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Abstract Clostridial acetone/butanol fermentation used
to rank second only to ethanol fermentation by yeast in
its scale of production and thus is one of the largest
biotechnological processes known. Its decline since
about 1950 has been caused by increasing substrate costs
and the availability of much cheaper feedstocks for
chemical solvent synthesis by the petrochemical indus-
try. The so-called oil crisis in 1973 led to renewed interest
in novel fermentation and product recovery technologies
as well as in the metabolism and genetics of the bacterial
species involved. As a consequence, almost all of the
enzymes leading to solvent formation are known, their
genes have been sequenced (in fact, Clostridium
acetobutylicum has been recently included in the micro-
bial genome sequencing project), the regulatory mecha-
nisms controlling solventogenesis have begun to emerge
and recombinant DNA techniques have been developed
for these clostridia to construct speci®c production
strains. In parallel, cheap agricultural-waste-based
feedstocks have been exploited for their potential as
novel substrates, continuous culture methods have been
successfully established and new on-line product recov-
ery technologies are now available, such as gas stripping,
liquid/liquid extraction, and membrane-based methods.
In combination with these achievements, a reintroduc-
tion of acetone/butanol fermentation on an industrial
scale seems to be economically feasible, a view that is
supported by a new pilot plant in Austria recently
coming into operation.

History

The ®rst account of biological butanol synthesis stems
from Louis Pasteur. In 1861 he isolated a butyric-acid-
forming bacterium and named it Vibrion butyrique. This
organism was unable to grow in the presence of air; later
it became evident that oxygen was the proper toxic
compound. This led to the term ``anaerobic'' to describe
this type of metabolism (Pasteur 1861a, b, 1863). Fur-
ther studies revealed that, in addition to butyrate, the
solvent butanol was formed (Pasteur 1862). Pasteur did
not investigate the physiology of this anaerobe, but a
few years later Albert Fitz from Straûburg published a
series of papers on bacterial glycerol fermentation.
Major products found were butyrate and butanol, and
Fitz designated his culture (presumably in pure form)
Bacillus butylicus (Fitz 1876, 1878, 1882). The well-
known dutch microbiologist Martinus Beijerinck also
isolated two butanol-forming bacteria, Granulobacter
butylicus and Granulobacter saccharobutyricum, the lat-
ter being probably identical to Fitz's organism (Beijer-
inck 1893). The bacterial production of acetone and
isopropanol was discovered more than 10 years later
(Pringsheim 1906a, b; Schardinger 1904, 1905, 1907). A
detailed account of the history of the description and
isolation of solvent-forming bacteria has been published
recently (DuÈ rre and Bahl 1996). The designation Clos-
tridium was reintroduced by Adam Prazmowski, who
referred to a former publication by TreÂ cul (Prazmowski
1880). However, it was only in 1926 that the name
Clostridium acetobutylicum was validly published (Mc-
Coy et al. 1926).

At the beginning of the 20th century, prices for nat-
ural rubber increased dramatically because of the high
demand, which led to intensive research e�orts to pro-
duce a synthetic substitute. In England, the company
Strange &Graham Ltd., together with Professor William
Perkin from Manchester University and his assistant
Chaim Weizmann, later the president of the state of
Israel, wanted to solve the problem by isolating a
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bacterium that produced 3-methylbutan-1-ol (isoamyl
alcohol) (Weizmann 1951; Jones and Woods 1986). It
was during the course of this work that Weizmann iso-
lated strain BY, subsequently identi®ed as C. acetobu-
tylicum and similar to Fitz's organism, which produced
large amounts of acetone and butanol (Gabriel 1928). He
patented the process (Weizmann 1915) and it turned out
to play an important role in World War I. Acetone was
needed for the manufacture of the smokeless gunpowder
cordite, but the war meant that England was unable to
import large amounts of calcium acetate, the feedstock
for acetone production. The bacterial fermentation
opened a way of synthesizing large quantities of this
solvent, although it was necessary to transfer the tech-
nology to Canada and the United States, in 1916 and
1917 respectively, because of a shortage of the substrate
maize in England (Jones and Woods 1986). Weizmann
refused special honors by the British Government, but
made clear that he was in favour of the idea of a Jewish
homeland in Palestine. There is no doubt that his merits
contributed substantially to the Balfour Declaration in
1917. As a consequence, the State of Israel was founded
in 1948, and ChaimWeizmann became its ®rst President.

