
Abstract Despite an increased knowledge of microbial
xylanolytic systems in the past few years, further studies
are required to achieve a complete understanding of the
mechanism of xylan degradation by microorganisms and
their enzymes. The enzyme system used by microbes for
the metabolism of xylan is the most important tool for
investigating the use of the second most abundant poly-
saccharide (xylan) in nature. Recent studies on microbial
xylanolytic systems have generally focussed on induc-
tion of enzyme production under different conditions,
purification, characterization, molecular cloning and ex-
pression, and use of enzyme predominantly for pulp
bleaching. Rationale approaches to achieve these goals
require a detailed knowledge of the regulatory mecha-
nism governing enzyme production. This review will fo-
cus on complex xylan structure and the microbial en-
zyme complex involved in its complete breakdown, 
studies on xylanase regulation and production and their
potential industrial applications, with special reference to
biobleaching.

Introduction

Enzymes are the catalytic cornerstone of metabolism,
and as such are the focus of intense worldwide research,
not only in the biological community, but also with pro-
cess designers/engineers, chemical engineers, and re-
searchers working in other scientific fields. Since ancient
times, enzymes have played a central role in many man-
ufacturing processes, such as in the production of wine,
cheese, bread, modification of starch etc. The latter half
of the twentieth century saw an unprecedented expansion

in our knowledge of the use of microorganisms, their
metabolic products, and enzymes in a broad area of basic
research and their potential industrial applications. Only
in the past 2 decades, however, have microbial enzymes
been used commercially in the pulp and paper industry.

The use of xylanases in this industry has increased
significantly with the discovery of Viikarri et al. (1986).
Since then researchers worldwide have focussed their at-
tention toward newer microbial isolates, the xylanases
from which can be used in the pulp and paper industries.
The scientific interest in this field is reflected by the
number of research papers published during recent years
describing numerous xylanases from newer sources, as
well as bleaching experiments reported using various
hemicellulases, pulps, and bleaching sequence. The
xylanases have been reported mainly from bacteria 
(Gilbert and Hazlewood 1993; Sunna and Antranikian
1997), fungi (Sunna and Antranikian 1997), actinomy-
cetes (Ball and McCarthy 1989; Beg et al. 2000a), and
yeast (Hrmova et al. 1984; Liu et al. 1998, 1999).

Over the years the number of possible applications of
xylanases in the pulp and paper industry has increased
steadily, and several have become, or are approaching,
commercial use. Currently, the most effective application
of xylanase is in prebleaching of kraft pulp to minimize
use of harsh chemicals in the subsequent treatment 
stages of kraft pulp. While many applications of en-
zymes in paper industries are still in the research and de-
velopmental stage, several applications have found their
way into the mills in an unprecedented short period of
time in the last decade (Bajpai 1999).

Apart from its use in the pulp and paper industry,
xylanases are also used as food additives to poultry
(Bedford and Classen 1992), in wheat flour for improv-
ing dough handling and quality of baked products (Maat
et al. 1992), for the extraction of coffee, plant oils, and
starch (Wong and Saddler 1992), in the improvement of
nutritional properties of agricultural silage and grain feed
(Kuhad and Singh 1993), and in combination with pec-
tinase and cellulase for clarification of fruit juices (Biely
1985) and degumming of plant fiber sources such as
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flax, hemp, jute, and ramie (Kapoor et al. 2001; Puchart
et al. 1999; Sharma 1987). To really appreciate the ratio-
nale behind current studies on microbial xylanases, it is
necessary to take a broad view that takes into account
the undoubted commercial potential. In this present re-
view, some industrial applications of microbial xylano-
lytic enzymes are discussed, with the main emphasis on
biobleaching.

Xylan: occurrence and structure

Schulze (1891) first introduced the term ‘hemicellulose’
for the fractions isolated or extracted from plant materi-
als with dilute alkali. Hemicelluloses include xylan,
mannan, galactan, and arabinan as the main heteropoly-
mers. The classification of these hemicellulose fractions
depends on the types of sugar moieties present. The prin-
cipal monomers present in most of the hemicelluloses
are D-xylose, D-mannose, D-galactose, and L-arabinose.
Xylans are heteropolymers consisting principally of 
D-xylose as its monomeric unit and traces of L-arabinose
(Bastawde 1992). In plants, xylans or the hemicelluloses
are situated between the lignin and the collection of cel-
lulose fibers underneath. Consistent with their structural
chemistry and side-group substitutions, the xylans seem
to be interspersed, interwined, and covalently linked 
at various points with the overlying ‘sheath’ of lignin,
while producing a coat around underlying strands of cel-
lulose (Biely 1985) via hydrogen bonding (Joseleau et al.
1992). The xylan layer with its covalent linkage to lignin
and its non-covalent interaction with cellulose may be
important in maintaining the integrity of the cellulose in
situ and in helping protect the fibers against degradation
to cellulases (Uffen 1997).

