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Abstract Pyruvate carboxylase is an important an-
aplerotic enzyme replenishing oxaloacetate consumed
for biosynthesis during growth, or lysine and glutamic
acid production in industrial fermentations. We used
regions of homology from pyruvate carboxylase se-
quences of 12 different species (corresponding to the
ATP- and pyruvate-binding sites), to design polymerase
chain reaction (PCR) primers for amplifying a fragment
of the pyruvate carboxylase (pc) gene from C. glutam-
icum genomic DNA. This 850-base-pair fragment was
used to probe a C. glutamicum cosmid library and four
candidate pc cosmids were identified. The fragment was
sequenced and the sequence of the complete gene was
obtained by several rounds of primer synthesis, PCR on
one of the positive cosmids, and sequencing. The
C. glutamicum pc sequence shows 64% homology with
the pc gene of Mycobacterium tuberculosis and 44%
homology with the human pc gene. Regions of ATP,
pyruvate and biotin binding have also been identified.

Introduction

Pyruvate carboxylase is a biotin-dependent enzyme that
catalyzes the carboxylation of pyruvate to form oxalo-
acetate (Attwood 1995; Scrutton 1978). It has an
anaplerotic function and helps replenish the oxaloace-
tate consumed for biosynthesis.
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The two-step reaction mechanism catalyzed by
pyruvate carboxylase is shown below:

Mg *acetyl — CoA

MgATP + HCO; + ENZ-biotin
MgADP + Pi + ENZ-biotin-CO; (1)

ENZ-biotin-CO; + Pyruvate —
ENZ-biotin + oxaloacetate

(2)

In reaction (1) the ATP-dependent biotin carboxylase
domain carboxylates a biotin prosthetic group linked to
a specific lysine residue in the biotin-carboxyl-carrier
protein (BCCP) domain. Acetyl-coenzyme A activates
reaction (1) by increasing the rate of bicarbonate-
dependent ATP cleavage. In reaction (2), the BCCP
domain donates the CO, to pyruvate in a reaction cat-
alyzed by the transcarboxylase domain (Attwood 1995).

To date, pyruvate carboxylase genes have been
cloned and sequenced from four prokaryotes: Rhizobium
etli (Dunn et al. 1996), Bacillus stearothermophilus
(Kondo et al. 1997), Bacillus subtilis (Genbank accession
n0.297025), and Mycobacterium tuberculosis (Genbank
accession n0.Z83018). Pyruvate carboxylase activity has
been measured previously in Brevibacterium lac-
tofermentum (Tosaka et al. 1979) and Corynebacterium
glutamicum (Peters-Wendisch et al. 1997).

Previous research has indicated that the yield and
productivity of the aspartate family of amino acids de-
pends critically on the carbon flux through anaplerotic
pathways (Vallino and Stephanopoulos 1993). On the
basis of the metabolite balances, it can be shown that the
rate of lysine production is less than or equal to the rate
of oxaloacetate synthesis via the anaplerotic pathways.
It has also been shown that lysine production is unaf-
fected in a phosphoenolpyruvate carboxylase (ppc) de-
letion mutant. However, lysine production is reduced in
a pyruvate kinase (pyk) deletion mutant, consistent with
the viewpoint that pyruvate carboxylation is a signifi-
cant anaplerotic activity leading to oxaloacetate pro-
duction. In a ppc pyk double mutant, lysine production



is further decreased to 25% of the wild-type levels. In
this case, the only route for pyruvate formation is via the
phosphoenolpyruvate: glucose transferase system, which
produces one molecule of pyruvate for every molecule of
glucose imported. In the double mutant there is less
pyruvate available for the synthesis of oxaloacetate via
pyruvate carboxylation and this limits the production of
lysine (Park et al. 1997a). The presence of pyruvate
carboxylation activity was also strongly suggested by
3C labeling studies in C. glutamicum. In these experi-
ments, carried out w1th C. glutamzcum fpc pyk and ppc
pyk mutants, [1-'*C]pyruvate or pyruvate was
added to the fermentor and the frdCthIldl 3C enrich-
ment at individual carbon positions of lysine was mea-
sured. The pattern that was observed cannot be
explained by sole operation of phosphoenolpyruvate
carboxylation and supports the model that C. glutam-
icum has a pyruvate-carboxylating activity (Park et al.
1997b). In order to understand fully the role of carbon
flux through the anaplerotic pathway, it is necessary to
clone and sequence the C. glutamicum pyruvate car-
boxylase gene as it has potential importance in increas-
ing lysine and glutamic acid production.

