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Abstract While plasmids were originally considered to
be generally circular until almost two decades ago, linear
elements were reported to exist as well. They are now
known to be common genetic elements in both, pro- and
eukaryotes. Two types of linear plasmids exist, the so-
called hairpin plasmids with covalently closed ends and
those with proteins bound to their 5” termini. Hairpin
plasmids are common in human-pathogenic Borrelia
spirochetes, in which they are instrumental in escape
from the immunological response; cryptic hairpin ele-
ments are present in mitochondria of the plant patho-
genic fungus Rhizoctonia solani. Plasmids with 5’
attached proteins constitute the largest group. In actin-
omycetous bacteria they are conjugative and usually
confer advantageous phenotypes, e.g. formation of an-
tibiotics, degradation of xenobiotics, heavy-metal resis-
tance and growth on hydrogen as the sole energy source.
In contrast, the majority of linear plasmids from
eukaryotes are cryptic, with only a few exceptions. In
some yeasts a killer phenotype may be associated, the
most thoroughly investigated elements being those from
Kluyveromyces lactis killer strains. In Neurospora spp.
and in Podospora anserina, senescence and longevity
respectively are correlated with linear plasmids. This
review focuses on the biology of linear plasmids, their
environmental significance and their use as tools in
molecular and applied microbiology.
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Introduction

During replication, any linear DNA molecule faces a
severe problem: in contrast to covalently closed circular
DNA it requires specific mechanisms to circumvent
progressive shortening during each replication round. In
eukaryotes, chromosome shortening is prevented by the
ribonucleoprotein enzyme telomerase, which compen-
sates for reduction of the termini by repeatedly adding
short sequence motifs (telomeric repeats) to the ends of
the chromosomes. It is regulated such that telomeric
DNA lengths are kept within defined bounds (McEac-
hern and Blackburn 1995). However, the termini of both
pro- and eukaryotic extrachromosomal linear DNA are
different from those of telomeres. Microbial extrachro-
mosomal linear DNA elements either carry covalently
closed ends (hairpins) or proteins covalently attached to
both 5" ends, similar to viral and phage genomes.

Linear plasmids were detected only some 20 years
ago, the relatively late discovery being partly due to the
fact that they are not regularly present but are associated
with specific strains, such as kalilo in Neurospora inter-
media (Bertrand et al. 1985) or pAL2-1 in Podospora
anserina (Hermanns and Osiewacz 1996). In eukaryotes,
most of them are associated with mitochondria and, in
addition, the presence of 5" covalently attached proteins
resulted in removal of the plasmids along with
deproteinization steps routinely applied in isolation
procedures. Many giant linear plasmids could only be
detected when nucleic acid samples were submitted to
pulsed-field gel electrophoresis, which was developed
and frequently applied only a decade ago.

Hairpin plasmids

Borrelia spirochetes — among them the agents causing
relapsing fever, B. hermsii and Lyme disease, B. burg-
dorferi — have linear chromosomes approximately
1000 kbp in size. In addition, they harbour numerous
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circular and linear plasmids, which can comprise one-
third of the total genome. Their linear plasmids as well
as their chromosomes have short terminal inverted re-
peats (TIR) and covalently closed hairpin loops at both
termini (Barbour and Garon 1987; Hinnebusch and
Barbour 1991). For further details see a review by
Girons et al. (1994).

The genes for major surface proteins, namely ospA
and ospB of B. burgdorferi and the vmp gene family of
B. hermsii are located on linear plasmids. Two of the
linear plasmids of B. hermsii each carry a nonexpressed
vmp gene coding for a variable major surface protein. On
an additional plasmid, one copy of these genes is gov-
erned by an expression signal. Recombination between
the vmp genes located on the different plasmids causes
antigenic variation, allowing the bacterium to escape the
immunological response of its host (Plastkerk et al.
1985). The mitochondria of an isolate of the phyto-
pathogenic fungus Rhizoctonia solani were reported to
contain short linear plasmids (2.7 kbp) that have hairpin
loops and TIR at both ends (Hashiba et al. 1984;
Miyashita et al. 1990). It has been postulated that these
plasmids might be instrumental in determining aviru-
lence or virulence (Hashiba et al.1984; Hashiba 1987,
Hongo et al. 1994). Meanwhile, the occurrence of small
linear extrachromosomal elements, ranging in size from
2.2 kbp to 7.0 kbp, seems common in R. solani, because
plasmids were found in a great number of randomly
chosen isolates (Miyasaka et al. 1990; Jabaji-Hare et al.
1994). The fact that plasmid-containing strains were as
virulent as plasmid-less isolates indicated that plasmids
do not play a role in pathogenicity (Jabaji-Hare et al.
1994). These findings are supported by extensive inves-
tigations, conducted in various laboratories in Canada,
Spain and Japan (for details see a review by Rubio et al.
1996). A replication model was proposed for Rhizoctonia
plasmids by analogy to viral systems, and it involves
nicking the DNA at the beginning of the loops (Miya-
shita et al. 1990). Recent investigations in Borrelia led to
the suggestion that circular intermediates are involved in
replication of linear hairpin plasmids. Circularization
occurs presumably by the cutting of opposite strands
at identical positions close to the TIR, followed by
unfolding and hybridization of the terminal inverted

