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Abstract 
Camptothecin (CPT), an indole alkaloid popular for its anticancer property, is considered the third most promising drug 
after taxol and famous alkaloids from Vinca for the treatment of cancer in humans. Camptothecin was first identified in 
Camptotheca acuminata followed by several other plant species and endophytic fungi. Increased harvesting driven by ris-
ing global demand is depleting the availability of elite plant genotypes, such as Camptotheca acuminata and Nothapodytes 
nimmoniana, crucial for producing alkaloids used in treating diseases like cancer. Conservation of these genotypes for the 
future is imperative. Therefore, research on different plant tissue culture techniques such as cell suspension culture, hairy 
roots, adventitious root culture, elicitation strategies, and endophytic fungi has been adopted for the production of CPT to 
meet the increasing demand without affecting the source plant’s existence. Currently, another strategy to increase camptoth-
ecin yield by genetic manipulation is underway. The present review discusses the plants and endophytes that are employed 
for camptothecin production and throws light on the plant tissue culture techniques for the regeneration of plants, callus 
culture, and selection of cell lines for the highest camptothecin production. The review further explains the simple, accurate, 
and cost-effective extraction and quantification methods. There is enormous potential for the sustainable production of CPT 
which could be met by culturing of suitable endophytes or plant cell or organ culture in a bioreactor scale production. Also, 
different gene editing tools provide opportunities for engineering the biosynthetic pathway of CPT, and the overall CPT 
production can be improved .

Key points
• Camptothecin is a naturally occurring alkaloid with potent anticancer properties, primarily known for its ability to inhibit 
   DNA topoisomerase I.
• Plants and endophytes offer a potential approach for camptothecin production.
• Biotechnology approaches like plant tissue culture techniques enhanced camptothecin production.
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Introduction

Camptothecin (CPT) is a monoterpene indole alkaloid 
produced by plants as a secondary metabolite (Sadre et al. 
2016). CPT has been a propitious chemotherapeutic drug 
since its discovery in 1966 by Wall and Wani (Malik and 
Laura 2014). CPT is used in combination with other chemo-
therapeutic drugs to enhance anti-cancerous properties with 
the further advantage of lesser side effects when compared 
to invasive chemotherapy (Nurgali et al. 2018). The drug is 
used for the treatment of metastatic cancer in organs such 
as the lung, breast, gastrointestinal tract, liver, gallbladder, 
spleen, and colon (Kamble et al. 2011). The drug exhibits its 
anticancer property by inhibiting the DNA topoisomerase I 
enzyme. DNA topoisomerase enzyme plays a predominant 
role in DNA replication, transcription, repair, and recombi-
nation processes (Ulukan and Swaan 2002). It is the third 
most promising anti-cancer drugs of the twenty-first century 
after taxol and vinca alkaloids (Mohinudeen et al. 2021). 
Figure 1 illustrates the inhibition of topoisomerase I activity 
by camptothecin.

CPT was first discovered in the Chinese deciduous tree, 
Camptotheca acuminata Decne. Later, the alkaloid was 
reported to be distributed among plant species of various 
families such as Nyssaceae, Icacinaceae, Loganiaceae, Apo-
cynaceae, and Rubiaceae and their presence in endophytes 
such as Entrophospora infrequens, Fusarium solani, and 
Neurospora (Pu et al. 2019). The increasing market demand 

for CPT from these herbal plants has resulted in overharvest-
ing and affected the existence of nativity (Niazian 2019; 
Greenwell and Rahman 2015). Thus, establishing alternative 
strategies for camptothecin production using biotechnologi-
cal approaches provides a viable option. Plant tissue culture 
offers an alternative method for the conservation of the spe-
cies. For the enhanced CPT production, different plant tis-
sue culture techniques such as micropropagation, indirect 
and direct organogenesis, and hairy root culture have been 
employed from these plants (Malik and Laura 2014). Addi-
tionally, an effective strategy of genetic manipulation has 
been employed recently in enhancing CPT yield (Kai et al. 
2015). Moreover, improved extraction methods have helped 
in isolating the compound efficiently. A simple, accurate, 
and cost-effective quantification method was developed for 
the quantification of CPT (Lokesh et al. 2014).

A good number of studies on camptothecin-producing 
plants and endophytes have been reported. However, there 
is no extensive documentation on various plant tissue culture 
methods and optimization strategies for enhanced camptoth-
ecin production from different plants and endophytes. There 
are no substantial reports covering the different extraction 
and quantification methods of camptothecin and its large-
scale production. So, in view of this, the present review pro-
vides detailed information on the structure and function of 
a highly effective anticancer drug, CPT. It reports the plants 
and endophytes that are utilized for CPT production and 
discusses the alternative methods for CPT production over 
conventional methods, which are robust and cost-effective. 
The alternative approaches include callus, cell suspension, 
shoot, and root cultures (adventitious root and hairy root). 
Further, the review discusses the optimization strategies 
used to enhance the camptothecin production with optimiza-
tion of media and culture conditions. Elaborative details on 
the use of bioreactor for the large-scale production of CPT 
and summary on the current status of metabolic engineering 
of CPT biosynthetic pathways have been discussed.

Camptothecin: structure and its derivatives/
analogues

CPT is a pentacyclic alkaloid that was first discovered 
in the early 1960s (Malik and Laura 2014). The CPT 
structure comprises a pyrrolo (3,4-β) quinoline moiety, 
a conjugated pyridone, and an asymmetric center at the 
20th position within the α-hydroxy lactone ring with 20 
(S) configuration. The pentacyclic ring system consist-
ing of A, B, C, D, and E rings majorly contributes to the 
topoisomerase inhibition activity of CPT (Kamble et al. 
2011). Since its structural elucidation in 1966, CPT has 
undergone evolution through structural modifications 

Fig. 1   Mechanism of inhibition of Topoisomerase I activity by camp-
tothecin 
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and several CPT derivatives have been generated. These 
analogues were obtained based on the structural-activity 
relationships (SAR) which include Topotecan, Irinote-
can, Etirinotecan, pegol, Belotecan, Rubitecan, Diflo-
motecan, Lurtotecan, and Exatecan. Currently, three 
water soluble anticancer analogues of CPT, Irinotecan, 
Topotecan, and Belotecan have been approved and are 
commercially available for cancer treatment (Li et al. 
2017). Figure 2 illustrates the structure of camptothecin 
and its derivatives.