After the armistice in 1918 there was no further de-
mand for acetone, and the fermentation process was
about to be abandoned. All the butanol that been pro-
duced along with acetone was considered a by-product
and kept in large storage tanks. However another his-
toric event caused an even greater interest in the bio-
logical solvent synthesis. Henry Ford introduced new
methods of automobile production in the United States.
As a consequence, more and more cars were produced,
which needed to be painted, and amyl acetate served as a
solvent for the various lacquers. The feedstock for this
substance was amyl alcohol, which had been obtained as
a by-product of alcoholic fermentation by yeast. How-
ever, in 1920 prohibition became e�ective in the USA,
and no more amyl alcohol was available. Fortunately, it
turned out that butyl acetate, derived from butanol as
the feedstock, was ideally suited as a solvent for lacquers
and could thus replace amyl acetate. New plants were
built, and the isolation of molasses-fermenting strains
even increased the plant capacity by 60% (Hastings
1978). At its peak capacity in 1927, the Commercial
Solvents Corp. plant in Peoria (USA) ran 96 production
fermentors with a volume of 189 250 l each (Gabriel
1928), representing the largest fermentation facility for
solvent formation. In 1945, 66% of the total butanol and
10% of the total acetone production were obtained by
the biotechnological process (Rose 1961), ranking it
second in importance to ethanol fermentation by yeast.
During World War II, the pendulum swung back to-
wards acetone synthesis, but soon after 1945 the decline
of the fermentation began as a result of economic
competition from the petrochemical industry. In South
Africa, National Chemical Products operated a plant
with a capacity of twelve 90 000-l fermentors (Spivey
1978), which was closed in 1982 (Jones and Woods

1986), whereas in China about 50% of the acetone re-
quirements are still met by fermentation (Santangelo
and DuÈ rre 1996).

In order to reintroduce an economically competitive
biological process, three major drawbacks must be
overcome

i. The high costs of the substrate (e. g. molasses)
ii. The low product concentration (about 2% because of
solvent toxicity)

iii. The high product recovery costs (distillation has been
used in the past).

This article will try to summarize the recent results of
research on organisms, their physiology and genetics,
and new developments in fermentation technology that
could potentially allow the establishment of a new in-
dustrial process.

Strains and species

Starting with Pasteur, a variety of names have been
associated with butanol-producing clostridia. In addi-
tion to the designations mentioned, impressive lists can
be found in other reviews (Beesch 1952; DuÈ rre and Bahl
1996). Many new isolates were described when molasses
replaced starch as the substrate. The problem seemed to
be solved by a tacit agreement to refer to acetone/
butanol-producing species as C. acetobutylicum and to
acetone/butanol/isopropanol-forming organisms as
C. beijerinckii (formerly C. butylicum). However, it later
became obvious that at least some C. beijerinckii strains
did not synthesize isopropanol (George et al. 1983).
Starting in 1990, international workshops on the regu-
lation of metabolism, genetics and the development of
the solvent-forming clostridia (Clostridium I±V) were
regularly held (at Salisbury in 1990, Blacksburg in 1992,
Evanston in 1994, Ulm in 1996, Toulouse in 1998) and
brought together all the people working in this ®eld.
Participants soon realized that data reported for strains
presumed to be identical were very di�erent. This also
included the type strain of C. acetobutylicum preserved
in di�erent culture collections (ATCC 824, DSM 792,
NCIMB 8052). As a consequence, a detailed taxonomic
and phylogenetic study of all available butanol-forming
clostridial strains was launched. The results of the two
groups working on this project were identical and clearly
showed that there are four di�erent major taxonomic
groups (Johnson and Chen 1995; Jones and Keis 1995;
Keis et al. 1995; Johnson et al. 1997). Of the above-
mentioned strains, ATCC 824 and DSM 792 still rep-
resent C. acetobutylicum, whereas NCIMB 8052 is now
considered to belong to C. beijerinckii. Thus, one should
be cautious when comparing older data from ``C. ace-
tobutylicum''. Only strains of taxonomic group I repre-
sent this species. As a consequence, this review will only
include data of properly described strains that can be
classi®ed correctly.
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Enzymatic reactions of substrate degradation
and product formation