Xylan is a complex polysaccharide comprising a
backbone of xylose residues linked by β-1,4-glycosidic
bonds (Fig. 1). The main chain of xylan is composed of
β-xylopyranose residues (Whistler and Richards 1970).
Xylan is the most common hemicellulosic polysaccha-
ride in cell walls of land plants, representing up to
30%–35% of the total dry weight (Joseleau et al. 1992).
Xylan is the major hemicellulose in hardwood from an-
giosperms, but is less abundant in softwood from gym-
nosperms; it accounts for approximately 15%–30% and
7%–12% of the total dry weight, respectively (Whistler
and Richards 1970; Wong et al. 1988). The xylan from
hardwood is 0-acetyl-4–0-methylglucuronoxylan. This
polysaccharide consists of at least 70 β-xylopyranose
residues [average degree of polymerization (DP) be-
tween 150 and 200], linked by β-1,4-glycosidic bonds.
Every tenth xylose residue carries a 4-0-methylglucuron-
ic acid attached to the 2 position of xylose. Hardwood
xylans are highly acetylated (e.g., birchwood xylan con-
tains more than 1 mol of acetic acid per 2 mol of xylose).
Acetylation is more frequent at the C-3 than at the C-2
position. The presence of these acetyl groups is responsi-
ble for the partial solubility of xylan in water. These ace-
tyl groups are readily removed when xylan is subjected
to alkali extraction (Sunna and Antranikian 1997). 
Xylans from softwood are composed of arabino-4-0-
methylglucuroxylans. They have a higher 4-0-methylglu-
curonic acid content than do hardwood xylans. The 4-0-
methylglucuronic acid residues are attached to the C-2
position. Softwood xylans are not acetylated, and instead
of an acetyl group they have α-L-arabinofuranose units
linked by α-1,3-glycosidic bonds at the C-3 position of
the xylose (Puls and Schuseil 1993). The arabinosyl
substituents occur on almost 12% of the xylosyl residues
(Wong et al. 1988). The ratio of β-D-xylopyranose, 4-0-

Fig. 1 A hypothetical plant
xylan structure showing differ-
ent substituent groups with
sites of attack by microbial
xylanases



methyl-α-D-glucuronic acid and L-arabinofuranose is
100:20:13 (Puls and Schuseil 1993). Softwood xylans
are shorter than hardwood xylans, with a DP between 
70 and 130. They are also less branched (Sunna and 
Antranikian 1997).

Most xylans occur as heteropolysaccharides, contain-
ing different substituent groups in the backbone chain
and in the side chain (Biely 1985). The common subs-
tituents found on the backbone of xylan are acetyl, arabi-
nosyl, and glucuronysyl residues (Whistler and Richards
1970). Homoxylans, on the other hand, consist exclu-
sively of xylosyl residues. This type of xylan is not
widespread in nature and has been isolated from esparto
grass (Chanda et al. 1950), tobacco stalks (Eda et al.
1976), and guar seed husk (Montgomery et al. 1956).
Xylans with β-1,3-linked backbone have been reported
in marine algae (Dekker and Richards 1976). The mixed
link of β-1,3- and β-1,4-xylans are found in seaweed
such as Palmeria palmata (Barry and Dillon 1940).

Microbial xylanolytic system

Enzymatic hydrolysis of xylan

The main component of xylan is D-xylose, a five-carbon
sugar that can be converted to single cell protein and
chemical fuels by the cheapest ‘chemical factories’, mi-
crobial cells (Biely 1985). Due to the heterogeneity and
complex chemical nature of plant xylan, its complete
breakdown requires the action of a complex of several
hydrolytic enzymes with diverse specificity and modes
of action. Thus it is not surprising for xylan-degrading
cells to produce an arsenal of polymer-degrading pro-
teins. The xylanolytic enzyme system carrying out the
xylan hydrolysis is usually composed of a repertoire of
hydrolytic enzymes: β-1,4-endoxylanase, β-xylosidase,
α-L-arabinofuranosidase, α-glucuronidase, acetyl xylan
esterase, and phenolic acid (ferulic and p-coumaric acid)
esterase (Fig. 1). All these enzymes act cooperatively to
convert xylan into its constituent sugars. The presence of
such a multifunctional xylanolytic enzyme system is
quite widespread among fungi (Belancic et al. 1995; 
Biely et al. 1985), actinomycetes (Elegir et al. 1995), and
bacteria (Dey et al. 1992). Table 1 summarizes the 
biochemical properties of some acidic, alkaline, and
thermostable xylanases reported in literature.

Regulation of xylanase biosynthesis

Xylanases are usually inducible enzymes secreted in 
media containing pure xylan or xylan-rich residues 
(Balakrishnan et al. 1997). However, constitutive pro-
duction of xylanase has also been reported (Khanna and
Gauri 1993; Khasin et al. 1993; Lindner et al. 1994; 
Segura et al. 1998). Induction is mostly by xylan in
Trametes trogii (Levin and Forschiassin 1998), Aspergil-
lus awamori (Siedenberg et al. 1998), and Streptomyces

sp. QG-11-3 (Beg et al. 2000a). However, in Cellulomo-
nas flavigena, xylan is a poor inducer (Avalos et al.
1996). Induction of xylanase by several other com-
pounds, such as L-sorbose, various xylooligosaccharides,
xylose, and lignocellulosic residues, has been reported.
L-Sorbose in medium induces the xylanase production in
Sclerotium rolfsii (Sachslehner et al. 1998) and Tricho-
derma reesei PC-3–7 (Xu et al. 1998). In Bacillus sp.
BP-7 (Lopez et al. 1998) and Trichosporon cutaneum
SL409 (Liu et al. 1998), xylanase is induced by xylose,
but is repressed in the presence of glucose. Several re-
ports have shown xylanase induction by lignocelluloses
such as wheat bran, rice straw, corncobs, and sugarcane
bagasse (Beg et al. 2000a; Gupta et al., 2001; Kesker
1992; Kuhad et al. 1998; Puchart et al. 1999). In some
cases, readily metabolizable sugars, such as glucose
and/or xylose, are suppressors of xylanase synthesis
(Bataillon et al. 1998; Beg et al. 2000a; Fernandez-
Epsinar et al. 1992; Ishihara et al. 1997; Liu et al. 1999).