Topotecan

9-Dimethylaminomethyl-10-hydroxycamptothecin (Topote-
can) was developed by the National Cancer Institute in col-
laboration with the University of Florida at Gainesville and 
SmithKline Beecham headed by Dr. Warren Ross in the 
1980s. It was first approved by FDA in 1996 and is now 
manufactured by GlaxoSmithKline and commercially avail-
able as Hycamtin (developmental therapeutics program). It 
is synthesized from 10-hydroxy-20-(S)-camptothecin or with 
dimethylamine by aminomethylation in the presence of cata-
lyst trihalomethane (Puri et al. 2003). Topotecan is used in 
the treatment of ovarian cancer, small cell and non-small cell 
lung cancers, non-Hodgkin lymphoma, endometrial cancer, 
oligodendroglioma, and breast cancer.

Irinotecan

7-Ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyl oxy-
camptothecin (Irinotecan), commonly available under 
the brand name Camptosar, is prepared by ethylating 
10-[4-(1-piperidino)-1-piperidino] carbonyloxy-camptoth-
ecin at the 7th position (Zabudkin 2015). Irinotecan was 
first developed in 1983 by Yakult Honsha Co., Ltd., Japan. 
In 1994, it was first approved in Japan for its use (Fukuoka 
2001). Irinotecan is used in the treatment of small-cell lung 
cancer, colon cancer, ovarian cancer, acute and lymphoblas-
tic leukemia, and non-Hodgkin’s lymphoma (Kamble et al. 
2011).

Belotecan

(20 S)-7-(2-isopropylamino)-ethyl-camptothecin commer-
cially available as Camtobell marketed by Chong Kun Dang 
Corp. (Seoul, Korea) was first prepared by Ahn and cow-
orkers of Chong Kun Dang in 1999 (Ahn et al. 2000). It 
has DNA topoisomerase inhibition activity in cancer cells. 
Belotecan is synthesized in a two-step reaction: Minisci type 
reaction, which involves conversion of CPT 7-methylcamp-
tothecin, and Mannich type reaction, which involves conver-
sion of 7-methyl CPT to belotecan (Liew and Yang 2008). 

Belotecan is used in the treatment of small-cell lung cancer 
and ovarian cancer (Liew and Yang 2008).

Camptothecin distribution in plants

Earlier, CPT was limited to only two plants: C. acuminata 
of the Nyssaceae family and Nothapodytes nimmoniana 
from the Icacinaceae family. However, the increased CPT 
demand led to several research studies to identify alternative 
CPT-producing plants. At present, CPT is found to be dis-
tributed among plant species of various plant families such 
as Nyssaceae, Icacinaceae, Loganiaceae, Apocynaceae, 
and Rubiaceae (Ulukan and Swaan 2002). The seeds of C. 
acuminata and N. nimmoniana have reported the presence of 
0.110% CPT (Liu and Adams 1996) and 0.179% CPT (Isah 
and Mujib 2015a), respectively. Some of the Ophiorrhiza 
species such as O. fucosa, O. plumbea, O. ridleyana, and 
O. harrisiana have reported the presence of camptothecin 
in them (Viraporn et al. 2011). The highest CPT content of 
1.418% has been reported in the seeds of Miquelia dentata 
Bedd. (Ramesha et al. 2013). For the production of one ton 
of camptothecin, nearly 1000–1500 tons of plant material is 
required. The annual marketing sales of camptothecin and its 
derivatives have been estimated to be $1 billion (Shrivastava 
et al. 2021). Table 1 presents the parts of the various plant 
species from which CPT has been isolated.

Camptothecin distribution in the endophytes

Endophytes are the microorganisms like bacteria or fungi 
that coexist with a living plant and are reported to be the 
source for antibiotics, antiviral compounds, anti-diabetic 
agents, anticancer agents, and many more. In recent times, 
they serve as an alternative source to produce plant sec-
ondary metabolites such as taxol, camptothecin, capsaicin, 
rohitukine, and several other such compounds (Uzma et al. 
2018). The fungal species of Aspergillus, Trichoderma, 
Fomitopsis. Phomposis, and Fusarium have been reported to 
produce CPT (Malik and Laura 2014). Three CPT-produc-
ing fungi T atroviridae LY357, Aspergillus sp. LY341, and 
Aspergillus sp. LY355 isolated from barks, twigs, leaves, 
and fruits of C. acuminata. were 7.93, 42.92, and 197.82 µg 
L−1, respectively (Pu et al. 2013). F. oxysporum kolhapu-
riensis from the Nectriaceae family reported the presence 
of 283 mg L−1 CPT (Bhalkar et al. 2015). Table 2 presents 
the production of CPT from different endophytes.

Biosynthetic pathway of camptothecin

The biosynthetic pathway for CPT includes three steps: 
the pre-strictosidine pathway, strictosidine synthesis, and 
post-strictosidine pathway. Over the past few decades, 
numerous biochemical investigations have been carried 
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out in CPT for its enhanced production due to its poten-
tial anticancer activity. A metabolic engineering approach 
is currently adopted for the enhanced CPT production 

wherein the intermediates involved in the biosynthetic 
pathway are targeted. Thus, it is necessary to have an 
in-depth understanding of the CPT biosynthetic pathway 

Fig. 2   Structure of camptothecin and its derivatives/analogues (Martino et al. 2017)



Applied Microbiology and Biotechnology         (2024) 108:382 	 Page 5 of 20    382 

Table 1   Camptothecin production in different parts of the plant species 

Plant Name Family Site of production Content of CPT Reference

Camptotheca acuminata Nyssaceae Shoot 0.042% (Liu and Adams 1996)
Root 0.051%
Leaf 0.015%
Branch 0.062%
Seed 0.110%

Camptotheca lowreyana S.Y.Li Nyssaceae Young leaves 0.5537% (Li et al. 2002)
Old leaves 0.118%

Camptotheca yunnanensis Dode Nyssaceae Young leaves 0.4494%
Old leaves 0.059%

Chonemorpha grandiflora G.Don Apocynaceae Stem bark 0.0013% (Kulkarni et al. 2010)
Leaves 0.0009%

Nothapodytes nimmoniana Icacinaceae Shoots 0.075–0.81% (Isah and Mujib 2015a)
Root 0.11–0.2%
Seeds 0.179%
Leaves 0.081-0.7%
Fruits 0.122%

Mappia pittosporoides Oliv. Icacinaceae Leaves 0.238% (Zeng et al. 2013)
Fruits 0.102%
Roots 0.172%

Ervatamia heyneana (Wall.) T.Cooke
(Syn:Tabernaemontana alternifolia L.)