C. acetobutylicum is able to use polymeric substrates
such as starch and xylan, but not cellulose, for growth
(Mitchell 1998). The degradation of starch is mediated
by an a-amylase that has been puri®ed (Paquet et al.
1991), and genetic data indicate the presence of at least
one additional a-amylase gene (Verhasselt and Vander-
leyden 1992; Gerischer and DuÈ rre 1990). Larch wood
xylan is only partially hydrolysed by the action of
endoxylanases and a b-D-xylosidase (Lee et al. 1985,
1987, Lemmel et al. 1986). C. beijerinckii also grows on
starch and employs the catalytic activities of glucoam-
ylase and a-amylase (Ensley et al. 1975).

Glucose uptake in both species is mediated by phos-
photransferase systems (Hutkins and Kashket 1986;
Mitchell et al. 1991; Mitchell 1996). The pathway of
sugar degradation has not been determined unequivo-
cally, but it is likely that C. acetobutylicum and C. bei-
jerinckii employ glycolytic reactions of the Embden-
Meyerhof-Parnas type, as do most clostridia (Rogers
and Gottschalk 1993). An important characteristic of
this fermentation is that di�erent phases are observed.
During exponential growth acids are formed almost
exclusively, whereas solventogenesis is initiated at the
transition to the stationary growth phase, when even the
previously produced acids are partly taken up again and
transformed into solvents. A scheme of the reactions
leading from starch or sugars to solvents, acids and
gases is shown in Fig. 1.

The respective enzymes have been described exten-
sively in recent reviews (Chen 1993; DuÈ rre and Bahl
1996) and are therefore not dealt with in this article.
Table 1 provides an updated list of puri®ed proteins and
their main properties from strains that can be unequiv-
ocally assigned to either C. acetobutylicum or C. bei-
jerinckii. A remarkable feature is that many enzymes
that have specialized in certain functions seem to exist in
similar forms. Acetic and butyric acid are synthesized
from the respective acyl-CoA derivatives by the con-
secutive action of phosphotransacylases and kinases. Of
these four enzymes, phosphotransbutyrylase, butyrate
kinase and acetate kinase have been puri®ed from
C. acetobutylicum (Table 1). Although the kinases are
similar in size and catalyse an analogous reaction, they
show an extremely high substrate speci®city (Winzer
et al. 1997). Another example is represented by the
thiolase reaction, which is catalysed by two di�erent
enzymes, the physiological function of the second one
still waiting to be determined (Winzer 1995). Also, be-
sides the aldehyde dehydrogenase activity of the multi-
functional aldehyde/alcohol dehydrogenase E, a
separate NADH-dependent butyraldehyde dehydroge-
nase can be found in C. acetobutylicum, which has been
recently puri®ed (Schreiber and DuÈ rre 1996). Finally,
both C. acetobutylicum and C. beijerinckii employ at
least three di�erent alcohol dehydrogenases each. In the

former, alcohol dehydrogenase E (AdhE) is active only
at the onset of solventogenesis, whereas butanol dehy-
drogenase II (Bdh II) is the proper production enzyme.
Bdh I seems to be involved in a low-level butanol for-
mation (Sauer and DuÈ rre 1995) that could be a kind of
emergency reaction to get rid of reducing equivalents. In
addition, there is an NADPH-dependent enzyme that
catalyses ethanol formation (Sauer et al. 1993). In
C. beijerinckii, a primary/secondary alcohol dehydroge-
nase is responsible for isopropanol production, whereas
the physiological role of three di�erent primary alcohol
dehydrogenases remains to be determined (Chen 1995).