Materials and methods

Bacterial strains and plasmids

C. glutamicum 21253 (hom™, lysine overproducer) was used for the
preparation of chromosomal DNA. Escherichia coli DH5a (hsdR™,
recA”) (Hanahan 1983) was used for transformations. Plasmid
pCR2.1 TOPO (Invitrogen) was used for cloning polymerase chain
reaction (PCR) products. The plasmid pRR850 was constructed in
this study and contained an 850-bp PCR fragment cloned in the
pCR2.1 TOPO plasmid.

Media and culture conditions

E. coli strains were grown in Luria-Bertani (LB) medium at 37 °C
(Sambrook et al. 1989). C. glutamicum was grown in LB medium at
30 °C. Where noted, ampicillin was used at the following concen-
trations: 100 pg/ml in plates and 50 pg/ml in liquid culture.

DNA manipulations

Genomic DNA was isolated from C. glutamicum as described by
Tomioka et al. (1981). PCR fragments were cloned into the pCR2.1
TOPO vector following the manufacturer’s instructions. Cosmid
and plasmid DNA were prepared using Qiaprep spin columns and
DNA was extracted from agarose gels with the Qiaex kit (Qiagen).
For large-scale high-purity preparation of cosmid DNA for se-
quencing, the Promega Wizard kit was used (Promega). Standard
techniques were used for transformation of E. coli and agarose gel
electrophoresis (Sambrook et al. 1989). Restriction enzymes were
purchased from Boehringer Mannheim or New England Biolabs.

Cosmid library

The cosmid library used was kindly provided by Dr. Phil Lessard
(Department of Biology, MIT) and was constructed by cloning C.
glutamicum chromosomal DNA into the Supercos vector (Strata-
gene).

347
Polymerase Chain Reaction (PCR)

PCR was performed using the Boehringer Mannheim PCR core kit
following the manufacturer’s instructions. When PCR was per-
formed on Corynebacterium chromosomal DNA, about 1 ug DNA
was used in each reaction. The forward primer used was
SGTCTTCATCGAGATGAATCCGCG3’ and the reverse primer
used was 5"CGCAGCGCCACATCGTAAGTCGC3’ for the PCR
reaction.

Dot-blot analysis

Dot blots containing DNA from cosmids identified in this study
and the probe as a positive control were prepared using the S&S
(Schleicher & Schiill) minifold apparatus. An 850-bp fragment
encoding a portion of the C. glutamicum pyruvate carboxylase gene
was used as the probe. The probe was labeled with digoxigenin-11-
dUTP (Boehringer Mannheim) in a randomly primed DNA-la-
beling reaction as described by the manufacturer. Hybridization,
washing and colorimetric detection of the dot blots were done with
the Genius system from Boehringer following the protocols in their
user’s guide for filter hybridization. The initial hybridization with
the 291 cosmids was carried out at 65 °C overnight and washes
were performed at the hybridization temperature. For the 17 cos-
mids that were used in the second screen, the hybidization was
carried out at 65 °C, but for only 8 h, and the time of exposure to
the film was decreased.

Detection of biotin-containing proteins by Western blotting

Cell extracts from C. glutamicum were prepared as described by
Jetten and Sinskey (1993). Proteins in cell extracts were separated
in sodium dodecyl sulfate (SDS)/7.5% polyacrylamide gels in a
BioRad mini gel apparatus and were electroblotted onto nitro-
cellusose, using the BioRad mini transblot apparatus described by
Towbin et al. (1979). Biotinylated proteins were detected using
avidin-conjugated alkaline phosphatase from BioRad and 5-bro-
mo-4-chloro-3-indoylphosphate-p-toluidine salt)/nitroblue tetra-
zolium chloride from Schleicher & Schiill.

DNA sequencing

Automated DNA sequencing was performed by the MIT Bio-
polymers facility employing an ABI Prism 377 DNA sequencer.