The enhancement of xylanase production in the pres-
ence of amino acids has also been shown in Bacillus sp.
No. C-125 (Ikura and Horikoshi 1987), Bacillus sp.
(NCL-87–6-10) (Balakrishnan et al. 1997), Trametes
trogii (Levin and Forschiassin 1998), Staphylococcus sp.
SG-13 (Gupta et al. 1999), and Streptomyces sp. QG-11-3
(Beg et al. 2000b). Synthetic calcium-containing zeoloite
(CaA) at a concentration of 0.5% has also been reported
to enhance xylanase production up to twofold in Bacillus
sp. NCL 87–6-10 (Balakrishnan et al. 2000). Gupta et al.
(2001) reported an improved xylanase production by
Staphylococcus sp. SG-13 in a biphasic medium contain-
ing a solid lower layer of agar containing wheat bran and
an upper liquid layer. The regulation of xylanase secre-
tion by microorganisms is still not completely under-
stood. Since xylan is unable to enter the microbial cell,
the induction of xylanase is stimulated by low molecular
weight xylan fragments, which are produced in the medi-
um by a small amount of constitutively produced en-
zyme (Bastawde 1992; Kulkarni et al. 1999). Some posi-
tional isomers can also induce xylanase synthesis in
yeast Trichosporon cutaneum (Hrmova et al. 1984).

Xylanase immobilization

For practical applications, immobilization of microor-
ganism or enzymes on solid materials offer several ad-
vantages, including repeated usage of enzyme, ease of
product separation, and improvement of enzyme stabili-
ty. In immobilization studies, either the whole cell im-
mobilization of organism to a solid support is performed,
or sometimes the enzyme itself is immobilized on 
some reversible soluble-insoluble polymer. Gwande and 
Kamat (1998a) immobilized Aspergillus sp. strain 5 and
Aspergillus sp. strain 44 on 400-mesh nylon bolting cloth
in shake flask culture. They reported a 1.68-fold higher
xylanase yield in immobilized Aspergillus sp. strain 5
than that freely suspended cells. The xylanase from the
same organism was non-covalently immobilized on 
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Table 1 Characteristics of xylanases from different microorganisms (kDa kilodaltons)

Microorganism Molecular Optimum Stability pI Km Vmax References
weight (mg/ml) (µM/mine
(kDa) pH Tempera- pH Tempera- per mg)

ture (°C) ture (°C)

Bacteria
Acidobacterium 41 5 65 3–8 20–50 7.3 3.5 403 Inagaki et al.
capsulatum 1998
Bacillus sp. W–1 21.5 6 65 4–10 40 8.5 4.5 – Okazaki

et al. 1985
Bacillus circulans 15 5.5–7 – – – 9.1 4 – Esteban et al.
WL–12 1982
Bacillus 43 6.5 55 6.5–10 70 7, 9 1.63 288 Khasin et al. 
stearothermophilus T–6 1993
Bacillus sp. strain BP-23 32 5.5 50 9.5–11 55 9.3 – – Blanco et al.

1995
Bacillus sp. strain BP-7 22–120 6 55 8–9 65 7–9 – – Lopez et al.

1998
Bacillus polymyxa 61 6.5 50 – – 4.7 17.1 112 Morales et al. 
CECT 153 1995
Bacillus sp. strain K-1 23 5.5 60 5–12 50–60 – – – Ratannaka-

nokchai et al.
1999

Bacillus sp. NG-27 – 7, 8.4 70 6–11 40–90 – – – Gupta et al.
1992

Bacillus sp. SPS-0 – 6 75 6–9 85 – – – Bataillon 
et al. 1998

Bacillus sp. strain 23, 48 9–10 60–75 8–9 60–65 – – – Gessesse 
AR-009 1998
Bacillus sp. NCIM 59 15.8, 35 6 50–60 7 50 4, 8 1.58, 3.50 0.017, Dey et al.

0.742 1992
Cellulomonas fimi 14–150 5–6.5 40–45 – – 4.5–8.5 1.25–1.72 – Khanna and

Gauri 1993
Cellulomonas sp. 22, 33, 53 6.5 55 – – 8 1.7, 1.5 380, 690 Chaudhary 
N.C.I.M. 2353 and 

Deobagkar 
1997

Micrococcus sp. 56 7.5–9 55 6.5–10 40 – – – Gessesse and
AR-135 Mamo 1998
Staphylococcus sp. 60 7.5, 9.2 50 7.5–9.5 50 – 4 90 Gupta et al. 
SG-13 2000
Thermoanaerobacterium 24–180 6.2 80 – – 4.37 3 – Shao et al. 
sp. JW/SL–YS 485 1995
Thermotoga maritima 40, 120 5.4, 6.2 92–105 – – 5.6 1.1, 0.29 374, 4760 Winterhalter 
MSB8 and Liebel 

1995
Fungi
Acrophialophora 17 6 50 5 50 – 0.731, – Ximenes 
nainiana 0.343 et al. 1999
Aspergillus niger 13.5–14.0 5.5 45 5–6 60 9 – – Frederick

et al. 1985
Aspergillus kawachii 26–35 2–5.5 50–60 1–10 30–60 3.5–6.7 – – Ito et al. 
IFO 4308 1992
Aspergillus nidulans 22–34 5.4 55 5.4 24–40 – – – Fernandez-

Epsinar et al.
1992

Aspergillus fischeri 31 6 60 5–9.5 55 – 4.88 5.88 Raj and 
Fxn1 Chandra 

1996
Aspergillus sojae 32.7, 35.5 5, 5.5 60, 50 5–8, 5–9 50, 35 3.5, 3.75 – – Kimura et al.

1995
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Aspergillus sydowii 30 5.5 60 – – – – – Ghosh and 
MG 49 Nanda 1994
Cephalosporium sp. 30, 70 8 40 8–10 – – 0.15 – Bansod et al.