Fermentation process and product recovery

In the past, acetone/butanol fermentation has been op-
erated as a batch process followed by distillation to
obtain the desired products. Typical yields were 15±18 g

Fig. 1 Fermentation pathways in solventogenic clostridia. Circled
numbers refer to the enzymes employed: 1 amylase; 2 phos-
phoenolpyruvate phosphotransferase systems and glycolytic enzymes
of the Embden-Meyerhof-Parnas pathway; 3 pyruvate:ferredoxin
oxidoreductase; 4 thiolase; 5 3-hydroxybutyryl-CoA dehydrogenase; 6
crotonase; 7 butyryl-CoA dehydrogenase; 8 phosphotransbutyrylase;
9 butyrate kinase; 10 phosphotransacetylase; 11 acetate kinase;
12 hydrogenase; 13 lactate dehydrogenase; 14 butyraldehyde
dehydrogenase and aldehyde/alcohol dehydrogenase E; 15 butanol
dehydrogenase and aldehyde/alcohol dehydrogenase E; 16 acetoace-
tyl-CoA:acetate/butyrate coenzyme-A transferase; 17 acetoacetate
decarboxylase; 18 primary/secondary alcohol dehydrogenase; 19
acetaldehyde dehydrogenase; 20 ethanol dehydrogenase. The dashed
line to isopropanol indicates that only some strains of C. beijerinckii
are able to perform this reaction
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solvents/l within a period of 40±60 h (Woods 1995). It
has been estimated that, under the same conditions, an
increase to 22±28 g/l would be required to make the
biological synthesis economically competitive again
(Woods 1995). Market prices for fermentation products
have been provided by Lenz and Moreira (1980), in-
cluding butanol (U.S.$0.53/kg), acetone ($0.44/kg),
ethanol ($0.40/kg), hydrogen ($0.29/kg) and carbon di-
oxide ($0.11/kg). Provision of substrates makes up
about 63% of the total costs (Lenz and Moreira 1980),
so that a variety of alternative compounds have been
checked out for their ability to replace the now expensive
molasses. As already mentioned, C. acetobutylicum is
unable to degrade cellulose. Use of a coculture including
a mesophilic cellulolytic Clostridium has been suggested
(Fond et al. 1983) and genetic approach aimed at the
transfer of cellulase genes from other organisms into the
solventogenic clostridia in order to broaden the sub-
strate spectrum (see next section for details). Traditional
attempts to improve this part of the production process
have involved the testing of a variety of alternative
materials for use in the acetone/butanol fermentation.
Peat and palm oil mill e�uent proved to be partially
consumed by C. beijerinckii and C. aurantibutyricum,
respectively (Forsberg et al. 1986; Sombrutai et al.
1996), but probably could only play a role in very special

cases. More emphasis should be given to lignocellulose
and waste products of the agricultural and dairy indus-
try (Table 2). Substrate costs could thus be drastically
reduced, especially if the chosen strain allows versatility
in its usage of di�erent carbon sources.

The other possibility to improve the traditional pro-
cess is to reduce costs of product recovery. Membrane-
based systems, such as reverse osmosis, perstraction,
pervaporation and membrane evaporation, as well as
liquid/liquid extraction, adsorption and gas stripping,
have been compared (Ennis et al. 1986; Groot et al.
1992). There is no easy answer to the question of which
technology is most suitable (Table 3). Membrane-based
systems show a high selectivity for solvents, but might
su�er from clogging and fouling and seem to be more
suited for use with immobilized cells. Liquid/liquid ex-
traction also has a high selectivity, but emulsions might
form that render the process less suitable. On the other
hand, gas stripping does not lead to complete removal of
solvents from the fermentation broth (Mollah and
Stuckey 1993), but nor does it su�er from particulate
substrates or from clogging or fouling by biomass. All
these procedures can be designed to allow on-line
product recovery, so that butanol toxicity, the third
major problem of the traditional process, is reduced. So
far, there exist no published reports on strains that are