repeats. The same mechanism, acting in reverse, con-
verts the circular molecules back to linear elements
(Ferdows et al. 1996).

Linear plasmids with 5’ attached polypeptides

DNA plasmids with proteins covalently linked to their
5’ends constitute the largest group of extrachromosomal
linear elements. Along with viruses having structurally
similar linear genomes and with transposons they are
also known as invertrons (Sakaguchi 1990). Linear
plasmids of this kind exist in bacteria, particularly in
Actinomycetes; in plants and fungi they are located in
organelles, usually in mitochondria (reviewed by Mein-
hardt et al. 1990; Meinhardt and Rohe 1993; Griffiths
1995). Yeast linear plasmids, however, are located in the
cytoplasm (reviewed by Stark et al. 1990; Gunge et al.
1995). Figure 1 shows examples of linear plasmids rep-
resenting the different types.

Besides linearity and 5” attached proteins, all elements
have terminal inverted repeats, varying in size from
44 bp in SLP2 of Streptomyces lividans (Chen et al.
1993), 95 kbp in pPZG 101 in Streptomyces rimosus
(Gravius et al. 1994). Since the structure of linear plas-
mids is reminiscent of adenoviruses and linear phages, a
viral mode of replication via protein priming has re-
peatedly been suggested (Paillard et al. 1985; Meinhardt
et al. 1986, Sakaguchi 1990). Replication is initiated by
covalent attachment of a deoxynucleotide monophos-
phate moiety to a free molecule of terminal protein,
thereby providing the -OH group necessary to start
polymerization. By forming a complex with the viral
DNA polymerase the charged terminal protein binds
to the TIR, allowing DNA synthesis to start. Unidi-
rectional 5 to 3 DNA chain elongation results in

Fig. 1 Schematic representation of a selection of linear plasmids with
5’ attached proteins. Arrows open-reading frames; directions corre-
spond to the orientation of the respective gene. Black triangles the
terminal inverted repeats; black circles terminal proteins. (References:
pSCL1: Wu and Roy 1993, pCIKI: Oeser and Tudzynski 1989,
pGKLI1: Hishinuma et al. 1984, Stark et al. 1984, pGKL2:
Tommasino et al. 1988)

‘

N

.i RNA-polymerase

< [:—D?. pSCLI1 Streptomyces

clavuligerus

DNApolymerase 9@ pCIKl1  Claviceps purpurea

TP + DNA-polymerase toxin o+ toxin ¥y
1 bl 2 4 .
. B, pGKL1  Kluyveromyces lactis
not_essential i helicaslcr:nm oy RNA-polymerase TRF1
1 { 4 6 9 .
——— g "4q PGKL2

TP + DNA-polymerase
l 1 1 1 1 | L

RNA-pol. subunit
1 1 l 1 1 1 ] }

0 kb

10 kb 15 kb



displacement of the parental strand. The displaced
strand forms a panhandle-shaped structure due to hy-
bridization of the self-complementary TIR, which then
acts as the start site of a new replication round, such as
occurs in adenoviruses (Desiderio and Kelly 1981),
phage ®29 (Hermoso and Salas 1980) or phage PRDI
(Bamford et al. 1983). Experimental evidence that rep-
lication of linear plasmids is due to a similar mechanism
exists for pAl2 of the ascomycetous fungus Ascobolus
immersus. It could be shown that a radioactive label was
preferentially incorporated from the 5" termini (Kemp-
ken et al. 1989).

Prokaryotic elements

For the only linear plasmid so far reported to exist in a
gram-negative bacterium (pKO2 of Klebsiella oxytoca,
Stoppel et al. 1995) it is not known whether proteins are
attached. No function is known either, as is also true for
elements from the gram-positive Lactobacillus gasseri
(Roussel et al. 1993) and Bacillus polymyxa (Rosado and
Seldin 1993).

