for comparing water

quality information to a pre-specified standard or goal

and comparing water quality characteristics among two

different entities are presented and illustrated using

chloride and total dissolved solids (TDS) measure-

ments obtained in the shallower Chicot and the deeper

Evangeline formations of the Gulf coast aquifer

underlying Refugio County, TX. The Bayesian ap-

proach seeks to present evidence in favor of the com-

peting hypotheses which are weighed equally and

unlike classical statistics do not make a decision in

favor of one hypothesis. When comparing water qual-

ity information to a specified goal, the Bayesian ap-

proach addresses the more practical question—given

all the information, what is the probability of meeting

the goal? Similarly, when comparing the water quality

between two entities, the approach simply emphasizes

the nature and extent of differences and as such is

better suited for evaluative studies. Bayesian analysis

indicated that average chloride concentrations in the

Evangeline formation was 1.65 times the concentra-

tions in the Chicot formation while the corresponding

TDS concentration ratio was close to unity. The

probability of identifying water with TDS £1,000 g/m3

was extremely low, especially in the more prolific

Evangeline formation. The probability of groundwater

supplies with mean chloride concentrations £500 g/m3

was relatively high in the Chicot formation but very

low in the Evangeline formation indicating the possible

need for blending groundwater with other sources to

meet municipal water quality goals.

Keywords Statistics Æ Bayes’ theorem Æ Data mining Æ
Refugio County Æ Texas Æ USA

Introduction

The quality of groundwater dictates the uses it can be

put to and as such controls the patterns of growth and

development in any region. The impacts of water

quality are even more critical when the available

groundwater is limited. A wide range of natural and

anthropogenic factors affect the groundwater quality in

any region. Groundwater quality data are not routinely

collected unless there is some severe evidence of con-

tamination. Even then, data collection tends to be

intermittent and localized as cost and logistic consid-

erations often prohibit extensive analysis and testing.

Therefore, regional-scale groundwater quality assess-

ment for water resources planning is a challenging task.

Given the relatively high costs of water quality moni-

toring, the available data for statistical analysis often

tend to be sparse. In such situations, conventional

statistical tools like parametric hypothesis testing,

regression and discriminant analysis tend to be of

limited value. In addition, the application of these

methods is somewhat complicated when the outputs

are categorical in nature (Hamilton 1993).

Bayesian statistics offers a convenient set of tech-

niques to obtain insights from existing data (Roiger

and Geatz 2003). Bayesian probabilistic approaches

can be used with numeric as well as categorical data.
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Additionally, in the Bayesian approach, the subjective

beliefs held by decision-makers can be factored in and

conditioned using collected data (Schmidtt 1969). Data

mining using concepts from probability theory is

extensively being used to mine medical datasets (Ouali

et al. 2006). Bayesian weight of evidence approaches

have also been used in mining and landslide risk

evaluation applications (Bonham-Carter et al. 1989;

Lee et al. 2002). Lately, there has been a renewed

interest in using such probabilistic schemes in ecolog-

ical and environmental applications as well (Hobbs

1997; Borsuk et al. 2001; Termansen et al. 2006).

In this study, the utility of Bayesian approaches to

understand regional-scale groundwater quality was

evaluated. More specifically, concepts from Bayesian

inferential approaches were adapted to evaluate ground-

water quality related hypothesis. It is hoped that the

present study will illustrate how such techniques can

be used by decision-makers for analysis and evaluation

of groundwater quality within a region.

Materials and methods

Collection of groundwater quality data

A synoptic groundwater assessment study was carried

out in Refugio county, TX over a 1-year period (Jan

2004–Dec 2004). A total of 22 wells were sampled in

the shallower Chicot formation (0–125 m bgs) and 21

wells were sampled in the deeper Evangeline forma-

tion (125–300 m bgs). The locations of the wells are

depicted in Fig. 1. In this study, the chloride and the

total dissolved solids (TDS) measurements collected in

the Chicot and Evangeline formations are studied

using Bayesian techniques. The TDS was measured in

the field using a YSI 600 QS multi-parameter probe

(YSI Inc., OH) and chloride was measured using the

mercuric thiocynate method (APHA 1995). The sam-

ple collection and analysis followed standard protocols

(APHA 1995; USEPA 2002). Groundwater samples

were obtained using pumps existing at the wells. The

water in the appurtenances was initially purged prior to

the sample collection. The stabilization of pH and

conductivity values was used as an indicator to obtain

representative field samples. All field and laboratory

samples were measured in duplicate and an average

value was used for the data analysis. The sampling

procedure was repeated if the variability among the

duplicates was greater than 5%. A rigorous quality

control/quality assurance (QA/QC) protocol was

developed to guide sampling activities and included

routine calibration of the instruments and use of

appropriate standards, trip and field blanks. Additional

details of the field sampling program from which the

TDS and chloride data used in this study were obtained

can be found in Moorthy (2005).