Table 1 Puri®ed enzymes of solventogenic clostridia involved in substrate degradation and product formation. ND not determined, ± not
available

Enzyme Native molecular mass
(kDa)/subunit size(s) (kDa)

Accession number
of sequenced gene

Reference

C. acetobutylicum
Endoxylanase A 65/65 ± Lee et al. 1987
Endoxylanase B 29/29 ± Lee et al. 1987
a-Amylase 83/84 M34078 Paquet et al. 1991
Xylosidase 224/85, 63 ± Lee and Forsberg 1987a
Arabinofuranosidase 94/94 ± Lee and Forsberg 1987b
Lactate dehydrogenase 159/36 ± Freier and Gottschalk 1987
Pyruvate:ferredoxin oxidoreductase ND/123 ± Meinecke et al. 1989
Thiolase ND/44 U08465 Wiesenborn et al. 1988
Crotonase 158/40 U17110 Waterson et al. 1972
Phosphotransbutyrylase 264/31 L14744 Wiesenborn et al. 1989a
Butyrate kinase 85/39 L14744 Hartmanis 1987
Acetate kinase 87/43 U38234 Winzer et al. 1997
Coenzyme-A transferase 93/24, 23 M34078, M93363 Wiesenborn et al. 1989b
Acetoacetate decarboxylase 330/28 M34078, M93363 Gerischer and DuÈ rre 1990,

Petersen and Bennett 1990
NADH:rubredoxin oxidoreductase ND/41 ± Petitdemange et al. 1979
Butyraldehyde dehydrogenase ND/40 ± Schreiber and DuÈ rre 1996
Alcohol dehydrogenase (NADPH) ND/44 ± Sauer et al. 1993
Butanol dehydrogenase I ND/42 M96945 Petersen et al. 1991
Butanol dehydrogenase II ND/42 M96946 Welch et al. 1989

C. beijerinckii
b-Hydroxybutyryl-CoA dehydrogenase 213/31 ± Colby and Chen 1992
Phosphotransbutyrylase 205/33 ± Thompson and Chen 1990
Coenzyme-A transferase 85/28, 23 ± Chen 1993
Butyraldehyde dehydrogenase 115/56 ± Palosaari and Rogers 1988

100/55 ± Yan and Chen 1990
Alcohol dehydrogenase 1 ND/42 ± Chen 1995
Alcohol dehydrogenase 2 ND/45, 42 ± Chen 1995
Alcohol dehydrogenase 3 ND/45 ± Chen 1995
Primary/secondary alcohol dehydrogenase ND/39 M84723 Chen 1995
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highly butanol-resistant and still produce large amounts
of solvents.

Recently an attempt has been made to reconstitute an
industrially viable process by use of the new develop-
ments described above. Richard Gapes from the Tech-
nical University of Vienna initiated the construction of a
pilot plant for acetone/butanol fermentation within the
facilities of a distillery in Starrein, Austria. The process
is based on the group's experience with solvent forma-
tion by C. beijerinckii NRRL B-592 (Gapes et al. 1996).
The pilot plant will be operated as a continuous two-
stage culture, with reactor working volumes of

approximately 50 l and 300 l and two feed tanks of
3500 l each (R Gapes, personal communication). Sub-
strates will be low-cost agricultural starchy material
(low-grade potatoes, potato cutting waste, potato pulp
and juice from starch production, maize, rye and, later
on, possibly hydrolysates, domestic waste etc.). Potatoes
are steam-exploded, treated with a-amylase and steril-
ized, whereas maize and rye are milled before steriliza-
tion. No further growth additives are required (R Gapes,
personal communication). Product separation is planned
by gas stripping with heating of the e�uent to approx-
imately 70 °C and condensation of the solvent/water