However, while in eukaryotes most linear plasmids
are also cryptic (see below), a phenotype can be attrib-
uted to many bacterial elements, particularly to those
from Actinomycetes (Table 1). In the nocardioform
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genus Rhodococcus several large linear plasmids were
found that confer advantageous abilities on their hosts.
The genus comprises nutritionally versatile soil bacteria,
many of which are known to degrade a wide array of
xenobiotics, such as phenol, insecticides, acrylamines,
anilines, and also halogenated alkanes. Rhodococcus sp.
(MR11 and MR22), formerly designated Nocardia opa-
ca, have the ability to grow autotrophically on hydrogen
as the sole energy source. This character, denoted Aut ™,
can be transferred to non-autotrophic strains and a
number of other heterotrophic Rhodococcus species
(Reh and Schlegel 1981). The ability to grow as an
aerobic hydrogen bacterium is encoded on a giant linear
plasmid, about 270 kbp in size. Recombination between
different giant linear conjugative plasmids led to the
formation of a new linear genetic element with tremen-
dously enhanced transfer frequency (up to 1000-fold
compared to the original situation; Kalkus et al. 1990,
1993).

Other members of the genus, e.g. Rhodococcus ery-
thropolis BD2 have the ability to utilize isopropylben-
zene as the sole carbon and energy source. The latter
strain was shown to contain a giant linear plasmid (ap-
prox. 210 kbp); loss of the plasmid was accompanied by
the loss of isopropylbenzene and trichlorethene degra-
dation. In addition, resistance to arsenite and also
mercury was shown to be plasmid-encoded in this

Table 1 Selection of microbial linear plasmids with 5" attached proteins

Organism Plasmid Size (kbp) Phenotype attributed Reference
Bacteria
Rhodococcus sp. pHG201 270 Autotrophy Kalkus et al. 1990, 1993
(formerly Nocardia opaca)  pHG204 180 Thallium resistance
pHG205 280 Autotrophy
Rhodococcus erythropolis pBD2 210 Isopropylbenzene and Dabrock et al. 1994;
trichlorethene catabolism, Kesseler et al. 1996
arsenite and mercury resistence
Rhodococcus fascians pFiD188 200 Induction of fasciation Crespi et al. 1992; 1994
Streptomyces clavuligerus pSCL1 11.7 Cryptic Wu and Roy 1993
Streptomyces coelicolor SCP1 350 Methylenomycin synthesis Kinashi et al. 1987, 1993
Streptomyces fradiae 420 Tylosin synthesis Kinashi and Shimaji 1987
Streptomyces lasaliensis pKSL 520 Lasalocid A synthesis Kinashi et al. 1987
Streptomyces parvulus 520 Actinomycin D synthesis Kinashi and Shimaji 1987
Streptomyces rimosus pPZG101 387 Cryptic Gravius et al. 1994
Streptomyces venezuelae 130 Chloramphenicol synthesis Kinashi and Shimaji 1987
Yeasts
Debaromyces hansenii pDHLI 8.4 Associated with osmotolerance Gunge et al. 1993
pDHL?2 9.2
pDHL3 15.0
Kluyveromyces lactis pGKLI1 8.9 Killer Gunge et al. 1981
pGKL2 13.5
Pichia acaciae pPacl-1 13.6 Killer Worsham and Bolen 1990
pPacl-2 7.3
Pichia inositovora pPinll 18 Killer Ligon et al. 1989
pPin12 13
pPinl3 10
Saccharomyces kluyveri pSKL 14.2 Cryptic Hishinuma and Hirai 1991
Filamentous fungi
Claviceps purpurea pCLK1 6.8 Cryptic Oeser and Tudzynski 1989
Neurospora crassa Maranhar 7.1 Senescence Court et al. 1991
Neurospora intermedia Kalilo 9.0 Senescence Bertrand et al. 1985, 1986
Podospora anserina pAL2-1 8.4 Longevity Hermanns and Osiewacz
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bacterium (Dabrock et al. 1994). Conjugational transfer
to a cured strain restored the resistance as well as the
degradation abilities.