An overview of Bayesian statistics

Bayesian statistics is based on the notion that the

probability is a measure of uncertainty (Winkler 1972).

It departs from the frequentist notion of probability

which is based on the idea of the chance of observing a

certain value (state), given repeated experimentation.

Being more generic, Bayesian statistics can deal with

subjective probabilistic notions held by decision-mak-

ers as well as objective measurements obtained via

observations and experimentation. Fundamental to the

study of Bayesian statistics is the Bayes’ theorem. Gi-

ven two random variables, A and B, which describe a

system of interest, Bayes’ theorem can be mathemati-

cally described as follows:

P AjBð Þ ¼ P BjAð ÞPðAÞ
PðBÞ ¼ L AjBð ÞPðAÞ

PðBÞ ð1Þ

where P(A|B) is the conditional probability of A (i.e.,

the probability of obtaining A given B); P(A) is the

marginal probability of A (i.e., probability of obtaining

A without considering B) and P(B|A) is the conditional

probability of B and P(B) is the marginal probability of

B. The conditional probability P(B|A) is also referred

to as the likelihood of A [i.e., L(A|B)]. The conditional

probability P(A|B) is referred to as the posterior

probability and P(A) as the prior probability and P(B)
Fig. 1 Map depicting the location of monitoring wells used in
this study
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is the normalizing constant. Thus, Bayes’ theorem can

be described in words as

Posterior / prior� likelihood ð2Þ

The prior information can represent the subjective

notions about the probability of a random variable that

is held by the decision-makers or can be defined based

on any previous data (such as those obtained from a

literature review). The likelihood on the other hand is

the information gleaned from the data arising from a

specific study carried out to update the insights about

the system of interest. Therefore, the likelihood is al-

ways calculated from the data. The prior on the other

hand represents knowledge before these data were

available. Therefore, the posterior probability repre-

sents the updated understanding of the system that is

obtained by conditioning prior beliefs with experi-

mental insights.

In some instances, when there is very little prior

information available, the posterior probabilities are

strictly based on the likelihood function estimated

from the data. In such instances, the numerical values

for probabilities will be the same in Bayesian and the

conventional (frequentist) approaches. Despite this

numerical equivalence, it is important to remember

that the interpretation of probability is different for the

two approaches. The conventional approach is based

on the notion of relative frequency, while the Bayesian

is based on the subjective belief. The reader is referred

to Schmidtt (1969) and Sivia (2003) for a practical

introduction to Bayesian statistics. The application of

Bayesian statistics to water resources problems has

been discussed by Hobbs (1997). However, Bayesian

hypothesis testing has not been explored extensively

in the groundwater literature and as such pertinent

concepts are presented next.

Generally, in groundwater quality assessments, sta-

tistical hypothesis testing is usually carried out to (1)

demonstrate that the concentration of a chemical at a

location is less than (greater than) or equal to some

allowable standard or goal; or (2) compare concen-

trations between two or more entities (e.g., up-gradient

and down-gradient of a landfill) to see if they are equal.

These tests are carried out by assuming the measured

concentrations as random variables and using point-

estimates such as the mean or the median. In the fol-

lowing, Bayesian approaches are presented for the

above two cases and are compared to conventional

statistical tests.

Bayesian hypothesis testing—comparing

to a standard

For a given random variable A, the competing

hypotheses can be written as follows:

H1 : lA � lci:e:; the concentration is less than or

equal to the standard ð3Þ

H2 : lA[lci:e:; the concentration is greater than

the standard ðlcÞ ð4Þ

In conventional statistics, mean value l is computed

from the data and compared to the distribution of the

test statistic (lc) which is centered at lc. Hypothesis 1 is

favored if the computed value of lA is farther to the

left of the distribution and hypothesis 2 is favored

when the computed value lA is farther to the right

(Fig. 2). On the other hand, in the Bayesian approach,

the posterior probability distribution of A is con-

structed by combining any prior information with col-

lected data using Eq. 2. The cumulative probabilities in

favor of hypothesis 1 and hypothesis 2 are then ascer-

Fig. 2 A comparison of
classical and Bayesian
approaches to hypothesis
testing
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tained from the posterior distribution, to identify which

hypothesis is favored (Fig. 2). The posterior probabil-

ity distribution is centered at the mean lA and com-

puted as follows:

P00ðH1 ¼ TRUEÞ
P00ðH1 ¼ TRUEÞ ¼

P00ðlA � lcÞ
P00ðlA[lcÞ

/ P0ðlA � lcÞ
P0ðlA[lcÞ

�LðlA � lcjDÞ
LðlA[lcÞjDÞ

ð5Þ

where P† represents the posterior probability, L rep-

resents the likelihood and P¢ represents the prior.

If the prior is considered non-informative, then the

numerical value of lA in the Bayesian method might be

the same as that used in the conventional method.

However, the computed probabilities are interpreted

differently. In the conventional statistics, the unusual-

ness of the sample is measured, given the distribution

of the hypothesis. In other words, the probability is an

indicator of the frequency (or risk) of incorrectly

rejecting the hypothesis, when in fact it is true. The

significance level indicates the tolerance of the deci-

sion-maker to such a risk and is subjectively assigned.

In contrast, Bayesian statistics explicitly measures the

evidence in support of each hypothesis and provides a

more intuitive explanation of whether the hypothesis

should be rejected or not. The actual rejection or

acceptance of a hypothesis, however, has to be carried

out separately.

From a conservative standpoint, hypothesis H2

(Eq. 4) is favored over hypothesis H1 (Eq. 3). This

conservatism can be incorporated into the decision-

making process by multiplying the posterior probabil-

ities by a factor of safety. Mathematically, the odds

ratio (W†) for competing hypotheses can be written as

follows (Winkler 1972):

X00 ¼ P00ðH1 ¼ TRUEÞ
P00ðH2 ¼ TRUEÞ �

1

X
8X � 1 ð6Þ

Clearly, X denotes the extent of conservatism on part

of the decision makers.

Bayesian hypothesis testing—comparing two

or more entities

The posterior probabilities can be computed at indi-

vidual locations using Eq. 2 and compared to see the

behavior of the random variable of interest among

different entities. As the entire probability distribution

is available at each of these locations, the comparison

need not be restricted to point estimates like the mean

and the standard deviation. For ad hoc comparisons,

the highest posterior density interval (HPDI) of the

mean value can be ascertained from the posterior dis-

tribution and used for comparing different sites. HPDI

is analogous to the confidence interval in conventional

statistics and is also referred to as the credible level

(Koop 2003). Ninety percent and 95% HPDI are

commonly used and imply that the decision-maker is

(90 or 95%) certain that the value of the mean lies in

the HPDI.

It is interesting to note that only one-sided hypoth-

esis (e.g., H1: la = lb and H2: la > lb or la < lb) can

be inferred using Bayesian hypothesis testing. The two-

sided hypothesis (e.g., H1: la = lb and H2: la „ lb)

cannot be tested as the focus of the Bayesian statistics

is not point estimates, but rather the entire probability

distribution of the mean or any other statistical mo-

ment being tested (Winkler 1972).

Development of prior and likelihood distributions

The specification of prior and likelihood probability

distributions is an important step for carrying out

Bayesian statistics. In theory, any probability distribu-

tion function can be used. As the likelihood function is

based on data, it can be developed by fitting the data to

any known distribution function. If there is very little

information available before the sampling campaign, it

is common to use a non-informative prior, which is also

referred to as the Jeffreys’ prior and typically repre-

sented using an uniform distribution (Borsuk and Stow

2000). From a mathematical standpoint it is convenient

to specify a conjugate prior. A conjugate prior has a

distribution which, when combined with the likelihood,

will yield a posterior that falls in the same family of

distribution (Koop 2003). The choice of the conjugate

prior depends upon the distribution chosen for the

likelihood function. The conjugate prior simplifies the

mathematical tractability of the model and is often

easy to interpret. If a non-conjugate prior is chosen,

then the posterior distribution has to be computed

numerically. Monte Carlo techniques are commonly

used for numerical evaluations and the suitability of

available algorithms has been discussed by Qian et al.

(2003).