Apocynaceae Stem bark 0.00013% (Gunasekera et al. 1979)
0.0003% (Kulkarni 2008)

Leaves 0.0001%
Merrilliodendron megacarpum (Hemsl.) Sleumer Icacinaceae Stem bark 0.053% (Arisawa et al. 1981)
M. dentata Icacinaceae Leaf 0.024% (Ramesha et al. 2013)

Cotyledon 1.418%
Root 0.153%
Fruit 1.22%
Twig 0.003%

Mostuea brunonis Didr. Loganiaceae Whole plant 0.01% (Dai et al. 1999)
Pyrenacantha klaineana Pierre ex Exell & Men-

donça
Icacinaceae Stem 0.00048% (Zhou et al. 2000)

Fruit 0.488% (Ramesha et al. 2013)
Ixora coccinea L. Rubiaceae Young leaves 0.4146 µg g−1 (Saravanan and Boopalan 2011)

Mature leaves 5.0611 µg g−1

Ophiorrhiza. alata Craib Rubiaceae Leaves 83 µg g−1 (Krishnakumar et al. 2020)
Root 388 µg g−1

Ophiorrhiza rugosa var. decumbens (Gardner ex 
Thwaites) Deb & Mondal

Rubiaceae Whole plant 4.20 µg g−1 (Krishnakumar et al. 2020)
Shoot 2 µg g−1

Root 24 µg g−1

Ophiorrhiza rugosa var. prostrata (D.Don) Deb & 
Mondal

Rubiaceae Stem 0.08% (Gharpure et al. 2010)
Root 0.16%
Fruit 0.0165%
Young leaves 0.0062%
Mature leaves 0.0022%

Ophiorrhiza filistipula Miq. Rubiaceae Leaves 0.00009% (Arbain et al. 1993)
Ophiorrhiza mungos L. Rubiaceae Root 0.0176% (Roja 2006)

Shoot 0.0096%
Young leaves 1664 µg g−1 (Wetterauer et al. 2021)
Mature leaves 2000 µg g−1

Ophiorrhiza mungos L. var. angustifolia (Thw.) 
Hook. f.

Rubiaceae Whole plant 297.94 µg g−1 (Krishna Kumar et al. 2018)
127.86–476.89 µg g−1 (Rajan et al. 2013)
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(Gonçalves and Romano 2018). Figure 3 illustrates the bio-
synthetic pathway of CPT.

Pre‑strictosamide pathway

Tryptophan is initially synthesized from chorismate by 
the shikimate pathway. The chorismate in the presence of 
enzyme anthranilate synthase converts into anthranilate, 
which then combines with 5-phosphoribosyl pyrophos-
phate to form indole glycerol phosphate. Indole is then 
formed by the addition of α- subunit of tryptophan syn-
thase (TSA) to indole glycerol phosphate, which is then 
condensed with β- subunit of tryptophan synthase (TSB) 
to form tryptophan. The tryptophan is decarboxylated 
to tryptamine by the tryptophan decarboxylase enzyme. 
Parallelly, secologanin is synthesized from IPP (isopen-
tenyl diphosphate) and its isomer DMAPP (dimethylallyl 

diphosphate) both of which are intermediates of the 
2 C-methyl-D-erythritol-4-phosphate (MEP) pathway and 
MVA (mevalonate) pathway. IPP and DMAPP condense to 
form geranyl diphosphate (GPP), which is then converted 
to geraniol by geraniol synthase. Geraniol is converted to 
10-hydroxygeraniol by geraniol 10-hydroxylase and fur-
ther converted to loganin. Secologanin is synthesized from 
loganin by secologanin synthase (SLS) (Sirikantaramas 
et al. 2013).

Strictosidine synthesis

The tryptamine and secologanin condenses to form strictosi-
dine. This Pictet-Spengler condensation between tryptamine 
and secologanin is catalyzed by strictosidine synthases 
(STR) ((Yamazaki et al. 2003).

Table 1   (continued)

Plant Name Family Site of production Content of CPT Reference

Ophiorrhiza grandiflora Wight Rubiaceae Whole plant 1.07–1.34 µg g−1 (Rajan et al. 2013)
Ophiorrhiza shendurunii A.E.S.Khan, E.S.S.Kumar 

& Pushp.
Rubiaceae Whole plant 0.05 µg g−1 (Rajan et al. 2013)

Ophiorrhiza pectinata Arn. Rubiaceae Whole plant 0.28–38.65 µg g−1 (Rajan et al. 2013)
Ophiorrhiza trichocarpa Blume Rubiaceae Whole plant 19.50–28.31 µg g−1 (Rajan et al. 2013)
Ophiorrhiza pumila Rubiaceae Whole plant 0.0300–0.0510% (Saito et al. 2001)

Leaves 0.03–0.04%
Root 0.10%

Ophiorrhiza japonica Blume Rubiaceae Whole plant 0.0073% (Guo-yin 2009)