1993
Fusarium oxysporum 20.8, 23.5 6 60, 55 7–10 30 – 9.5; 8.45, 0.41, 0.37 Christako-

8.7 polous et al.
1996

Geotrichum candidum 60–67 4 50 3–4.5 45 3.4 – – Radionova 
et al. 2000

Paecilomyces varioti 20 4 50 – – 5.2 49.5 – Kelly et al.
1989

Penicillium 33, 23 7, 3.5 60, 50 6–7.5, 40 8.6, 5.9 – – Belancic 
purpurogenum 4.5–7.5 et al. 1995
Thermomyces 25.5 7 60–70 5–9 60 4.1 7.3 – Cesar and 
lanuginosus DSM 5826 Mrsa 1996
Thermomyces 23.6 6.5 70–75 5–12 60 3.8 3.26 6300 Lin et al. 
lanuginosus–SSBP 1999
Trichoderma harzianum 20 5 50 – 40 – 0.58 0.106 Tan et al.

1985
Trichoderma reesei 20, 19 5–5.5, 45, 40 3–8.5, – 9, 5.5 3–6.8, – Tenkanen 

4–4.5 2.5–8.5 14.8–22.3 et al. 1992
Yeast
Aureobasidium 25 4.4 54 4.5 55 9.4 7.6 2650 Li et al. 1993
pullulans Y-2311–1
Cryptococcus albidus 48 5 25 – – – 5.7, 5.3 – Morosoli 

et al. 1986
Trichosporon cutaneum – 6.5 50 4.5–8.5 50 – – – Liu et al. 
SL409 1998

Actinomycete
Streptomyces sp. EC 10 32 7–8 60 – – 6.8 3 – Lumba and

Pennickx 
1992

Streptomyces sp. 23.8–40.5 6–7 55–60 – – 4.8–8.3 0.8–5.8 162–470 Elegir et al. 
B–12–2 1994
Streptomyces T7 20 4.5–5.5 60 5 37–50 7.8 10 7610 Kesker 1992
Streptomyces 33, 54 7 60–70 – – 4.2, 8 – – Tsujibo et al. 
thermoviolaceus 1992
OPC–520
Streptomyces 48 6 50 5–8 40–60 9 4, 0.3 78.2, 19.1 Lopez-
chattanoogensis Fernandez 
CECT 3336 et al. 1998
Streptomyces 59 7–8 65–70 5–9 70 10.2–10.5 – – Magnuson 
viridisporus T7A and

Crawford 
1997

Streptomyces sp. – 8.6 60 5.4–9.2 50–75 – 1.2 158.85 Beg et al. 
QG-11-3 2000a
Thermomonospora 15–36 6.8–7.8 75 – – 4.2–8.4 1.4–2.5 – Stutzenberger
curvata and Bodine 

1992

Table 1 (continued)

Microorganism Molecular Optimum Stability pI Km Vmax References
weight (mg/ml) (µM/mine
(kDa) pH Tempera- pH Tempera- per mg)

ture (°C) ture (°C)



Eudragit S-100 for saccharification, which enabled its
recovery and reuse for a longer period (Gwande and 
Kamat 1998b). Tokuda et al. (1997) also reported that
maximum xylanase yield can be obtained by immobiliz-
ing Aspergillus niger on silk, rayon, and polyester fibers,
which have several advantages over free enzyme. In a re-
cent study by our group, the effectiveness of polyure-
thane foam (PUF) and three non-woven fabrics, namely
cotton, silk, and polyester, as support materials for Strep-
tomyces sp. QG-11-3 mycelia immobilization was inves-
tigated (Beg et al. 2000c). The xylanase yields were en-
hanced by 2.5-fold, 1.91-fold, 1.54-fold, and 1.47-fold
using PUF, polyester, silk, and cotton, respectively, com-
pared with the xylanase yield in liquid-batch fermenta-
tion. These results also indicated that the type of fiber
material has a significant role in providing a favorable
environment for enzyme production, thus having an in-
fluence on xylan hydrolysis activity of the immobilized
mycelia of Streptomyces sp. QG-11-3. Mycelia grew in-
side the pores of fabric material and PUF particles. Un-
like other techniques involving active immobilization,
the use of PUF particles does not require the growth of
cells prior to immobilization. The inert particles are sim-
ply placed in the fermentor before sterilization and the
fermenter is inoculated in the normal way. Mycelia/cells
become immobilized within the PUF pores as a natural
consequence of growth, during an initial growth period.
This technique has also been applied successfully to a
wide variety of microbial cell systems for immobiliza-
tion.