For the purposes of this study, the measured water

quality parameters (or their log-transformed counter-

parts) are assumed to arise from a normal distribution

with unknown mean (l) but a known standard devia-

tion (r) (i.e., the likelihood function is normally dis-

tributed). It is useful to define the standard deviation in

terms of precision R which is the inverse of the vari-

ance of the distribution (i.e., R = 1/r2). If the prior

distribution of mean (l) is also normal, then the
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posterior distribution (l) follows normal distribution as

well (Winkler 1972).

If the prior mean (l¢) and variance (r¢) are known

(or assumed) and N samples are obtained from a

normally distributed process with standard deviation

(r) to yield a mean (m), then the posterior mean (l†)

and variance (r†) can be computed as follows:

1

r002
¼ 1

r02
þ n

r2
or R00 ¼ R0 þ nR ð7Þ

m ¼ R0l0 þ nR

R0 þ nR
ð8Þ

Also, the probability distribution function for the

normal distribution function of a random variable x

with mean m and standard deviation d is given as fol-

lows:

f ðxjm; dÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2pd2
p e

�ðm�xÞ2

2d2 ð9Þ

Equations 7, 8 and 9 can be used to construct the re-

quired prior, likelihood and posterior distribution. The

choice of the normal–normal conjugate prior does

considerably simplify the underlying mathematics, but

requires the decision-maker to know the variance of

the likelihood function. As a first approximation, the

sample variance can be used for the population vari-

ance. The validity of this approximation increases with

increasing number of samples used in the analysis

(Winkler 1972). The prior mean and variance can be

obtained from any previous studies carried out in

similar systems or specified based on professional

judgment of the analyst. If the variance of the prior

distribution is not known, a large number can be

specified to imply ignorance on part of the decision-

maker with regard to the variability of the water

quality parameter under consideration.

As stated earlier, the conjugate normal distribution

approach adopted in this study considerably simplifies

the mathematics but requires the decision-maker to

specify the variance of the prior and the likelihood

function. This assumption is commonly made in

Bayesian analysis (Dilks et al. 1992). However, if both

the mean and the variance of the prior are assumed to

be unknown, then the variance has to be treated as a

random variable. The marginal probability of the

posterior mean has to be obtained by calculating the

joint probability of the mean and the variance. In such

instances, it is advisable to assume the mean of the

random variable to be normally distributed while

the reciprocal of the variance (precision) to follow

gamma distribution. The normal-gamma distribution is

a conjugate distribution that can be used to estimate

the posterior probability distribution of the random

variable when both the mean and the variance are as-

sumed to be unknown (Koop 2003).

Results and discussion

Specification of the prior and exploratory data

analysis

The Bayesian approach is illustrated using the con-

centrations of TDS and chloride in Chicot and Evan-

geline formations of the Gulf Coast aquifer in Refugio

County, TX. The prior mean values were chosen to be

500 g/m3 for chloride and 1,250 g/m3 for TDS in Chicot

and Evangeline formations based on typical values

found in the groundwater database put forth by the

Texas Water Development Board (TWDB) and other

reports (Mason 1963). The analysis of data from other

locations also indicated that these water quality

parameters exhibited high variability. As such, the

coefficient of variation was assumed to be 1.25 and the

prior standard deviation was specified as 625.00 g/m3

and 1562.50 g/m3 for chloride and TDS, respectively.

Exploratory data analysis (EDA) (Table 1) indi-

cated that the water quality parameters exhibited

considerable variability. In general, the variability was

more pronounced in the shallower Chicot formation

and this is to be expected as this aquifer is in direct

contact with the soil and the atmosphere. The TDS

exhibited greater variability than the chloride and

again this result is to be expected since TDS is a bulk

measure and the aquifer material is known to possess

Table 1 Exploratory data analysis of the selected water quality
parameters

Statistic Chicot Evangeline

Chloride TDS Chloride TDS

Mean 442.95 1339.67 739.44 1423.02
Standard error 61.73 327.54 84.66 167.66
Median 358.00 958.75 587.50 1113.00
Mode 1075.00 935.00 785.00 NA
Standard deviation 282.89 1536.31 378.61 768.31
Sample variance 80027.04 2360248.02 143343.68 590294.31
Kurtosis 1.13 19.76 –0.03 6.07
Skewness 1.33 4.35 0.99 2.24
Range 975.00 7737.00 1300.00 3292.00
Minimum 100.00 323.00 320.00 741.00
Maximum 1075.00 8060.00 1620.00 4033.00
COV 0.64 1.15 0.51 0.54
Count 21.00 22.00 20.00 21.00

NA not available
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several mineral and inorganic matter that readily dis-

solve into the water. The summary statistics also indi-

cate that the assumption of normality may not be

entirely appropriate for this dataset. A variety of

transformations were attempted to normalize the data

but did not lead to significant improvements and as

such, the raw data were used in the analysis. However,

as the focus of this study is on relative comparisons and

not on obtaining any absolute values, the assumption

of normality may not be too restrictive. However, the

screening nature of the results must be borne in mind

during their use.