R. fascians is a phytopathogenic representative of the
genus, which induces fasciation, i.e. leafy galls, on dicots
and several monocots. Strain D188 was reported to
contain a conjugative, 200-kbp linear plasmid. Cured
strains were avirulent, but virulence was restored by
reintroduction of the linear 200-kbp plasmid by conju-
gation. It was proven that at least three virulence-
requiring regions ( fas, fasciation; att, attenuation; hyp,
hypovirulence) are located on the plasmid (Crespi et al.
1992, 1994). The fact that all virulent strains of R. fas-
cians, so far investigated, contained similar linear genetic
elements may indicate that the conjugative ability of
linear plasmids facilitates their dissemination amongst
the genus and other related actinomycetes.

Linear plasmids of the gram-positive genus Strepto-
myces range in size from approximately 12 kbp to sev-
eral hundred kbp (see Table 1). The replication mode of
Streptomyces linear replicons was shown to be different
from the strand-displacing mechanism outlined above
for the adenoviral and phage systems. DNA synthesis of
pSLA2, a 17-kbp linear plasmid of Streptomyces rochei
occurs by bidirectional replication extending outward
from a centrally located origin toward the ends of the
plasmids (Chang and Cohen 1994). Since the chromo-
somes of several Streptomyces spp. are also linear with
proteins and highly conserved inverted repeats at their
termini (Lin et al. 1993), a similar replication mode was
suggested. Support for this assumption came from ex-
periments in which the linear S. lividans chromosome
was circularized by joining both ends either by artificial
targeted recombination or by spontaneous deletion
spanning both inverted repeats (Lin et al. 1993).

Large plasmids, commonly over 50 kbp in size, are
often referred to as giant linear plasmids; some of these
have known phenotypes, and they particularly carry
antibiotic biosynthesis genes (see Table 1). Irrespective
of whether actinomycete linear plasmids contribute to
the formation of antibiotics or not, all linear plasmids
detected so far are conjugative (Hopwood and Kieser
1993). In addition, Streptomyces conjugative plasmids
(linear and circular) are associated with pocks, macro-
scopically visible, circular areas of retarded growth that
develop around colonies growing from individual plas-
mid-carrying spores seeded in a lawn of plasmid-free
spores.

Conjugation provides bacteria with the ability for
horizontal gene transfer, which is in most cases limited
to one species or at least to closely related organisms.
Among Actinomycetes, i.e. Rhodococcus and Strepto-
myces, there are several lines of evidence that conjuga-
tive transfer of DNA might cross the species barrier.
Plasmid pBD2 of Rhodococcus erythropolis carries genes
for isopropylbenzene and 3-isopropylcatechol dioxy-
genases, which exhibit a 55%—78% identity to analo-
gous enzymes from gram-negative bacteria (Dabrock
et al. 1994; Kesseler et al. 1996). The corresponding

enzymes of the gram-negative bacteria all contain the
same type of redox components and are functionally and
evolutionarily related (Mason and Cammack 1992).
Mating is possible between different Streptomyces spe-
cies. Transfer of DNA was observed in combinations of
S. bambergiensis and S. lividans, the latter contained a
42-kbp linear conjugative plasmid that is derived from a
giant linear 640 kbp plasmid (pSB1) of the former
(Zotchev et al. 1992). The linear plasmid SLP2 could be
transferred from S. lividans to S. coelicolor and S. par-
vulus and vice versa. Consistent with these results is the
fact that the inverted terminal repeats of many Strep-
tomyces linear plasmids are almost identical (Chen et al.
1993). It is not yet clear whether plasmid-mediated
conjugation is as promiscuous as that brought about by
conjugative transposons of the gram-positive bacteria
(Scott and Churchward 1995); however, actinomycetous
soil bacteria may have the ability to share — via conju-
gation — useful genetic material, such as heavy-metal
resistances, production of and resistance to antibiotics,
degradation of xenobiotics, and possibly the ability to
exist as a plant pathogen.

Linear plasmids of filamentous fungi

The number of eukaryotic linear plasmids with 5
attached proteins identified in various species is contin-
uously growing, and they have been the subject of many
reviews (e.g. Meinhardt et al. 1990; Meinhardt and Rohe
1993; Schriinder and Meinhardt 1995a; Griffiths 1995;
Kempken 1995a), to which we refer for further infor-
mation. Table 1 lists a selection of elements, known to
have associated phenotypes; upon request a complete list
of linear plasmids reported so far is available.