Table 2   Production of 
camptothecin from some of the 
endophytes

Endophyte name Family Content of CPT Reference

Trichoderma atroviridae LY357 Hypocreaceae 197.82 µg L−1 (Pu et al. 2013)
Aspergillus sp. LY341 Trichocomaceae 7.93 µg L−1 (Pu et al. 2013)
Aspergillus sp LY355 Trichocomaceae 42.92 µg L−1 (Pu et al. 2013)
Fusarium solani MTCC 9667 Nectriaceae 37 µg 100 g−1 (Shweta et al. 2010)
Fusarium solani MTCC 9668 Nectriaceae 53 µg 100 g−1 (Shweta et al. 2010)
Fusarium oxysporum kolhapuriensis Nectriaceae 283 mg L−1 (Bhalkar et al. 2015)
Alternaria alstroemeriae Pleosporaceae 426.7 µg g−1 (Mohinudeen et al. 2021)
Alternaria burnsii Pleosporaceae 403.3 µg g−1 (Mohinudeen et al. 2021)
Anthracnose fungus SUK1 (F1) Glomerellaceae 69 mg L−1 (Mohinudeen et al. 2021)
Corynespora cassiicola Corynesporascaceae 146 mg L−1 (Mohinudeen et al. 2021)
Entrophospora infrequens Acaulosporaceae 4.96 mg 100 g−1 (Murthy et al. 2019)
Fusarium. oxysporum NFX06 Nectriaceae 610.09 ng g−1 (Musavi et al. 2015)
Neurospora crassa Sordariaceae 5.5 µg g−1 (Rehman et al. 2008)
Nodulisporium Xylariaceae 5.5 µg g−1 (Rehman et al. 2008)
Fomitopsis sp. (MTCC 10,177) Fomitopsidaceae 55.49 µg g−1 (Shweta et al. 2013)
Phomopsis sp Valsaceae 42.06 µg g−1 (Shweta et al. 2013)
Alternaria alternata (MTCC 5477) Pleosporaceae 73.9 µg g−1 (Shweta et al. 2013)
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Post‑strictosidine pathway

In this pathway, CPT is synthesized in a multistep reaction. The 
strictosidine is converted to strictosamide by undergoing intramo-
lecular cyclization. The strictosamide is converted into pulmioside 

and deoxypulmioside, ultimately forming camptothecin. The con-
version of strictosamide to camptothecin involves oxidation and 
recyclization of the B and C rings, further oxidation of the D ring 
and removal of C-21 glucose moiety and final oxidation of the E 
ring forming camptothecin (Sirikantaramas et al. 2013).

Fig. 3   The biosynthetic pathway of camptothecin involves the pre-
strictosidine, strictosidine synthesis, and post-strictosidine pathways. 
TIA, monoterpenoid indole alkaloid; MEP, 2 C-methyl-D-erythritol-

4-phosphate; STR, strictosidine synthases. The multiple step reaction 
is represented by an arrow with a dotted shaft (Sirikantaramas et al. 
2013)
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Production of CPT through plant cell, tissue, 
and organ culture

Plant tissue culture methods serve as the appropriate alterna-
tives for CPT production to overcome the reduction in the 
natural population of the plants due to overharvesting. Plant 
tissue culture techniques involve mass propagation of plants 

from any part of the mother plant under in vitro conditions 
without seasonal constraints throughout the year. Moreover, 
these techniques help in easier isolation and purification of 
desired secondary metabolites. The secondary metabolites 
can be produced from an undifferentiated mass of cells, 
calli, cell suspension cultures and from differentiated shoots, 
roots (adventitious and hairy roots), or somatic embryos and 

Fig. 4   Production of CPT from 
various tissue culture techniques
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such plant tissue culture strategies have been adopted for 
enhancement of camptothecin production (Gonçalves and 
Romano 2018). Figure 4 demonstrates the production of 
camptothecin by various tissue culture methods.

Production of CPT through callus culture 
and selection of cell lines

The in vitro production of secondary metabolites occurs in 
two phases: biomass accumulation and secondary metabo-
lite biosynthesis. Both these phases need to be optimized 
by utilizing a variety of tissue culture strategies (Chandran 
et al. 2020). Selection of high secondary metabolite yielding 
cultivars and screening the high secondary metabolite yield-
ing cell lines are the key strategies for increasing secondary 
metabolite production. The explants are chosen from the 
high secondary metabolite yielding genotype of the plant. 
The callus is induced in such explants by exogenous applica-
tion of auxin or cytokinin or in a defined ratio. The second-
ary metabolites can be obtained from callus cultured under 
optimal culture conditions. Furthermore, the callus can be 
subjected to cell suspension culture for developing fast-
growing, high-yielding cell lines (Schreiner 2005).

The explant may exhibit a wide range of metabolic pro-
ductivity. The heterogeneity would result in decreased sec-
ondary metabolite production. These undesirable variations 
in the production can be avoided or reduced by selecting 
potentially high-yielding cell populations from hetero-
geneous cultures. The cloning of such high-yielding cell 
lines helps in enhanced secondary metabolite production 
(Smetanska 2008). The effect of different concentrations and 
combinations of kinetin (KN) and auxin ranging from 0.1 
to 10 mg L−1 on callus induction of C. acuminata has been 
evaluated and reported by Van Hengel et al. (1994). The 
highest callus biomass was obtained in the MS (Murashige 
and Skoog medium, 1962) medium supplemented with B5 
vitamins, 0.5 mg L−1 2,4-Dichlorophenoxyacetic acid (2,4-
D) and 0.1 mg L−1 KN with a CPT production of 0.000098% 
(van Hengel et al. 1992). The cell suspension culture of 
Ophiorrhiza eriantha Wight was established from 16 g fri-
able callus cultured on MS medium with 3% sucrose and 
4 mg L−1 indole-3-butyric acid (IBA) showed the highest 
CPT production of 0.087% (Rani 2011). Induction of cal-
lus from hypocotyl explant was favorable when compared 
to leaf explant. It was observed that 2 mg L−1 TDZ along 
with 0.5 mg L−1 2,4-D was favorable for induction of callus 
without further organogenesis. Callus induced on 2 mg L−1 
TDZ along with 0.5 mg L−1 2,4-D medium showed two-fold 
increase when compared to that of callus induced on 1mg 
L−1 TDZ along with 0.5 mg L−1 2,4-D (Kadam et al. 2023). 
Table 3 illustrates the CPT production by callus culture and 
cell suspension cultures of various CPT-producing plants.