Analysis of prior, likelihood and posterior

distributions

The first two moments, namely the mean and the

standard deviation, of the prior, likelihood and pos-

terior distributions for chloride and TDS in Chicot and

Evangeline formations are summarized in Table 2.

Note that the moments of the posterior distribution are

closer to the moments of the likelihood function than

the prior distribution. This result is to be expected as

the prior distribution was largely rendered non-infor-

mative due to the specification of a large value for the

variance.

While the prior is developed using subjective judg-

ments and data from previous experiments, it can be

interpreted to arise from a set of hypothetical equiva-

lent observations obtained prior to the development of

the likelihood function. The variance of the prior and

the likelihood functions can be used to estimate the

number of hypothetical observations that led to the

prior as follows (Winkler 1972):

N0 ¼ r2

r02
¼ R0

R
ð10Þ

where N ¢is the number of hypothetical equivalent

observations that generated the prior information; R¢
and r¢ are the precision and standard deviation of the

prior and R and r are the precision and standard

deviation of the likelihood, respectively. Also, as the

posterior synthesizes prior and likelihood information,

it can be interpreted to arise from a set of N¢¢
(N¢¢ = N + N¢) observations, where N is the number of

observations used to define the likelihood function. As

can be seen from Table 2, the specified priors were

highly non-informative and conceptualized to stem

from no more than one observation. Clearly, the

information in the posterior is weighted more heavily

by the likelihood function.

The prior, likelihood and posterior probability dis-

tribution functions for chloride concentrations in the

Chicot aquifer are schematically depicted in Fig. 3. The

distributions for water quality parameters also exhib-

ited similar behavior and as such are not presented

here for brevity. However, they can be readily con-

structed using information contained in Table 2 in

Eq. 9. The non-informative nature of the prior is

readily evidenced by the relatively flat line in Fig. 3.

While the likelihood function is not as flat, it also

exhibits a fair amount of variance. As evidenced in

Fig. 3, a distinguishing feature of the Bayesian ap-

proach is that the posterior distribution exhibits less

variability than the prior and the likelihood functions.

Therefore, good quality field data when combined with

limited prior information will result in posterior dis-

tributions that are based primarily on field data but

improved by whatever prior information was available

(Dilks and others 1992). The extent of improvement in

this case depends upon the variability in the prior.

Again, as can be seen from Fig. 3, even a fairly non-

informative prior can lead to substantial improve-

ments.

Testing water quality parameters against specified

goals

The USEPA recommended secondary drinking water

standards for chloride and TDS are 250 and 500 g/m3,

respectively (USEPA 2006). Groundwater concentra-

tions of these parameters typically tend to be higher in

the county, given the geochemical makeup of the

aquifers and the proximity to the coast. For water

Table 2 Prior, likelihood and posterior distributions for the
water quality parameters

Chicot formation Evangeline
formation

Chloride TDS Chloride TDS

Prior
Mean 500.00 1250.00 500.00 1250.00
SD 625.00 1562.50 625.00 1562.50
Precision 2.56E-06 4.10E-07 2.56E-06 4.10E-07
Observations NA 1 NA NA

Likelihood
Mean 442.95 1339.67 739.44 1423.02
SD 282.89 1536.31 378.61 768.31
Precision 1.25E-05 4.24E-07 6.98E-06 1.69E-06
Observations 21 22 20 21

Posterior
Mean 443.51 1335.90 735.12 1421.05
SD 61.43 320.57 83.89 166.70
Precision 2.65E-04 9.73E-06 1.42E-04 3.60E-05
N 21 23 20 21

NA not available
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supply projects, groundwater with TDS less than

1,000 g/m3 and chloride less than 500 g/m3 (i.e., two

times the recommended limits) are usually sought to

keep treatment costs to a minimum. The probability of

finding, on average, groundwater with these charac-

teristics (i.e., TDS £ 1,000 g/m3 and chloride £ 500 g/

m3) would be of interest to municipalities and regional

development groups.