Xylanase production in solid-state fermentation

Solid-state fermentation (SSF) is the growth of microor-
ganisms on moist substrates in the absence of free-flow-
ing water. The advantage of SSF processes over liquid-
batch fermentation include smaller volumes of liquid re-
quired for product recovery, cheap substrate, low cultiva-
tion cost for fermentation, and lower risk of contamina-
tion. The use of abundantly available and cost-effective
agricultural residues, such as wheat bran, corn cobs, rice
bran, rice husk, and other similar substrates, to achieve
higher xylanase yields using SSF allows reduction of the
overall manufacturing cost of biobleached paper. This
has facilitated the use of this environment friendly tech-
nology in the paper industry. Several workers have also
showed a high yield of xylanase at various moisture 
levels in SSF studies. In SSF using wheat bran and euca-
lyptus kraft pulp as the primary solid substrates, Strepto-
myces sp. QG-11-3 (Beg et al. 2000c) produces maxi-
mum xylanase yield at substrate-to-moisture ratio of
1:2.5 and 1:3, respectively. However, on increasing or
decreasing the moisture level, the xylanase yield margin-
ally decreased. In contrast, a lower solid substrate-
to-moisture level of 1:1 has been reported for maximum
xylanase production by Bacillus sp. A-009 (Gessesse and
Mamo 1999). An improvement in xylanase production by
fungal mixed culture (Trichoderma reesei LM-UC4 E 1,

Aspergillus niger ATCC 10864, and A. phoenicis QM
329) using SSF has also been reported (Gutierrez-Correa
and Tengerdy 1998). A higher xylanase yield using SSF
compared with submerged fermentation using wheat
straw and sugarcane bagasse has been reported from
thermophilic Melanocarpus albomyces IIS-68 (Jain
1995).

The ‘xylanosome’

Xylanosomes are discrete, multifunctional, multienzyme
complexes found on the surface of several microorgan-
isms (Sunna and Antranikian 1997). These complexes
play an important role in the degradation of hemicellu-
loses. The extracellular xylanosome complex B (CB)
from Butyvibrio fibrisolvens H17c (Lin and Thomson
1991) exists as a multisubunit protein aggregate. The
complex has a molecular weight >669 kilodaltons (kDa)
and is composed of 11 protein bands with xylanase activ-
ity and 3 bands showing endoglucanase activity. Clos-
tridium papyrosolvens C 7 possesses a multicomplex cel-
lulase-xylanase system, which is responsible for hydrol-
ysis of cellulose and xylan (Pohlschroder et al. 1994).
This multiplex system consists of seven protein com-
plexes whose molecular weight ranges from 500 to
660 kDa.

Synergistic action between multiple forms of xylanase

The hydrolysis of xylan requires the action of multiple
xylanases with overlapping but different specificities
(Wong et al. 1988). Multiplicity of xylanolytic enzymes
has been reported in several microorganisms such as
Streptomyces sp. (Godden et al. 1989), Penicillium 
purpurogenum (Belancic et al. 1995), Melanocarpus al-
bomyces IIS 68 (Saraswat and Bisaria 1997), Cellulomo-
nas sp. N.C.I.M 2353 (Chaudhary and Deobagkar 1997),
and Aeromonas caviae W-61 (Okai et al. 1998). The pro-
duction of a multienzyme system of xylanases, in which
each enzyme has a special function, is one strategy for a
microorganism to achieve effective hydrolysis of xylan.
During xylan hydrolysis, synergism has been observed
between enzymes acting on the 1,4-β-D-xylan backbone
(β-1,4-endoxylanase) and side chain-cleaving enzymes
(α-L-arabinofuranosidase, acetyl xylan esterase, and 
β-glucuronidase). The synergistic action between acetyl
xylan esterase and endoxylanases results in the efficient
degradation of acetylated xylan (Biely et al. 1986). The
release of acetic acid by acetyl xylan esterase increases
the accessibility of the xylan backbone for endoxylanase
attack. The endoxylanase creates shorter acetylated 
polymers, which are preferred substrates for esterase ac-
tivity (Biely et al. 1985, 1986). The thermophilic actino-
mycete Thermomonospora fusca possesses a multi-
enzyme system of endoxylanase, β-xylosidase, α-L-ara-
binofuranosidase, and acetyl esterase activities (Bach-
mann and McCarthy 1991). β-Xylosidase enhances the
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hydrolysis of xylan by endoxylanase by relieving the
end-product inhibition of endoxylanases. Similarly, the
addition of α-arabinofuranosidase to endoxylanase en-
hances the saccharification of arabinoxylan.

Molecular cloning of the xylanase gene

Recent advances in molecular biology and genetic engi-
neering in the last 2 decades have opened up the areas of
application of gene cloning and recombinant DNA tech-
nology. Recombinant DNA techniques offer new oppor-
tunities for construction of genetically modified microbi-
al strains with selected enzyme machinery. To ensure the
commercial utilization of hemicellulosic residues in the
pulp and paper industries, the production of higher
xylanase yields at low capital cost is required. In this re-
spect, isolation and cloning of the xylanase gene repre-
sents an essential step in the engineering of the most effi-
cient microorganism (Kulkarni et al. 1999). Several at-
tempts have been made to clone and express xylanase
from bacteria such as Bacillus subtilis (Bernier et al.
1983), Bacillus sp. (Jeong et al. 1998), and Acidobacteri-
um capsulatum (Inagaki et al. 1998) into a non-cellulase
producing strain of Escherichia coli. Similarly other re-
ports (Honda et al. 1985a, b, c; 1986a, b) describe the
production, purification, partial characterization, molec-
ular cloning, sequencing, and expression of the alkaline
xylanase gene from alkalophilic Bacillus sp. strain C-125
in E. coli carrying a plasmid pCX311. Such studies 
are essential to produce a more-efficient xylanase pro-
ducer, which will allow improvement of paper quality
(Kulkarni et al. 1999). Furthermore, biochemical studies
on xylanase-secreting and non-secreting microorganisms
could lead to better understanding of the xylanase secre-
tory process and the development of cloning strategies
that would guarantee secretion of desired products. Vari-
ous molecular and biotechnological aspects of xylanase-
producing microorganisms, such as the regulation of
xylanase biosynthesis at the molecular level, and newer
strategies, such as use of gene cloning, protein engineer-
ing, and site-directed mutagenesis for obtaining xylanase
with novel properties, have been described in detail by
Kulkarni et al. (1999).