Organ culture for CPT production

Secondary metabolite synthesis is often higher in differenti-
ated tissues and organ cultures, and this has been developed 
as an alternative method for secondary metabolite pro-
duction. The organ culture method involves the culture of 
organs such as root, shoot, and embryo and is the most stable 
method (Gonçalves and Romano 2018). In medicinal plants, 
shoot cultures have been established for a higher accumula-
tion of secondary metabolites. Similarly, root cultures also 
serve as an alternative for root-derived secondary metabo-
lites, which are otherwise difficult to harvest from a root sys-
tem that exhibits slow growth. On the other hand, hairy root 
cultures have shown to be a viable method for secondary 
metabolite synthesis in vitro. The hairy roots can be induced 
by co-culturing the explant with Agrobacterium rhizogenes. 
The T-DNA from the plasmid of A. rhizogenes transferred to 
host tissue induces hairy root formation on account of auxin 
synthesis genes coded by bacterial DNA. Thus, it avoids the 
need for an external supply of auxins (Rao and Ravishankar 
2002). In the study conducted by Vineesh et al. (2007), a 
maximum number of shoots were initiated from the leaf 
of O. rugosa, and the highest amount of CPT (0.039%) in 
multiple shoots was obtained in media with 3% sucrose, 5 
mg L−1 BAP, and 0.5 mg L−1 NAA (Vineesh et al. 2007). It 
has been reported that the MS media with IBA induces 4–6 
adventitious roots/shoot and the media with IBA or NAA 
alone or NAA combination with BAP or KN produced the 
wound in the shoot with A. rhizogenes 15834 and cultured 
on B5 medium with 2% sucrose, 0.2% of gellan gum and 
200 mg L−1 cefotaxime for 7 weeks (Isah and Mujib 2015b). 
The highest CPT of 471 µg was obtained in hairy roots of 
Ophiorrhiza liukiuensis Hayata (Asano et al. 2004). Table 4 
illustrates the total CPT content produced in root and shoot 
cultures of various CPT-producing plants.

Optimization strategies employed for improved 
production of CPT

The increasing market demand for secondary metabolites 
has led to the implementation of traditional and advanced 
metabolic strategies for incessant high yield production of 
secondary metabolites (Hussain et al. 2012). The optimi-
zation for secondary metabolites can be done in bioaccu-
mulation stages and secondary metabolite synthesis stages. 
The important parameters such as pH, temperature, light 
intensity, carbon, and nitrogen source can be optimized at 
the bioaccumulation stage, and strategies like elicitation, 
precursor feeding, and immobilization can be achieved at 
the secondary metabolite biosynthetic stage (Gonçalves and 
Romano 2018).
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Optimization of culture conditions

The supply of media with carbon, nitrogen, and phosphate 
sources at optimum concentration influences the second-
ary metabolite production. These nutrient sources play an 
important role in signal transduction, thereby regulating 
the expression of secondary metabolite genes as well as in 
biomass accumulation. The physical factors like pH, light 
intensity, temperature, and agitation speed also influence the 
biomass and metabolites productivity. Thus, choosing the 
right culture medium formulation is a vital step (Gonçalves 
and Romano 2018). The effect of sugar concentration on 
CPT production in cell suspension culture of C. acuminata 
has been studied using different concentrations (2, 4, 6, 8, 

and 10%) of sucrose, glucose, and fructose in the source 
media. The highest camptothecin (0.0029 mg L−1) was 
obtained at 6% sucrose concentration (Kim et al. 1999). The 
effect of nitrogen source on CPT production was studied in 
N. nimmoniana by supplementing the medium with different 
concentrations of potassium nitrate and ammonium chloride 
ranging from 60/0 to 0/60 mM NO3

−/NH4
+ balance. The 

best combination was found to be 50/1 mM NH4
+/NO3

− bal-
ance, with 0.5 mM phosphate on day 15 yielding 0.00474% 
CPT (Karwasara and Dixit 2013). The cell suspension cul-
ture of C. acuminata was subjected to pH varying from 4 to 
7.5. It was also subjected to two different temperatures 26 
and 30 °C with shaking rates of 148 and 184 rpm. The high-
est biomass was achieved at pH of 4.5, at 30 °C and 184 rpm 

Table 3   Production of CPT through callus culture and cell suspension culture

Plant name Explant source Best plant growth regulator (PGR) 
concentration and combination

Content of CPT Reference

C. acuminata 6-week-old callus induced from 
stem

B5 vitamins + 0.5 mg L−1 
2,4-D + 0.1 mg L−1 KN. 
CAS 3 (Cellosaurus) in MS 
media + NAA

0.98 mg L−1 (van Hengel et al. 1992)

N. nimmoniana Seeds 2 mg L−1 Picloram (Pic) + 3% 
sucrose

9.5 µg g−1 (Ciddi and Shuler 2000)

Mature and immature fruits 4.52 µM 2,4D + 2.22 µM BAP 
(6-Benzylaminopurine)

1.30% (Thengane et al. 2003)

Callus induced from leaf and stem 29.8 µg g−1 (Karwasara and Dixit 2013)
T3 yielded more CPT (Isah 2017)

C. grandiflora Seed, root, embryos, cotyledon, 
leaves, hypocotyls

0.5 mg L−1 BAP + 3 mg L−1 NAA 
(1-Napthaleneacetic acid)

0.0007 mg g−1 (Isah and Umar 2019)

Internode - 0.003 mg g−1 (Li et al. 2002)
E. heyneana Leaves, internodes, embryos and 

young seedlings
MS media + 4.52 pM 2, 4- D 0.000025% (Kulkarni 2008)

M. dentata Leaves, apical buds, node, inter-
node

1 mg L−1 IBA + BAP each 0.003-1.4% (Ramesha et al. 2013)

N. nimmoniana Hypocotyl 2 mg L−1 TDZ + 0.5 mg L−1 2,4-D 2 folds higher (Kadam et al. 2023)
O. eriantha Callus induced from different plant 

parts
4 mg L−1 NAA + 1 mg L−1 BAP 

for callus induction
0.027 mg g−1 (Rani 2011)

4 mg L−1 IBA for cell suspension 
culture

0.087 mg g−1

O. mungos Leaves and tender stem MS medium + 1.5 mg L−1 
NAA + 3mg L−1 BAP

0.003% (Jisha 2006)

Fruit MS medium + IAA + BAP + Gib-
berellic acid (GA) in 2:2:1 ratio

0.018% (Namdeo et al. 2012)
Kusari

Tender leaves 1.0–2.0 mg L−1 NAA + 1.0 mg L−1 
2,4-D + 0.5 mg L−1 KN

0.08 mg g−1 (Deepthi and Satheeshkumar 2016)

Callus induced from tender leaves 3 mg L−1 NAA + 1 mg L−1 2,4-D 0.06 mg g−1 (Kusari et al. 2009)
O. trichocarpa Callus induced

from leaves
1/4 MS media + 0.5 mg L−1 

KN + 2.0 mg L−1 NAA + 1.0 mg 
L−1 + 2, 4-D for callus induction

0.0086 mg g−1 (Varghese 2017)

2.0 mg L−1 NAA + 1.0 mg L−1 +2, 
4-D + 0.5 mg L−1 BAP for cell 
suspension culture

0.0021 mg g−1

O. pectinata Callus derived from shoot tip 
explants

1mg L−1 KN + 2 mg L−1 Pic 10.42 µg g−1 (Lekshmi 2011)
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Table 4   Production of CPT through shoot and root culture

Plant name Explant source Optimal media composi-
tion

CPT content Reference

C. acuminata Shoot tips or axillary buds 9 shoots per explant on 1.5 
mg L−1 BAP

0.47 mg g−1 (Sankar-Thomas et al. 2008)

In vitro shoots 7 roots per shoot in MS 
media + 4.9 µM of IBA.