The competing hypotheses can be stated as follows:

H1 : l � lc ð11Þ

H2 : l[lc ð12Þ

where l is the mean concentration of the water quality

constituent (chloride or TDS) and lc is the concen-

tration goal for the water quality constituent (i.e., 500

and 1,000 g/m3 for chloride and TDS, respectively). If

the observations are assumed to stem from a normal

distribution with a known variance, then the posterior

probabilities supporting hypothesis H1 and H2 can be

written as follows:

P00ðH1Þ ¼ P00ðl � lcÞ ¼ P
l� l00

r00
� l� l00c

r00

� �

) P z � lc � l00

r00

� �

ð13Þ

P00ðH1Þ ¼ 1� P00ðl � lcÞ ¼ 1� P
l� l00

r00
� lc � l00

r00

� �

) P z[
lc � l00

r00

� �

ð14Þ

The prior evidence in support of the hypothesis and

the likelihood of observing each of the hypotheses can

also be computed using Eqs. 13 and 14 but substituting

the posterior mean and standard deviations with

respective parameters for prior and likelihood func-

tion.

The evidence supporting each hypothesis is pre-

sented in Table 3. From prior values, it can be seen

that the evidence (prior probabilities) in support of

either hypothesis is roughly the same. These proba-

bilities highlight general ignorance on the part of the

decision-maker with regard to the water quality char-

acteristics in the county due to lack of sufficient data

prior to this study. However, the posterior probabilities

present more conclusive evidence as they incorporate

the information obtained from the sampling campaign.

Fig. 3 Prior, likelihood and
posterior distributions for
chloride concentrations in the
Chicot aquifer formation

Table 3 Prior, likelihood and posterior probabilities supporting
the competing claims of finding water with specified water
quality goals

Chicot Evangeline

Chloride TDS Chloride TDS

Prior
P(l £ lc) 0.500 0.436 0.500 0.436
P(l > lc) 0.500 0.564 0.500 0.564

Likelihood
P(l £ lc) 0.580 0.413 0.264 0.291
P(l > lc) 0.420 0.587 0.736 0.709

Posterior
P(l £ lc) 0.821 0.147 0.003 0.006
P(l > lc) 0.179 0.853 0.997 0.994
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As can be seen, there is a little over 80% probability

of finding groundwater with chloride concentration less

than or equal to 500 g/m3 in the shallower Chicot for-

mation, indicating that the groundwater interactions

with marine aerosols and other surficial salt deposits

are probably low. However, the evidence in favor of

finding groundwater with TDS less than or equal to

1,000 g/m3 is rather low indicating the importance of

geochemical reactions that contribute to the TDS in

the Chicot formation.

The probability of finding groundwater with speci-

fied quality (as measured using chloride and TDS) is

very low in the Evangeline formation in comparison to

the Chicot formation. The groundwater flow in the

Evangeline formation is significantly slower than that

in the Chicot formation (Chowdhury et al. 2004) indi-

cating longer residence times in the deeper Evangeline

aquifer. In addition, the water in the Evangeline for-

mation has had to traverse a considerable distance

(~100 km) from the outcrops to the sampling wells. As

such, the groundwater in this deeper aquifer formation

is considerably older than that in the surficial Chicot

formation. These factors increase the potential for

mineral precipitation, dissolution and other geochem-

ical reactions that deteriorate the groundwater quality.

Groundwater quality sampling in the northwestern

sections of the county was rather spotty, due to lack of

access to wells and probably affected the computed

posterior probabilities. The groundwater quality in the

Evangeline formation is probably better in this area, as

outcrops of the formation can be found in relatively

pristine northwestern sections. The data from the cur-

rent study could serve as useful prior to update the

water quality characteristics of the Evangeline forma-

tion as more data are collected in the northwestern

sections of the county.

While Chicot formation has slightly better water

quality than the deeper Evangeline formation, the

deeper aquifer formation is known to have consider-

able sand thicknesses and is more prolific than the

shallower Chicot formation (Mason 1963). Hence,

blending of groundwater obtained from shallow and

deep formations with other sources is probably neces-

sary to satisfy the quantity and quality needs for mu-

nicipal water supply purposes.