Table 2 Economically interesting novel substrates for clostridial solvent fermentation

Substrate Carbon components Organism Reference

Apple pomace Fructose, glucose, sucrose C. beijerinckii Voget et al. 1985
Jerusalem artichokes Polyfructans C. beijerinckii Marchal et al. 1985
Lignocellulose Cellulose, xylan C. acetobutylicum Maddox and Murray 1983,

Marchal et al. 1986
Whey Lactose C. acetobutylicum

C. beijerinckii
Maddox et al. 1993

Low-grade potatoes Starch C. beijerinckii R. Gapes, personal communication
Rye Starch C. beijerinckii R. Gapes, personal communication
Peat Mainly cellulose, xylan C. beijerinckii Forsberg et al. 1986
Palm oil mill e�uent Mainly oil, cellulose, starch, xylan C. aurantibutyricum Sombrutai et al. 1996

Table 3 Novel product recovery techniques for clostridial solvent fermentation, Data are based on reports by Ennis et al. (1986), Gapes
et al. (1996), Groot et al. (1992), and Maddox et al. (1993)

Method Principle Advantage Disadvantage

Adsorption Adherence of solvents to
e.g. silicalite or ion-exchange
resins, heat regeneration

High price of material,
low capacity, low selectivity,
possible fouling

Gas stripping Heating of e�uent, purging with gas,
condensation of solvent/water
vapours

Simple to perform, low chance
of clogging or fouling

Low selectivity, no complete
removal of solvents, more
energy required compared
to membrane-based processes

Liquid/liquid
extraction

Contact of water-immiscible
solvent with fermentation
broth, recovery of dissolved
acetone/butanol/isopropanol
by distillation

High capacity, high selectivity,
low chance of clogging
or fouling

Expensive to perform, possible
forming of emulsions

Membrane
evaporation

Selective di�usion of solvents
across a porous membrane,
recovery of evaporated vapours
by applying vacuum and
condensation

Smaller membrane area
required compared to
pervaporation,
simple to perform

Possible clogging or fouling

Perstraction Similar to liquid/liquid extraction,
with a membrane separating
fermentation broth and extractant

High selectivity,
simple to perform

Large membrane area required,
possible clogging or fouling

Pervaporation Selective di�usion of solvents across
a non-porous membrane,
recovery of evaporated vapours
by applying vacuum or sweep gas

High selectivity compared
to membrane evaporation,
simple to perform

Lower membrane ¯ux compared
to membrane evaporation,
possible clogging or fouling

Reverse osmosis High-pressure separation of dilute
aqueous solution into a concentrated
one and pure water by use of a
semipermeable membrane,
distillation of concentrated solution

Lower costs than conventional
distillation

Possible clogging or fouling
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vapours. Testing of the plant is already under way, and
the operational start is planned for spring 1998. The
results are expected to provide conclusive evidence of the
costs of a ``novel'' acetone/butanol fermentation and its
economic competitiveness with petrochemical solvent
synthesis.

Genetics and metabolic engineering

Cloning of genes from a clostridial solvent producer was
®rst reported in 1986 from David Woods' laboratory in
Cape Town (for a review see Young et al. 1989), al-
though the organism used (strain P262) is no longer
considered to belong to C. acetobutylicum. Similarly,
another early report on cloning (Efstathiou and Tru�aut
1986) referred to a bacterium that has not yet been
properly classi®ed. Thus, phosphotransbutyrylase and
butyrate kinase were the ®rst genes to cloned from
C. acetobutylicum (Cary et al. 1988). During the last
decade, sequences of almost all the genes of solvent- and
acid-forming enzymes have become known (Papoutsakis
and Bennett 1993; Bennett and Rudolph 1995; DuÈ rre
et al. 1995; Boynton et al. 1996a). Physical maps of the
chromosome have been established for both C. aceto-
butylicum and C. beijerinckii (Cornillot et al. 1997a;
Wilkinson and Young 1995). In addition, a variety of
nucleotide sequence data referring to heat-shock
response, potassium transport, primary metabolism,
sigma factors, sporulation and other areas have been
published that cannot be dealt with in the limited space
of this article. Most important: C. acetobutylicum has
been included in the list of microbes the genomes of
which are going to be sequenced. Recently, Genome
Therapeutics Corp. Genome Sequencing Center (USA),
as a component of the Department of Energy (DOE)
Microbial Genome Project (USA), has made publically
available the raw data obtained so far through the inter-
net (http://www.cric.com/htdocs/sequences/clostridium/
clospage.html), and the interested reader is referred to
this site for additional information. Given the speed of
modern sequencing technology the complete genome of
C. acetobutylicum will probably be published in 1998.