_- (Jain and Nessler 1996)

In vitro shoots 6.965 µg g−1 (solid media) 
and 7.472 µg g−1 (liquid 
media

(Yuan et al. 2008)

Chonemorpha fragrans 
(Moon) Alston

In vitro shoots 7.9 roots per shoot in 
MS media + 0.49 µM 
IBA + 11.7 µM AgNO3

(Nishitha et al. 2006)

N. nimmoniana Calli from nodal explants 165.9 shoots in MS 
media + 2 µM BAP

0.2823 mg g−1 (Dandin and Murthy 2012)

Stem, zygotic embryo 4–6 roots/shoot in MS 
media + IBA. high CPT% 
in MS media + IBA/ 
NAA alone or combina-
tion of NAA + BAP/ KN

0.12% (Isah and Mujib 2015b)

I. coccinea In vitro shoots 11 roots in BM 
media + 20.0 µM NAA

(Lakshmanan et al. 1997)

O. mungos Tender leaves, node MS media + 1 mg L−1 
kinetin

0.1197% (Jisha 2006)

Young fruits 25 shoots in MS 
medium + 1:2:1 
Pic + TDZ (Thidiazu-
ron) + GA

0.0208% (Namdeo et al. 2012)

O. mungos Callus Root biomass of 2.918 g 
in MS media + l mg L−1 
GA + 1 mg L−1 NAA

0.1196% (Jisha 2006)

In vitro shoots 22 roots in MS 
media + 4:1:2 IBA: BAP: 
GA

0.0324% (Namdeo et al. 2012)

O. rugosa Leaf, stem and petiole 76 shoots induced in MS 
media + 4 mg L−1 BA 
and maximum CPT in 
MS media + 0.1 mg 
L−1BA + 4 mg L−1 NAA

0.039% (Vineesh et al. 2007); Nam-
deo et al. 2012)

In vitro shoots 218 roots and maximum 
CPT content in MS 
media with 0.05 mg L−1 
BA and 2 mg L−1 NAA

0.065%

O. eriantha Whole plant parts 26.08 shoots in MS 
media + 5 mg L−1 BAP

0.0485 mg g−1 (Rani 2011)

Callus 16.41 roots and highest 
CPT in MS media + 4 mg 
L−1 and MS media + 5 
mg L−1 NAA respec-
tively

0.0794 mg g−1

O. mungos L. var. angus-
tifolia

Node 22 shoots/explant in 
media + 8.88 µM BAP

0.14 mg g−1 (Mithun et al. 2017)

Shoot and leaflet 19.48 roots/shoot in MS 
media + 4.28 µM NAA

O. trichocarpa 25 days old seed and 20 
days shoot bud

58.4 shoots in QS MS 
media + 0.5 mg L−1 
BAP + 0.05 mg L−1 IAA

0.0426 mg g−1 (Varghese 2017)

In vitro shoots 58 roots in media + 0.5 mg 
L−1 IBA

0.0263 mg g−1
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(Sakato and Misawa 1974). The callus of C. acuminata when 
subjected to different light intensities of 400 W dysprosium 
lamps ranging from 0 to 100% irradiance, it was observed 
that highest CPT production of 3.56 mg g−1 was achieved 
at 50% light intensity (Hu et al. 2016). Table 5 tabulates the 
different optimization strategies that have been adopted for 
enhanced CPT production.

Elicitation

Elicitation is another strategy that can be adopted to 
improve camptothecin production. Elicitors mimic biotic/
abiotic attacks, thus eliciting defense mechanisms in plants. 
The elicitors induce gene upregulation in CPT-producing 

plants which govern a wide range of cellular activities at 
the molecular and biochemical levels. Elicitors are classi-
fied as abiotic or biotic elicitors. The cell wall fragments 
of bacteria virus, fungus, enzymes, and molecules such as 
jasmonic acid (JA) and salicylic acid (SA) are biotic elici-
tors, and inorganic salts, heavy metals, and physical factors 
like UV radiation are types of abiotic elicitors (Gonçalves 
and Romano 2018). CPT can be elicited by elicitors like 
ferulic acid, methyl jasmonate (MeJA), jasmonic acid (JA), 
gamma irradiation, and yeast extract (YE) (Song and Byun 
1998). The cell suspension culture O. mungos was amended 
with different concentrations of YE ranging from 25 to 200 
mg L−1 and AgNO3 ranging from 2.0 to 7.5 µM. The high-
est CPT yield of 0.8 mg L−1 and 0.52 mg L−1 was achieved 

Table 4   (continued)

Plant name Explant source Optimal media composi-
tion

CPT content Reference

Ophiorrhiza prostrata 
D.Don

In vitro shoot 48.2 roots per shoot in 
MS media + 10.74 µM 
NAA + 2.32 µM KN

- (Shahanaz Beegum and 
Poulose Martin 2007)

Ophiorrhiza prostrata 
D.Don

Leaves, internode, shoot MS media + 10.74 µM 
NAA + 2.32 µM kin

0.16% (Martin et al. 2008)

O. japonica In vitro shoots 24.8 roots per shoot in MS 
medium + 0.5 mg dm−3 
IBA

- (Kai et al. 2008)

Table 5   Optimization strategies for enhanced camptothecin production

Plant name Optimal concentration CPT content Reference

C. acuminata. 6% sucrose 0.0029 mg L−1 (Kim et al. 1999)
40 mM nitrogen with 5:1 NH4

+/NO3
− 6.3 mg L−1 (Pan et al. 2004)