Applications of xylanolytic enzymes

Xylanolytic enzymes from microorganism have attracted
a great deal of attention in the last decade, particularly
because of their biotechnological potential in various in-
dustrial processes (Bajpai 1999; Kuhad and Singh 1993;
Niehaus et al. 1999; Wong and Saddler 1992), such as
food, feed, and pulp and paper industries. Xylanases
have shown an immense potential for increasing the pro-
duction of several useful products in a most economical
way. The main possibilities are the production of SCPs,
enzymes, liquid or gaseous fuels, and solvents and sugar
syrups, which can be used as such or as feed stock for

other microbiological processes (Ball and McCarthy
1988; Kuhad and Singh 1993).

1. Currently, the most promising application of xylan-
ases is in the prebleaching of kraft pulps (Bajpai
1999). Enzyme application improves pulp fibrillation
and water retention, reduction of beating times in vir-
gin pulps, restoration of bonding and increased free-
ness in recycled fibers, and selective removal of xyl-
ans from dissolving pulps. Xylanases are also useful
in yielding cellulose from dissolving pulps for rayon
production and biobleaching of wood pulps (Bajpai 
et al. 1994; Srinivasan and Rele 1999; Viikari et al.
1994a).

2. Depression in weight gain and feed conversion effi-
ciency in rye-fed broiler chicks has been associated
with intestinal viscosity. Incorporation of xylanase in-
to a rye-based diet of broiler chickens results in re-
duced intestinal viscosity, thus improving both the
weight gain of chicks and their feed conversion effi-
ciency (Bedford and Classen 1992; vanParidon et al.
1992).

3. The efficiency of xylanases in improving the quality
of bread has been seen with an increase in specific
bread volume. This is further enhanced when amylase
is used in combination with xylanase (Maat et al.
1992).

4. Xylan is present in large amounts in wastes from agri-
cultural and food industries. Hence, xylanases are used
for conversion of xylan into xylose in waste water.
The development of an efficient process of enzymatic
hydrolysis offers new prospects for treating hemicellu-
losic wastes (Biely 1985; Rani and Nand 1996).

5. Xylanase treatment of plant cells can induce glycosy-
lation and fatty acylation of phytosterols. Treatment
of tobacco suspension cells (Nicotiana tabacum CV.
KY 14) with a purified endoxylanase from Trichoder-
ma viride caused a 13-fold increase in the levels of
acylated sterol glycosides and elicited the synthesis of
phytoalexins (Moreau et al. 1994).

6. Xylanase are used concurrently with cellulase and
pectinase for clarifying must and juices, and for lique-
fying fruits and vegetables (Biely 1985), and in the
pretreatment of forage crops to improve the digest-
ibility of ruminant feeds and to facilitate composting
(Gilbert and Hazlewood 1993).

7. Alkyl glycosides are one of the most promising candi-
dates for new surfactants. Commercially, they are pro-
duced from monomeric sugars such as D-glucose and
a fatty alcohol. But the direct glycosylation using
polysaccharide is more feasible for their industrial
production, because hydrolysis of polysaccharide and
subsequent steps can be omitted. Thus, use of xylan-
ase in this process provides a challenging opportunity.
Recently, xylanase from Aureobasidium pullulans has
been used for direct transglycosylation of xylan, 
1-octanal and 2-ethyl hexanol into octyl-β-D-xylobio-
side, xyloside, and 2-ethylhexyl-β-D-xylobioside, re-
spectively (Matsumara et al. 1999).
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8. α-L-Arabinofuranosidase and β-D-glucopyranosid-
ase have been employed in food processing for aro-
matizing musts, wines, and fruit juices (Spagna et al.
1998).

9. Some xylanases may be used to improve cell wall
maceration for the production of plant protoplasts
(Wong et al. 1988).

10. A recent application of a truncated bacterial xylanase
gene from Clostridium thermocellum has been dem-
onstrated in rhizosecretion in transgenic tobacco
plants (Borisjuk et al. 1999).

11. Xylanase in synergism with several other enzymes,
such as mannanase, ligninase, xylosidase, glucanase,
glucosidase, etc., can be used for the generation of
biological fuels, such as ethanol and xylitol, from
lignocellulosic biomass (Dominguez 1998; Kuhad
and Singh 1993; Olsson and Hahn-Hagerdal 1996).
The biological process of ethanol fuel production re-
quires delignification of lignocellulose to liberate
cellulose and hemicellulose from their complex with
lignin, followed by depolymerization of the carbohy-
drate polymers (cellulose and hemicellulose) to pro-
duce free sugars, and finally fermentation of mixed
pentose and hexose sugars to produce ethanol (Lee
1997).

12. A potential application of the xylanolytic enzyme
system in conjunction with the pectinolytic enzyme
system is in the degumming of bast fibers such as
flax, hemp, jute, and ramie (Puchart et al. 1999;
Sharma 1987). A xylanase-pectinase combination is
also used in the debarking process, which is the
first step in wood processing (Bajpai 1999; Wong
and Saddler 1992). The fiber liberation from plants
is affected by retting, i.e., the removal of binding

material present in plant tissues using enzymes pro-
duced in situ by microorganisms. Pectinases are be-
lieved to play a major role in this process, but
xylanases may also be involved (Sharma 1987). 
Replacement of slow natural retting by treatment
with artificial mixtures of enzymes could become a
new fiber liberation technology in the near future
(Bajpai 1999).