Sequence analysis

The program DNA Strider Version 1.0 (Institut de Recherche
Fondamentale, France) was used to invert, complement and
translate the DNA sequence, and find open-reading frames in the
sequence. The BLAST program (Altschul et al. 1990) from the
National Center for Biotechnology Information (NCBI) was em-
ployed to compare protein and DNA sequences. Homology
searches in proteins were done using the MACAW software
(NCBI). PCR primers were designed with the aid of the Primer
Premier software from Biosoft International. The compute pI/ MW
tool on the ExPasy molecular biology server (university of Geneva)
was used to predict the molecular mass and pl of the deduced
amino acid sequence.

Results
Western blotting to detect biotinylated enzymes

Since pyruvate carboxylase is known to contain biotin,
we employed Western blotting to detect the production
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of biotinylated proteins by C. glutamicum. We detected
two biotinylated proteins in extracts prepared from cells
grown in LB medium, (data not shown) consistent with
previous reports. One band, located at approximately
80 kDa, has been identified as the biotin-carboxyl-car-
rier domain (BCCP) of the acetyl-CoA carboxylase
(Jager et al. 1996). The second band, at 120 kDa, is
believed to be the pyruvate carboxylase subunit, as these
subunits are in the range 113-130 kDa (Attwood 1995).

PCR and cloning

We chose to clone the C. glutamicum pyruvate carbox-
ylase gene on the basis of the homology of highly con-
served regions in previously cloned genes. We examined
pyruvate carboxylase genes from thirteen organisms and
designed primers corresponding to an ATP-binding
submotif conserved in pyruvate carboxylases and the
region close to the pyruvate-binding motif (Table 1).
Where the amino acids were different the primers were
designed on the basis of M. tuberculosis because of its
close relationship to C. glutamicum. An 850-bp fragment
was amplified from C. glutamicum genomic DNA using
the PCR and cloned in the pCR2.1 TOPO vector of
Invitrogen to construct plasmid pRR850. We also de-
signed primers based on the conserved biotin-binding
site and pyruvate-binding site (data not shown) and tried
to amplify this region from C. glutamicum chromosomal
DNA but these attempts were unsuccessful.

Isolating a cosmid containing
the C. glutamicum pyruvate carboxylase gene

The 850-base-pair fragment containing a portion of the
C. glutamicum pyruvate carboxylase gene was used to

Fig. 1 Dot-blot hybridization
results for the 17 cosmids that
appeared positive in the first
screen. The cosmids ITE9,

IITF 10, ITIG7 and IIIB7 were
chosen for further analysis. The
probe was included as a positive
control

Table 1 Pyruvate carboxylase sequences from 13 organisms (ob-
tained from GenBank) were aligned using the MACAW software.
Two highly conserved regions were selected and oligonucleotide
primers were designed on the basis of the Mycobacterium tu-
berculosis DNA sequence corresponding to these regions. The
forward primer was based on the DNA sequence corresponding to
conserved region A and the reverse primer was based on the DNA
sequence corresponding to conserved region B

Organism Conserved Conserved
region A region B

Caenorhabditis elegans YFIEVNAR ATFDVSM
Aedes aegypti YFIEVNAR ATFDVAL
Mycobacterium tuberculosis VFIEMNPR ATYDVAL
Bacillus stearothermophilus YFIEVNPR  ATFDVAY
Pichia pastoris YFIEINPR ATFDVSM
Mus musculus YFIEVNSR  ATFDVAM
Rattus norvegicus YFIEVNSR  ATFDVAM
Saccharomyces cerevisiae 1 YFIEINPR ATFDVAM
Saccharomyces cerevisiae 2 YFIEINPR ATFDVAM
Rhizobium etli YFIEVNPR  ATFDVSM
Homo sapiens YFIEVNSR ATFDVAM
Schizosaccharomyces pombe YFIEINPR ATFDVSM

probe a C. glutamicum genomic library. In the first
round of screening, 17 out of 291 cosmids in a dot blot
appeared positive. A second round of screening was
performed on these 17 cosmids, using the same probe
but more stringent hybridization conditions, yielding
four cosmids with a positive signal (Fig. 1). To confirm
that these cosmids indeed contained the pyruvate car-
boxylase gene, we performed PCR using the four posi-
tive cosmids as templates and the same primers used to
make the probe. An 850-bp fragment was amplified
from all four positive cosmids, which we designated
IIIF10, IIE9, I1IG7 and IIIB7.