In spite of the DNA sequence data available for many
of them, very little is known about specific gene func-
tions. In particular, most mitochondrial plasmids of fil-
amentous fungi appear to be cryptic in function, thus
representing selfish DNA. In general, linear plasmids of
filamentous fungi and also plants appear to be simple
and uniform in structure. A typical mitochondrial linear
plasmid (pCIK1 of Claviceps purpurea) is shown in
Fig. 1. It only encodes viral-like DNA and RNA poly-
merases. Mitochondrial linear plasmids shown to affect
their hosts, i.e. kalilo, maranhar and pAL2-1, are the
exceptions of this rule. Kalilo and maranhar are involved
in the control of senescence in certain strains of the ge-
nus Neurospora. It has been shown that senescence was
induced by integration of a copy of the plasmids into the
mitochondrial DNA and by subsequent accumulation of
the defective mitochondrial genome (for details see
Griffiths 1995). In contrast to Neurospora, longevity is
induced by the integration of plasmid pAL2-1 into the
mitochondrial genome of Podospora anserina (Her-
manns and Osiewacz 1992; Hermanns et al. 1994).
Transformation and other genetic experiments using
such elements are largely hampered by their mitochon-
drial localization, and that is why data are rather scarce.



Nevertheless, experimental evidence exists, that mito-
chondrial linear plasmids can be transferred between
Claviceps strains by protoplast fusion (Gessner-Ulrich
and Tudzynski 1994) and even the horizontal transfer of
a linear plasmid from Ascobolus immersus to Podospora
anserina has recently been reported (Kempken 1995b).
However, stable propagation in the new host was not
possible, leading to gradual plasmid loss. In compatible
pairings of Neurospora strains, plasmids can readily
spread out (Debets et al. 1994). Since there is a plasmid
that is closely related to the kalilo DNA in Gel-
asinospora, this might be indicative that even interge-
neric distribution of such elements is possible (Wei et al.
1996). Thus, although evolutionary calculations suggest
that these elements are descended from a common an-
cestor and coevolution with their hosts (Rohe et al.
1992), horizontal transfer of mitochondrially inherited
linear plasmids cannot be excluded a priori (Kempken
et al.1992).

Yeast linear plasmids

A recent survey of plasmids among 1800 yeast strains
covering about 600 species revealed that linear DNA
plasmids can be found at a frequency of about 1%-2%
(Fukuhara 1995). Linear plasmids of yeasts differ from
all other eukaryotic plasmids in some aspects. They are
located in the cytoplasm and encode additional proteins
other than viral-like DNA and RNA polymerases; fur-
thermore, some confer an advantageous phenotype on
their hosts (see Table 1).

The best-characterized yeast system is the Kkiller
plasmid pair pGKLI and -2 of the dairy yeast Kluyver-
omyces lactis (see Fig. 1 for the structure). Originally
detected by Gunge et al. (1981), they were also described
by Wesolowski et al. (1982a,b,c) and termed k1 and k2
respectively. The killer system has been the subject of a
number of reviews to which we refer for further citations
of the original literature (Stark et al. 1990; Schriinder
and Meinhardt 1995a; Gunge 1995).

Killer plasmid pGKLI gene functions are mainly
understood. Open-reading frame ORF1 codes for the
plasmid-specific DNA polymerase, ORF2 and ORF4
specify subunits o, B, y of the heterotrimeric killer toxin
and ORF3 is essential for toxin immunity. The toxin
causes an irreversible arrest of sensitive yeast cells in the
unbudded (G1) phase of the cell cycle (Sugisaki et al.
1983). Toxicity exclusively resides within the y subunit
since intracellular ORF4 expression mimicked the effect
of exogenously applied native toxin (Tokunaga et al.
1990, Butler et al. 1991a). The o subunit shows chitinase
activity, inhibition of which by allosamidin in vivo
abolishes activity of the holotoxin (Butler et al. 1991b).
Since the B subunit is remarkably hydrophobic, both o
and B subunits are considered to be instrumental in
binding and/or uptake of the y subunit.

pGKL2 appears to play a fundamental role in the
killer system by providing essential functions for gene
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expression and maintenance of both plasmids within the
same cell. pGKLI is strictly dependent on pGKL2,
which carries ten genes: ORF1 is not essential for killer
plasmid replication and maintenance (Schaffrath et al.
1992); ORF2 encodes the plasmid-specific DNA poly-
merase as well as the terminal protein of the plasmid
(Schaffrath et al. 1995b; Takeda et al. 1996); no function
is known for ORF3; ORF4 exhibits similarities to a viral
helicase (Stark et al. 1990); ORFS5 has been shown to be
essential and functionally interchangeable between both
plasmids and is presumably involved in plasmid stability
(Schaffrath and Meacock 1995, 1996); ORF6 encodes
the plasmid-specific RNA polymerase, considered to be
instrumental in transcription of both plasmids (Schaff-
rath et al. 1995a,b); ORF7 might encode a subunit of
the latter (Schaffrath et al. 1997); for ORF8 and ORF9
functions are not known; ORF10 encodes TRF1, a ter-
minal recognition factor, likely to be involved in plasmid
replication initiation (Tommasino 1991; McNeel and
Tamanoi 1991).