The strains reported for the commercial production of
xylanases include Trichoderma reesei (Tenkanen et al.
1992), Thermomyces lanuginosus (Bajpai 1999; Gubitz
et al. 1997), Aureobasidium pullulans (Christov et al.
1999a), Bacillus subtilis (Khanongnuch et al. 1999), and
Streptomyces lividans (Ragauskas et al. 1994; Senior 
et al. 1992). Over the last decade, a number of microbial
enzymes have been assessed for their potential applica-
tions in several industries. Several commercial products
have been launched successfully worldwide in the past
few years (Table 2).

Biobleaching process: past, present, and future

The most important application of xylanase enzymes is
in the prebleaching of kraft pulp and xylanases are gain-
ing importance as alternatives to toxic chlorine-contain-
ing chemicals (Bajpai and Bajpai 1992; Ragauskus et al.
1994; Vicuna et al. 1997; Viikari et al. 1994a). The main
driving force has been the economic and environmental
advantages the enzyme brings to the bleach plant. Such
intense demand for the enzyme has pushed enzyme pro-
ducers to develop an entirely new industry in a remark-
ably short time.

Table 2 Commercial xylanases and their industrial suppliers

Supplier Product trade name Application

Alko Rajamaki, Finland Ecopulp Pulp bleaching
Sandoz, Charlotte, N.C. and Basle, Switzerland Cartazyme Pulp bleaching
Clarient, UK Cartazyme HS 10, Cartazyme HT, Cartazyme SR 10 Pulp bleaching

Cartazyme PS10, Cartazyme 9407 E, Cartazyme NS 10, 
Cartazyme MP

Genercor, Finland; Ciba Giegy, Switzerland Irgazyme 40–4X/Albazyme 40–4X, Irgazyme-10A, Pulp bleaching
Albazyme-10A
Multifect xylanase Baking, food

Voest Alpine, Austria VAI Xylanase Pulp bleaching
Novo Nordisk, Denmark Pulpzyme HA, Pulpzyme HB, Pulpzyme HC Pulp bleaching

Biofeed Beta, Biofeed Plus Feed
Ceremix Brewing

Bicon India, Bangalore Bleachzyme F Pulp bleaching
Rohn Enzyme 0Y; Primalco, Finland Ecopulp X-100, Ecopulp X-200, Ecopulp X-200/4, Pulp bleaching

Ecopulp TX-100, Ecopulp TX-200, Ecopulp XM
Meito Sankyo, Nogaya Japan Xylanase Research
Rohm, Germany Rholase 7118 Food
Solvay Interox, USA Optipulp L-8000 Pulp bleaching
Thomas Swan, UK Ecozyme Pulp bleaching
Iogen, Canada GS-35, HS70 Pulp bleaching
Sankyo, Japan Sanzyme PX, Alpelase F Feed

Sanzyme X Food
Enzyme Development, USA Enzeko xylanase Baking, food, feed



334

Biobleaching

The process of lignin removal from chemical pulps to pro-
duce bright or completely white finished pulp is called
‘bleaching.’ It is necessary for aesthetic reasons and for im-
provement of paper properties, because the left-over residu-
al lignin after sulfite pulping imparts an undesirable brown
color to the paper. Present-day bleaching of kraft pulp uses
large amounts of chlorine-based chemicals and sodium hy-
drosulfite. These bleaching chemicals cause several efflu-
ent-based problems in the pulp and paper industries. By-
products from using these chemicals are chlorinated organic
substances, some of which are toxic, mutagenic, persistent,
and bioaccumulate, and cause numerous harmful distur-
bances in biological systems (Onysko 1993). In response to
government and environmental protection groups, paper in-
dustries are currently changing practices to minimize the
use of chlorine-based chemicals. The available options are
oxygen delignification, extended cooking, and substitution
of chlorine dioxide for chlorine, hydrogen peroxide, and
ozone. But most of these methods involve high capital in-
vestment for process change. Thus, an alternative and cost-
effective method, i.e., use of enzymes, has provided a very
simple and economic way to reduce the use of chlorine and
other bleaching chemicals. Biobleaching involves using mi-
croorganisms and enzymes for bleaching pulp. It relies on
the ability of some microorganisms to depolymerize lignin
directly and on the use of microorganism or enzymes that
attack hemicellulose and hence favor subsequent depoly-
merization (Jimenez et al. 1997).

To date, biological bleaching of pulp has been ap-
proached mainly by use of lignolytic (Bajpai and Bajpai
1992; Viikari et al. 1994b) and hemicellulolytic enzymes

(Gubitz et al. 1997; Jimenez et al. 1997; Tenkanen et al.
1997). These enzymes are used commercially for pulp
bleaching. Enzymes also offer a simple approach that 
allows for a higher brightness ceiling to be reached 
(Viikari et al. 1994a). The main enzyme needed to en-
hance the delignification of kraft pulp is endo-β-xylanase,
but enrichment of other enzymes such as mannanase, li-
pase, and α-galactosidase has been shown to improve the
effect of enzymatic treatment of kraft pulp (Elegir et al.
1995; Gubitz et al. 1997; Wong and Saddler 1992). Re-
cently, Clarke et al. (2000) reported a comparative study
of enzyme-aided bleaching of softwood pulp using a com-
bination of xylanase, mannanase, and α-galactosidase.