Comparing water quality in different aquifer

formations

The Bayesian posterior estimates can be directly used

to informally compare water quality characteris-

tics among the two aquifer formations. For informal

comparisons, the posterior ratio for the mean values

can be written as follows:

M00 ¼
l00jEvangaline

l00jChicot

ð15Þ

Similar ratios for prior and likelihood means can also

be developed for informal comparison. If the posterior

mean ratio is close to unity, then, on average, there is

no difference in the water quality parameter in the

two formations. If the means ratio as written is much

greater than one, then the average concentration in

the Evangeline formation is greater than that in the

Chicot formation. Alternatively, if the means ratio as

written is much less than unity, then the average

concentration of the water quality parameter is higher

in the Chicot formation. Similar comparison can also

be carried out using standard deviations to assess the

differences in variability of the water quality param-

eters in the two formations. As stated previously, the

HPDI provides a useful estimate for the range of

variability of the mean at a specified level of confi-

dence. HPDI is analogous to the confidence interval in

conventional statistics and is also referred to as the

credible level (Koop 2003) and combines the mean

and variance into a composite metric. For the assumed

normal–normal conjugate pair, and given posterior

distribution with mean l† and standard deviation r†,

the 95% HPDI can be computed as follows (Winkler

1972):

HPDI ¼ l00 � 1:96r00 ð16Þ

Highest posterior density interval can be used to make

more formal comparisons of the mean values observed

in the two entities. In addition to comparing expected

values, the entire posterior probability distribution

function can also be used to visually compare

groundwater quality parameters in two formations of

interest. If the overlap between the two distributions is

significant, then the water quality parameters are said

to exhibit similar behavior. Alternatively, if the water

quality parameters behave differently then they will

only minimally overlap, if any.

The prior, likelihood and posterior mean ratios for

chloride and TDS is presented in Table 4. As can be

seen, the prior ratios were set equal to one, indicating

that there is not much of a difference in the mean

values in both aquifer formations. However, for chlo-

ride the likelihood and posterior ratios are close to 1.65

indicating considerable differences between the two

formations. On the other hand, the posterior ratio is

close to unity for TDS indicating that the mean TDS
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values are not very different between the two forma-

tions. Again as seen from Table 4, the variability

around the mean values is about 35% higher in the

Evangeline formation. On the other hand, the vari-

ability in the TDS is lower in the Evangeline formation

by about 50%. The 95% HPDI are summarized in

Table 5. As can be seen the 95% HPDI for TDS mean

in the Evangeline formation is completely enveloped

by the 95% HPDI for mean TDS concentration for the

Chicot formation. Thus, the differences between the

mean concentrations of TDS can be concluded to be

negligible. However, the 95% HPDI for the mean

chloride concentrations have very minimal overlap

indicating differences between the chloride concen-

trations in the two formations. The posterior proba-

bility distribution plots presented in Figs. 4 and 5

visually depict the differences in mean and variability

for chloride and TDS, respectively.

The above results highlight the limitations of bulk

measures like TDS in differentiating the water quality

characteristics between different aquifer formations.

The differences in the mean values noted in chloride

and not TDS indicates that constituents other than

chloride contribute significantly to the TDS in the

aquifer. The lower variability of chloride in the Chicot

formation indicates the stabilization of variance due

to direct atmospheric exchange. On the other hand,

lower variability of TDS in the deeper Evangeline

formation is consistent with the longer residence times

and point toward the importance of geochemical

reactions in controlling the TDS in the aquifer pore

water.

Contrasting classical and Bayesian approaches

In the conventional statistical approach, hypothesis

testing is viewed as a decision-making problem where

one hypothesis is selected over the other. The easier of

the two hypotheses, namely the null hypothesis, is gi-

ven the benefit of doubt and the alternative hypothesis

is only selected when there is considerable evidence

against the null hypothesis (i.e., the probability of

incorrectly rejecting the null hypothesis is small). On

Table 4 Prior, likelihood and posterior mean ratios for chloride
and TDS (the ratios are computed as Evangeline/Chicot)

Mean ratio Standard
deviation ratio

Chloride TDS Chloride TDS

Prior 1.00 1.00 1.00 1.00
Likelihood 1.67 1.06 1.34 0.50
Posterior 1.66 1.06 1.37 0.52

Table 5 Ninety-five percent highest posterior density intervals
(HPDI) for chloride and TDS in Chicot and Evangeline
formations

95% HPDI Chicot formation Evangeline
formation

Chloride TDS Chloride TDS

Upper limit 563.91 1964.22 899.55 1747.78
Lower limit 323.10 707.57 570.69 1094.32

Fig. 4 A comparison of
posterior distributions for
chloride in Chicot and
Evangeline aquifer
formations
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the other hand, the Bayesian approach to hypothesis

testing is more inferential in nature and a decision to

accept or reject a particular hypothesis is not rigorously

pursued. The two competing hypotheses are given

equal preference and the evidence in favor of each

hypothesis is compared only informally.