0.2 mM tryptophan
pH 4.3
30 °C
184 rpm

(Sakato and Misawa 1974)

50% irradiance (400 W dysprosium lamps) 3.56 mg g−1 (Hu et al. 2016)
Green light 45.6 µg g−1 (Park et al. 2003)

N. nimmoniana 5.0% sucrose 47.4 µg g−1 (Karwasara and Dixit 2013)
5:1 NH4/NO3
 with 60 mM total nitrogen

48.7 µg g−1

0.5 mM phosphate 31.6 µg g−1

50/1 mM NH4
+/NO3

−, with 0.5 mM phosphate 51.7 µg g−1

O. rugosa 3% sucrose 0.558mg g−1 (Vineesh et al. 2007)
O. eriantha 1% sucrose 0.0679 mg g−1 (Rani 2011)
O. mungos 3% sucrose 0.002%. (Jisha 2006)

20% coconut water 0.04%
20% ammonium nitrate 0.04%

O. pumila 63 days after transplanting (DAT); Plant factory with 
artificial light (PFAL)

380 mg m−2 y−1 (Lee et al. 2022)

Pyrenacantha volubilis 
Hook.

1240 ppm ammonium nitrate 2.19 mg g−1 (Sasidharan et al. 2023)
5% sucrose 3.16 mg g−1
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at 50 mg L−1 of YE and 2.5 µM of AgNO3, respectively 
(Deepthi and Satheeshkumar 2016). The effect of gamma 
radiation elicitation on CPT enhancement in callus cultures 
of N. nimmoniana was studied by irradiating with gamma 
radiation ranging from 5 to 30 Gy. The enhanced produc-
tion of CPT in the callus culture was irradiated with 20 Gy 
radiation yielding 0.098% CPT (Fulzele et al. 2015). Recent 
reports also suggest that supplementation of yeast extract 
and glycine helped in increased production of camptothecin 
from callus cultures of Chonemorpha fragrans (Ambujakshi 
et al. 2022). Table 6 shows the different types of elicitation 
methods for CPT enhancement in plants.

Precursor feeding

Precursor feeding has been a well-known and widely used 
method for increasing secondary metabolite production in 
plant cells. The basic working principle of precursor feeding 
is that the intermediate compounds involved in the biosyn-
thetic pathway of secondary metabolites have a fair pos-
sibility of improving the yield of the final product. Thus, 
attempts have been made to enhance secondary metabolites 
by identifying and supplementing the culture media with 

precursors. The concentration, time of addition, and type 
of the precursor should be taken into account for precursor 
feeding (Rao and Ravishankar 2002). CPT production can be 
enhanced by supplementing precursors such as tryptamine, 
loganin, and secologanin which are the intermediate com-
pounds involved in biosynthetic pathways (Silvestrini et al. 
2002). E. infrequens, the endophytic fungus of N. nimmo-
niana, has been treated with different precursors such as 
tryptophan, tryptamine, citral, geraniol, leucine, and meva-
lonic acid either alone or in combination with tryptophan. 
The highest CPT content of 0.000503% was observed in 
the sabouraud medium with tryptophan and leucine (Amna 
et al. 2012). The effect of precursors such as tryptamine 
and secologanine of varying concentrations of 10, 50, and 
100 µM in cell suspension culture of O. eriantha has been 
studied. The enhanced CPT production of 0.00914% and 
0.00843% DW was achieved at 50 µM concentration of 
secologanine and tryptamine, respectively (Rani 2011). 
Entrophospora infrequens, a fungus isolated from N. nim-
moniana, produced the CPT content 0.8−1 mg g−1 when fed 
with combination of two precursors- tryptophan + leucine 
(Amna et al. 2012). Table S1 shows the different types of 
precursors used for CPT enhancement in plants.

Table 6   Elicitation for enhanced camptothecin production

* Indicates endophytes isolated from different plant sources

Plant name Explant Optimal elicitor conc. CPT content Reference

C. acuminata Cell culture 50 µM JA on day 4 after 
elicitor dosing

7.1 × 10−5 mg g−1 (Song and Byun 1998)

Plantlets MeJa 10 µM 0.25 mg g−1 (Pu et al. 2022)
PEG 5 g/L 0.21 mg g−1

AAgNO3 gNO3 50 µM 0.26 mg g−1

N. nimmoniana Callus 75mg L−1 YE 350–400 µg g−1 (Isah 2017)
20 Gy radiation 0.098% CPT (Fulzele et al. 2015)
25 mM CaCl2 14.7-fold increase in com-

parison to control
(Isah et al. 2022)

E. heyneana Callus 50 mg L−1 and 100 mg L−1 
fungal elicitor i.e. A niger

CPT undetected (Kulkarni 2008)

O. mungos Cell suspension 50 mg L−1 of YE and 2.5 µM 
of AgNO3

0.8 mg L−1 and 0.52 mg L−1 (Deepthi and Satheeshkumar 
2016)

O. eriantha 50 µM MeJA, 1 Gy and 10 
mg L−1 chitosan

0.251, 0.422 and 0.29 mg g−1 (Rani 2011)

O. mungos In vitro shoots l00µM MeJa for 24 h + 2 Gy 0.47 mg g−1 and 0.09% CPT (Jisha 2006)
In vitro plants 150 µM MeJA + 50 µM SA 0.23% and 0.15% (Nagesha et al. 2018)

Ophiorrhoza kuroiwa Hairy roots 100 µM MeJA production by 
1.3-fold

0.20–0.25 mg g−1 (Asano et al. 2004)

Pyrenacantha volubilis 
Hook.

Green root culture 50 ppm yeast extract 5.13 mg g−1 (Sasidharan et al. 2023)

T. atroviride LY357* Fungus isolated 
from C. acumi-
nata

0.05 mM MeJA increased 
CPT by 3.4 and 2.2-fold

197.82 µg L−1 (Pu et al. 2013)
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Immobilization

Immobilization of plant cells is a new strategy achieved 
by encapsulating the plant cell within a solid support. This 
technique involves the use of hydro colloidal gels such as 
agarose, calcium alginate, carrageenin, gelatin, and poly-
acrylamide which entraps the plant material within it. 
Immobilization plays a crucial role in enhanced production 
of high value secondary metabolites. It makes it possible 
for a group of cells to work together at the same time and 
ensures continual production of the desired metabolites 
without cell washout, thus increasing the cell’s productivity. 
The low yield of CPT in the culture medium of large-scale 
bioreactors has been a major concern. Thus, immobilization 
of plant cells is employed for the increased production of 
camptothecin in large scale bioreactors. Mamkulathil Deva-
sia et al. (2021) reported the callus of O. mungos has been 
immobilized for continuous production and to achieve high 
yield of CPT. It was found that the immobilized callus of O. 
mungos produced 420 µg L−1 CPT (Mamkulathil Devasia 
et al. 2021).