The mechanism by which xylanases facilitate bleach-
ing is not fully understood. The enzyme does not bleach
pulp, but rather changes the pulp structure. One hypothe-
sis is that they depolymerize hemicellulose precipitated
on the surface of the fiber, thereby opening up the pulp
structure to access by bleaching chemicals (Paice et al.
1992). However, it is also possible that xylanases release
chromophores associated with carbohydrates (Patel et al.
1993). The cleavage of the carbohydrate portion of lig-
nin-carbohydrate complex to produce smaller residual
lignin molecules, which are easier to remove, is also a
possible mechanism of xylanase prebleaching (Wong
and Saddler 1992). Scanning electron-microscopic 
studies of Streptomyces sp. QG-11-3 xylanase-treated
pulp (Fig. 2B) have shown that enzymatic prebleaching
opens up the pulp structure compared with the smooth
surfaces of untreated pulp (Fig. 2A), allowing access of
chlorine and other chemicals used in later treatment 
stages (Fig. 2C) (Beg et al. 2000c). Therefore, enzymatic
prebleaching of kraft pulp appears to be the most suit-

Fig. 2A–D Scanning electron
micrographs of Eucalyptus
kraft pulp. A Untreated euca-
lyptus kraft pulp showing
smooth surfaces on kraft pulp.
B Eucalyptus kraft pulp treated
with xylanase from Streptomy-
ces sp. QG-11-3 showing
swelling and separation of pulp
microfibrils. C Eucalyptus
kraft pulp treated with xylanase
from Streptomyces sp. QG-11-3
followed by chemical treatment
with 4.5% Cl2. D Growth of
Streptomyces sp. QG-11-3 on
eucalyptus kraft pulp fiber
showing extent of penetration
of organism mycelia in the eu-
calyptus kraft pulp
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able step to facilitate bleach boosting of pulp. Xylanase
enzyme can reduce the requirement for oxidizing chemi-
cals by up to 20%–40% (Garg et al. 1998; Vicuna et al.
1997). When Streptomyces sp. QG-11-3 was grown on
eucalyptus kraft pulp, the mycelia penetrated deep inside
the fibers (Fig. 2D) and generated perforations at the site
of attachment. These observations suggest that the addi-
tive effects of xylanase action and growth of microor-
ganism rendered the pulp fibers more accessible to
chemical bleaching agents.

Xylanase selection criteria for biobleaching

Several criteria are essential for choosing a microorgan-
ism to produce xylanases. To give the desired bleaching
effect, the resulting enzyme preparation must be com-
pletely free of any cellulase activity (Srinivasan and Rele
1999; Subramanian and Prema 2000), since any cellulase
activity will have serious economic implications in terms
of cellulose loss, degraded pulp quality, and increased ef-
fluent treatment cost. Other major factors include pH,
temperature, enzyme dosage and dispersion, consistency,
and reaction time. The optimum pH for xylanase treat-
ment varies among enzymes. Generally, xylanases of fun-
gal origin are effective within the acidic pH range of 4–6
(Christov et al. 1999b; Maximo et al. 1998; Silva et al.
1994; Tenkanen et al. 1997), while those derived from ac-
tinomycetes (Garg et al. 1998; Beg et al. 2000c) and bac-
teria (Kulkarni and Rao 1996; Khanongnuch et al. 1999)
are effective in over a broader pH range of 5–9. The opti-
mum temperature for xylanase action ranges between 35
and 60°C. In the mills, xylanase pretreatment takes place
in the brown stock high-density storage tanks, in which
pulp is present at high temperature (approximately 60°C)
and at alkaline pH. Therefore, xylanases that are active
and stable at high temperature and alkaline pH are desir-
able. Thus, screening criteria for xylanases with better
thermostability and possibly higher pH optima have re-
ceived greater attention. To obtain the best results from
enzyme use, enzyme dosage and pulp consistency must
be optimized in each case to obtain effective dispersion
of enzyme (Bajpai 1999). In general, the optimal dose
lies within the range of 2–5 IU/g dry pulp, and 5%–10%
pulp consistency is desirable. Most of the beneficial ef-
fects of xylanase prebleaching can be obtained after only
1–2 h of treatment (Beg et al. 2000c; Gupta et al. 2000).

New developments in xylanase technologies 
and future prospects

Appreciable quantities of xylan are present in materials
released from wood during pulping and pulp processing.
It is presently regarded as waste and often is deposited in
streams and rivers where it is ecologically harmful. Con-
siderable amounts are also present in agricultural resi-
dues. The conversion of xylan to useful products repre-
sents part of our efforts to strengthen the overall eco-

nomics of the processing of the lignocellulose biomass,
and also to develop new ways of energy production from
renewable resources (Biely 1985; Kuhad and Singh
1993).

Several aspects of xylanases have stimulated research
on the study of biochemical, regulatory, and molecular
aspects of xylanolytic enzyme systems (Kulkarni et al.
1999). In order for xylanases to have significant impact
on an industrial scale, they will need to be consistently
effective under various operating conditions. Currently
research is being directed towards the discovery of en-
zymes that are more robust with respect to their pH and
temperature kinetics. Techniques used include protein
engineering by identification of active site residues
through chemical modification, X-ray crystallography
and site-directed mutagenesis (Kulkarni et al. 1999). Re-
alistic cost estimates and improvement in process eco-
nomics are key factors in the commercial success of any
technology. Programs involving microbiologists, bio-
chemical and process engineers in collaboration with the
paper industries should be established to view the overall
perspective and to create effective and functional net-
works that are progressive and result oriented.
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