When comparing the water quality observations to a

known standard or goal, the classical test indicates

whether it can be inferred with certainty (at a specified

significance level) that the observations are not the

same as the specified standard. However, if the con-

clusion is that the difference is not substantial (i.e.,

cannot reject the null hypothesis that there is no dif-

ference between the observations and the standard), it

cannot be inferred that there is no difference with the

same level of certainty. It is also important to note that

the specified significance level is an arbitrary specifi-

cation that enters the classical analysis. The Bayesian

approach on the other hand addresses the more prac-

tical question—given the data and any prior informa-

tion, what is the probability of meeting the standard?

The Bayesian approach does not require an arbitrary

specification of the significance level for comparison.

Thus, the classical approach is more useful in decision-

making applications such as using water quality data to

terminate remedial activities at a contaminated site,

while the Bayesian approach is more useful in evalu-

ative studies such as assessing the availability of suit-

able water supply sources.

Similarly, when comparing water quality between

two entities (aquifer formations in this study), the

classical approach emphasizes whether noted differ-

ences can be conclusively justified at an accepted

significance level. The null hypothesis is stated as

follows: ‘‘on average there is no difference between

the two entities’’—the classical statistics helps con-

clude if the differences are indeed significant (again at

an arbitrarily specified significance level). If the null

hypothesis cannot be rejected, it cannot be concluded

with certainty that there is no difference between the

two entities. The classical testing is only concerned

with whether there is a significant difference between

the two entities and typically does not quantify the

nature of the differences that exist. The Bayesian

approach on the other hand concerns itself with the

nature of differences that exist. The decision whether

the differences are significant or not is not part of the

analysis and left to the interpretation of the decision-

maker. From this standpoint, the Bayesian analysis

can be argued to be less subjective than the classical

approach. Again, the Bayesian interpretation of the

probabilities and its emphasis on the nature of the

differences makes it better suited for evaluative

studies.

Summary and conclusions

The primary goal of this study was to demonstrate the

applicability of Bayesian analysis techniques to assess

water quality characteristics in a region. The Bayesian

analysis based on the notion that probability is a

measure of uncertainty is in contrast with the classical

statistical theories that interpret probability as a mea-

Fig. 5 A comparison of
posterior distributions for the
total dissolved solids (TDS) in
Chicot and Evangeline
aquifer formations
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sure of randomness which can be characterized by re-

peated measurements. Two types of water quality

assessments were considered as part of this study: (1)

comparing observed water quality characteristics

against a water quality standard or a goal and (2)

comparing observed water quality characteristics in

two different entities of interest. The concepts of

Bayesian analysis were illustrated to study two chem-

ical constituents (chloride and TDS) measured in two

different aquifer formations (Chicot and Evangeline)

in the Gulf coast aquifer underlying Refugio County,

TX.

The Bayesian interpretation of probability is based

on the notion of making the best possible inference

given a few measurements of these water quality

parameters (Sivia 2003). Unlike conventional statistics,

the Bayesian approach quantifies the probability of

finding groundwater that exhibits concentration less

than or equal to the prescribed goal. For the illustrative

case study, the results indicated that the probability of

finding groundwater with chloride concentrations less

than or equal to 500 g/m3 or TDS concentrations less

than or equal to 1,000 g/m3 was rather low in the more

prolific Evangeline formation indicating the possible

need for blending it with the groundwater from Chicot

formation or other sources to obtain necessary water

quality for municipal applications. The water quality

characteristics between the Chicot and Evangeline

formations were also assessed using Bayesian ap-

proaches. The results indicated that while the differ-

ence between the mean values of chloride was

relatively high, there was very little difference between

the observed mean values of TDS in the Evangeline

formation. In the Bayesian approach, the competing

hypotheses are given equal weights and focus is not

making a decision in favor of one or the other. Rather,

the evidence supporting each hypothesis is computed

using any available prior information and collected

data. Therefore, the Bayesian approach is better suited

for evaluative water quality studies that aim to

understand the differences between competing

hypotheses.
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