Sequencing strategy

The 850-bp insert of plasmid pRR850 was sequenced
using the M13 forward and M13 reverse primers. On the
basis of this sequence, primers Begrevl and Endforl
were designed and used to sequence outwards from the
beginning and the end of the 850-bp portion of the
pyruvate carboxylase gene. Cosmid III F10 was used as
the sequencing template. The sequencing was continued
by designing new primers (Table 2) and ‘“walking”
across the gene as shown in Fig. 2.

Sequence analysis

We sequenced 3637 bp of cosmid III F10 and identified
a 3420-bp open reading frame, which is predicted to
encode a protein of 1140 amino acids. The deduced
protein is 63% identical to M. tuberculosis pyruvate
carboxylase and 44% identical to human pyruvate car-
boxylase (Fig. 3), and we named the C. glutamicum gene
pc on the basis of this homology. The deduced protein
has a predicted pl of 54 and molecular mass of
123.6 kDa, which is similar to the subunit molecular
mass of 120 kDa estimated by SDS/polyacrylamide gel
electrophoresis. Upstream of the starting methionine
there appears to be a consensus ribosome binding-site
AAGGAA. The predicted translational start site, based
on homology to the M. tuberculosis sequence, is a GTG
codon, as has been observed in other bacterial sequences
(Stryer 1988; Keilhauer et al. 1993). The DNA sequence
has been submitted to GenBank and has been assigned
the accession number AF038548.

The amino-terminal segment of the C. glutamicum
pyruvate carboxylase contains the hexapeptide
GGGGRG, which matches the GGGG(R/K)G se-
quence that is found in all biotin-binding proteins and is
believed to be an ATP-binding site (Fry et al. 1986; Post
et al. 1990). A second region that is proposed to be in-
volved in ATP binding and is present in biotin-depen-
dent carboxylases and carbamylphosphate synthetase
(Lim et al. 1988) is conserved in the C. glutamicum se-
quence (Fig. 3). The predicted C. glutamicum pyruvate
carboxylase protein also contains a putative pyruvate-
binding motif, FLFEDPWDR, which is conserved in the
transcarboxylase domains of Mycobacterium, Rhizobium
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Table 2 DNA sequences of the primers used to obtain the se-
quence of the pyruvate carboxylase gene in the cosmid I1TF10

Primer name Primer sequence (5'-3')

Begrevl TTCACCAGGTCCACCTCG
Endforl CGTCGCAAAGCTGACTCC
Begrev2 GATGCTTCTGTTGCTAATTTGC
Endfor2 GGCCATTAAGGATATGGCTG
Begrev3 GCGGTGGAATGATCCCCGA
Endfor3 ACCGCACTGGGCCTTGCG
Endfor4 TCGCCGCTTCGGCAACAC

and human pyruvate carboxylases (Dunn et al. 1996).
Tryptophan fluorescence studies with transcarboxylase
have shown that the Trp residue present in this motif is
involved in pyruvate binding (Kumer et al. 1988). The
carboxy-terminal segment of the enzyme contains a
putative biotin-binding site, AMKM, which is identical
to those found in other pyruvate carboxylases as well as
the biotin-carboxyl-carrier protein (BCCP) domains of
other biotin-dependent enzymes (Fig. 3).

Discussion

Previous studies have shown that phosphoenolpyruvate
carboxylase (ppc) is not the main anaplerotic enzyme for
C. glutamicum, since its absence does not affect lysine
production (Gubler et al. 1994; Peters-Wendisch et al.
1993). Moreover, a number of studies have indicated the
presence of a pyruvate-carboxylating enzyme, employ-
ing "*C-labeling experiments and NMR and GC-MS
analysis (Park et al. 1997b; Peters-Wendisch et al. 1996),
or enzymatic assays with cell free extracts (Tosaka et al.
1979) and permeable cells (Peters-Wendisch et al. 1997).
We have detected a very low pyruvate carboxylation
activity in cell-free extracts, but we have not been able to
uncouple this activity from a very high ATP back-
ground. It is highly probable that the activity we have
measured is due to reversible gluconeogenic enzymes,
such as oxaloacetate decarboxylase and malic enzyme.
In this report we have identified and sequenced a gene
encoding pyruvate carboxylase, thus providing un-
equivocal evidence for the existence of this enzyme in C.
glutamicum. The presence of pyruvate carboxylase
makes it highly unlikely that the gluconeogenic enzymes