When artificially transferred to different yeast species,
such as Saccharomyces cerevisiae, Kluyveromyces fragilis
and Candida pseudotropicalis, the killer plasmids are
stably maintained and confer the killer phenotype on
their new hosts (Gunge and Sakaguchi 1981; Gunge et al.
1982; Sugisaki et al. 1985; Tokunaga et al. 1990).
However, in S. cerevisiae the plasmids are only stable in
haploid p~ strains (Gunge and Yamane 1984, Gunge
et al. 1990).

The killer plasmids have all the parameters needed
for yeast vectors: broad host range, a high copy number
of 50-100/cell, ensuring a high gene dosis, extreme mi-
totic stability without selective pressure (Kdmper et al.
1991), and cytoplasmic localization making them inde-
pendent from nuclear control in terms of replication and
transcription.

First attempts to manipulate linear plasmids pGKL1
and pGKL2 genetically in vitro involved nuclear Sac-
charomyces cerevisiae genes as selectable traits and re-
sulted exclusively in the formation of circular vectors
replicating in the nucleus (de Louvencourt et al. 1983;
Fujimura et al. 1987). In vivo experiments, aimed at
integration of the nuclear LEU2 gene into the killer
toxin gene, also resulted in nucleus associated hybrid
plasmids (Kdmper et al. 1989a,b, 1991). Cytoplasmic
linear hybrid plasmids could, however, be obtained by
fusing the 5" non-coding region of ORF2 (killer toxin
gene) to selectable marker genes [LEU2, Kdmper et al.
1989b; HIS3, Gallo and Galeotti 1990; G418 resistance
(aph), Tanguy-Rougeau et al. 1990]. There is at least one
non-essential locus on each plasmid that is dispensable
and not neccessary for plasmid maintenance, i.e. the
killer toxin ORF2 of the smaller plasmid pGKL1 and
ORF1 of the larger plasmid pGKL2 (Schaffrath et al.
1992). Thus, these loci represent potential target sites for
integration of foreign DNA.

DNA sequence and transcript analysis revealed that
all 14 plasmid genes are transcribed independently
(Romanos and Boyd 1988; Tommasino et al. 1988) and
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preceded by a cytoplasmic promoter, also known as the
upstream conserved sequence (Stark et al. 1990). Tran-
scription in general appears to be rather weak, as judged
from an assay based on the bacterial glucose dehydro-
genase reporter gene (Schriinder and Meinhardt 1995b).
Applying this reporter system made it evident that the
level of expression can vary upto 12-fold depending on
the upstream conserved sequence motif used. Sequences
further upstream do not influence expression, whereas
deletion of the upstream conserved sequence motifs lead
to complete loss of expression (Schaffrath et al. 1996;
Schickel et al. 1996). Since linear plasmids presumably
have evolved from a postulated viral ancestor (Mein-
hardt et al. 1990; Rohe et al. 1992; Kempken et al. 1992)
this balanced low level of expression evidently ensures
both stable plasmid propagation and viability of the
host cell.

Several heterologous genes, including biotechnologi-
cally relevant enzymes (Schriinder et al. 1996), have been
expressed using killer plasmids as vectors (Kdmper et al.
1991; Gallo and Galeotti 1990; Tanguy-Rougeau et al.
1990; Meinhardt et al. 1994; Schaffrath et al. 1995b).
Expression, in general, occurred at a low level, thus the
main application of linear yeast plasmids remains, for
the present, in the area of basic research. For biotech-
nological exploitation it is necessary to increase effi-
ciency of expression, e.g. by site-directed mutagenesis
and promoter optimization. As exemplified by the
K. lactis killer plasmids (pGKL1, pGKL2) and plasmid
PSKL of Saccharomyces kluyveri (Hishinuma and Hirai
1991) these elements constitute a closely related group
(Rohe et al. 1992). Further investigations on the K. lactis
killer plasmids should thus be highly encouraged, as this
will contribute to our understanding of these widely
distributed genetic traits.
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