Genes of acidogenic enzyme pairs such phospho-
transacetylase/acetate kinase and phosphotrans-
butyrylase/butyrate kinase are clustered in both
C. acetobutylicum and C. beijerinckii (Boynton et al.
1996b; Walter et al. 1993; Oultram et al. 1993). Simi-
larly, genes encoding solventogenic proteins are grouped
together, as in the so-called sol operon, adhE-ctfA-ctfB,
of C. acetobutylicum (encoding a multifunctional alde-
hyde/alcohol dehydrogenase and a coenzyme-A trans-
ferase). Adjacent to this locus, but with convergent
direction of transcription, the monocistronically organ-
ized acetoacetate decarboxylase gene has been found
(DuÈ rre et al. 1995). Recently it was reported that this
whole region is located on a 210 ´ 103-base-pair circular
plasmid (Cornillot and Soucaille 1996; Cornillot et al.
1997b), the potential loss of which nicely explains the

long known e�ect of strain degeneration (decreased
ability or complete loss of solvent formation upon re-
peated subculturing) (Stim-Herndon et al. 1996; Cor-
nillot et al. 1997b). Genes for the other two butanol
dehydrogenases (bdhA encoding Bdh I, bdhB encoding
Bdh II) are also clustered, but form di�erent operons
(Walter et al. 1992) residing on the chromosome (Cor-
nillot et al. 1997a). RNA analyses veri®ed that the adc,
bdhA, bdhB and, in addition, thlA, hsp18 and lyc genes
(the latter three encoding a thiolase, a heat-shock pro-
tein and an autolysin) as well as the sol operon are in-
duced shortly before solvents can be detected in the
medium (Gerischer and DuÈ rre 1992; Walter et al. 1992;
Sauer and DuÈ rre 1995; Winzer 1995). However, it is not
yet known how this transcriptional regulation is medi-
ated. A variety of di�erent environmental conditions is
required for solventogenesis to start, which include ex-
cess of substrate, pH below 4.5, threshold concentra-
tions of acetate and/or butyrate and growth-limiting
amounts of suitable salts (phosphate or sulphate) that all
are known to a�ect DNA topology directly. Therefore,
it has been proposed that DNA supercoiling might be
the trigger for the onset of solvent formation (DuÈ rre
et al. 1995). Support for this hypothesis comes from
recent reports stating that DNA from C. acetobutylicum
becomes less negatively supercoiled when entering the
solventogenic stage and that transcription of genes
encoding solventogenic enzymes is speci®cally induced
upon inhibition of DNA gyrase, an enzyme that intro-
duces negative supercoils (Wong and Bennett 1996;
Ullmann et al. 1996). The recent cloning of the clostri-
dial gyrase genes (Ullmann and DuÈ rre 1996) should al-
low a modulated expression in vivo, and thus
unequivocal evidence for an essential role of the degree
of DNA supercoiling in the induction of acetone and
butanol synthesis. It should be kept in mind, however,
that changes in DNA topology can only a�ect the ®rst
step of the regulatory cascade (transcription of the adc
and sol operons; Sauer and DuÈ rre 1995). Genes that are
turned on later (such as bdhB) must be induced by help
of regulator proteins. Several di�erent e�ectors and
models have been suggested that might be involved in
this stage of control (Boynton et al. 1994; Girbal et al.
1995; Grupe and Gottschalk 1992; Meyer and Pap-
outsakis 1989; Rao and Mutharasan 1989).