Fig. 2 The strategy used for Endforl Endfor2 Endfor3 Endfor4
sequencing cosmid IITF10. The 10 — > —_— —> @ —>

850-bp fragment was first se- 5 ATP submotif TCD Biotin g
quenced and primers Endforl,

Endfor2, Endfor3 and Endfor4 % | | | ” E::q |
were used to obtain the se- -

quence on one side of the 850- < < ‘B 1

bp fragment and primers Beg- Begrev3  Begrev2 egrev

revl, Begrev2 and Begrev3 were : 850bp

used to obtain the sequence on

the other side of the 850-bp 0 1 2 3 4

fragment |
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mentioned above can serve the anaplerotic needs of this
strain.

The deduced amino acid sequence of the C. glutam-
icum pyruvate carboxylase gene has significant similarity
to the pyruvate carboxylase sequences from a diverse
group of organisms. It contains a biotin carboxylase
domain in its N-terminal region, a BCCP domain in its
C-terminal region, and a transcarboxylase domain with
a binding site specific for pyruvate in its central region.
The C. glutamicum pyruvate carboxylase protein showed
strong homology to M. tuberculosis and the human
pyruvate carboxylase (Wexler et al. 1994). While this
work was in progress the pyruvate carboxylase gene was
cloned and sequenced from C. glutamicum strain ATCC
13032 (Peters-Wendisch et al. 1998).

There are precedents to our finding that C. glutam-
icum contains more than one enzyme to perform the
anaplerotic function of regenerating oxaloacetate.
Pseudomonas  citronellolis, Pseudomonas fluorescens,
Azotobacter vinelandii and Thiobacillus novellus contain
both ppc and pyruvate carboxylase (O’Brien et al. 1977;
Scrutton and Taylor 1974; Milrad de Forchetti and
Cazzulo 1976; Charles and Willer 1984). Zea mays
contains three isozymes of ppc (Toh et al. 1994) and
Saccharomyces cerevisiae contains two isozymes of
pyruvate carboxylase (Brewster et al. 1994), each dif-
ferentially regulated. With the present discovery of the
existence of a pyruvate carboxylase gene in C. glutam-
icum, the number of enzymes that can interconvert
phosphoenolpyruvate (PEP), oxaloacetate and pyruvate
in this strain rises to six (Fig. 4). This presence of all six
enzymes in one organism has not been reported previ-
ously. P. citronellolis contains a set of five enzymes that
interconvert oxaloacetate, PEP and pyruvate, namely
pyruvate kinase, PEP synthetase, PEP carboxylase, ox-
aloacetate decarboxylase and pyruvate carboxylase
(O’Brien et al. 1977). Azotobacter contains all the above

OPO3H

O
COOH 5
—_—>
HOW 46—
fe) CHj3 COOH
OAA pyruvate

Fig. 4 The metabolic pathways for the interconversion of oxaloac-
etate (OAA), phosphoenolpyruvate (PEP) and pyruvate in C. glutam-
icum. Enzymes: [ pyruvate kinase, 2 phosphoenolpyruvate
carboxykinase, 3 phosphoenolpyruvate carboxylase, 4 phospho-
enolpyruvate synthetase, 5 oxaloacetate decarboxylase, 6 pyruvate
carboxylase
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enzymes except PEP synthetase (Scruton and Taylor
1974).

The presence in C. glutamicum of the six metaboli-
cally related enzymes suggests that the regulation of
these enzymes through effectors is important. Biochem-
ical and genetic study of all six enzymes in coordination
with other downstream activities may lead to the eluci-
dation of the exact procedures necessary for maximizing
the production of primary metabolites by this industri-
ally important organism.
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