Enormous progress has been made in the last few
years with respect to genetic manipulation of the sol-
ventogenic clostridia (DuÈ rre and Bahl 1996). Transpo-
son mutagenesis has been established (Bertram and
DuÈ rre 1989; Bertram et al. 1990; Woolley et al. 1989).
Plasmids based on pAMb1, pIM13, or pCBU2 replicons
are all maintained stably in C. acetobutylicum and rep-
resent the vectors of choice (Lee et al. 1992; Minton et al.
1993). In vivo methylation of plasmid DNA before
transformation is important to prevent restriction by a
clostridial endonuclease (Mermelstein and Papoutsakis
1993). Electroporation has proven to be an e�cient and
relatively easy method of DNA transfer into C. aceto-
butylicum and C. beijerinckii (Mermelstein et al. 1992;
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Oultram et al. 1988; Birrer et al. 1994). Plasmid copy
number in C. acetobutylicum varies between approxi-
mately 7 (pIM13 replicon) and 14 (pCBU2 replicon)
(Lee et al. 1993), but it should be noted that there is a
distinct e�ect of the presence of vectors on product
formation. Such plasmid-carrying strains produce more
solvents and fewer acids than the wild type (Walter et al.
1994a). The opposite e�ect (low levels of solvent syn-
thesis of recombinant strains) has also been found when
the tetracycline-resistance marker tetM is used instead of
an erythromycin-resistance-encoding gene (Ullmann
1995). Using this repertoire of techniques several ap-
proaches to metabolic design have been recently studied.
Inactivation of adhE/aad drastically reduced butanol
production (Green and Bennett 1996) but, upon trans-
formation of this gene into a solvent-negative mutant,
the alcohol-forming ability could be restored (Nair and
Papoutsakis 1994). Similarly, a decrease of acid
synthesis caused by disruption of either phospho-
transacetylase or butyrate kinase genes has been re-
ported (Green et al. 1996), while increased production of
butyrate could be achieved in a recombinant strain
carrying a plasmid with additional phosphotrans-
butyrylase and butyrate kinase genes (Walter et al.
1994b). Enhanced acetone production could be observed
upon transformation with arti®cially constructed ace-
tone formation operons (consisting of the adc and ctfA/
B genes under control of the adc promoter) (Mermel-
stein et al. 1993; Guillot 1997). Finally, the ®rst steps
have been taken to broaden the substrate range of sol-
ventogenic clostridia to include utilization of cellulose by
transfer of endoglucanase genes from C. cellulovorans
and C. thermocellum (Minton et al. 1993; Kim et al.
1994). However, so far no cellulolytic recombinant
strains have been constructed.

Conclusion

This article has tried to summarize the recent discoveries
and developments in both scienti®c and engineering as-
pects of the historically important clostridial solvent
fermentation. Basic scienti®c research has elucidated
most of the respective metabolic reactions and their
regulation and provided the basis for strain and process
improvement by genetic manipulation and substrate
choice. Novel developments in product recovery opened
the way for a competitive biological solvent synthesis.
The establishment of a pilot plant might mark the ®rst
step to a successful reintroduction of this biological
process on an industrial scale. However, it needs to be
mentioned that there are additional uses of the sol-
ventogenic clostridia. Even if a generally enhancing role
in oil recovery (Behlulgil et al. 1992) might be ques-
tioned, exciting recent results document the feasibility of
using C. beijerinckii as a highly speci®c delivery system
for cancer gene therapy (Minton et al. 1995; Fox et al.
1996; Lemmon et al. 1997). Thus, the biotechnological

potential of solventogenic clostridia is gaining industrial
importance again, not only in bulk chemical production
but also for medical treatments.
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