Omics approaches

Omics approaches such as genomics, transcriptomics, 
proteomics, and metabolomics can be employed to study 
and understand the biosynthetic pathway of camptothecin 
production and the reactions of enzymes that take part in 
the pathway at gene and protein levels. Genomics helps 
in the identification and characterization of the candidate 
genes involved in camptothecin biosynthesis by comparing 
the genomes of camptothecin-producing plants with non-
producing ones. Kang et al. (2021) have obtained a high-
quality genome assembly of C. acuminata using single-mol-
ecule real-time long reads technique (Pacific Biosciences 
(PacBio) Sequel platform and high-throughput chromosome 
conformation capture (Hi-C), with which they have further 
investigated the evolution of camptothecin biosynthesis. 
It was discovered that C. acuminata underwent a whole-
genome duplication event, resulting in the emergence of 
genes involved in camptothecin production. Notably, it was 
observed that C. acuminata lacks a specific enzyme called 
loganic acid O-methyltransferase (LAMT), but instead has 
two secologanic acid synthases (SLASs) that convert loganic 
acid to secologanic acid. The functional divergence of the 
LAMT gene and positive evolution of two SLAS genes, 
therefore, contributed to C. acuminata’s effective production 
of camptothecin (Kang et al. 2021). Parallely, in O. pumila, 
metabolite profiling revealed that 3α-(S)-strictosidine, rather 
than 3-(S), 21-(S)-strictosidinic acid, is the exclusive inter-
mediate involved in CPT biosynthesis (Yang et al. 2021).

In another study by Natarajan et al. (2023), the genomic 
DNA of Alternaria burnsii NCIM 1409 was isolated and 

sequenced on an Illumina NextSeq500, while the RNA was 
isolated and the transcriptome analysis was performed with 
RNA seq. The genome assembly and annotation revealed the 
presence of candidate genes involved in camptothecin bio-
synthesis. Comparative genomics analyses with related fungi 
were further conducted. The study concluded that there was 
no evidence of horizontal gene transfer from the host plant 
to the endophyte (Natarajan et al. 2023). In C. acuminata 
treated with elicitors such as MeJa, AgNO3, and PEG, 32 
genes involved in CPT biosynthesis and 12 CYP450 genes 
that play a crucial role in the previously unexplored oxida-
tion steps of CPT synthesis were explored (Pu et al. 2022). 
Genome-wide identification was employed to identify 8 out 
of 198 APETALA2/ethylene-responsive factor (AP2/ERF) 
transcription factor genes have been identified to be involved 
in CPT synthesis regulation with higher level of expression 
in immature bark and upper stem (Hu et al. 2020). The pro-
teomics and transcriptomic studies in C. acuminata have 
discovered three O-methyltransferases and five cytochrome 
P450s that involve in camptothecin biosynthesis and 15 
transcription factors that regulate CPT biosynthesis (Zhang 
et al. 2023).

Metabolic engineering of CPT biosynthesis

Biosynthesis and biotechnological production of CPT have 
made much progress in recent times. Metabolic engineering 
is one such approach that has enhanced CPT production. It is 
a biotechnological discipline that deals with the manipula-
tion of the genes that code enzymes which take part in the 
biosynthetic pathways. The biosynthetic genes involved in 
the synthesis of strictosidinic acid and CPT-derivatives have 
been partially resolved and identified. These genes include 
CaG10H, Ca10HGO, CaIS, CaSLAS, CaTDC, CaSTRAS, 
and Ca10OMT. Understanding the functions of these genes 
allows researchers to precisely manipulate the biosynthetic 
pathway and enhance CPT production (Fan et al. 2022). 
Through metabolic engineering, CPT production can be 
enhanced either by overexpressing the genes that encode 
the enzymes that are involved in the biosynthesis of CPT 
or by inhibiting the competitive pathways in turn enhancing 
the metabolic flux of targeted biosynthetic pathways. Several 
metabolic engineering studies have been conducted for CPT 
enhancement in the past decade.

In the study by Cui et al. (2015), the co-overexpression 
of strictosidine synthase (STR) and geraniol 10-hydroxy-
lase (G10H) genes from C. roseus introduced in O. pumila 
yielded 1.77 mg g−1 of CPT, i.e., 56% increase (Cui et al. 
2015). Furthermore, study by Van der Fits and Memelink 
(2000) showed that overexpression of ORCA3 (Octadeca-
noid-derivative Responsive Catharanthus AP2-domain) from 
C. roseus in C. acuminata hairy roots enhance CPT produc-
tion by 1.5-fold compared by up-regulating the expression 
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key genes involved in terpenoid indole alkaloid (TIA) 
biosynthetic pathway (van der Fits and Memelink 2000). 
Metabolic engineering of CrORCA3 genes in C acuminata 
yielded 0.112% of CPT (Ni et al. 2011). The OpWRKY2 
gene, OpSLS (secologanin synthase), OpG10H, STR genes 
of O. pumila, and CrG10H (genes from Catharanthus roseus 
inserted in O. pumila) on overexpression yielded 0.00248% 
(Hao et al. 2021), 0.328%, 0.240% (Shi et al. 2020), 0.177, 
and 0.128%, respectively (Cui et al. 2015). Furthermore, 
the overexpression of the NfSTR gene of O. rugosa yielded 
0.213% of CPT (Singh et al. 2020). In O. pumila, it has been 
discovered that the transcription factor OpWRKY6 plays a 
key role in regulating camptothecin biosynthesis. Overex-
pression of OpWRKY6 reduced camptothecin levels, while 
its knockout resulted in increased camptothecin production, 
providing valuable insights for enhancing camptothecin 
production in plants (Wang et al. 2022). In O. pumila, the 
knockout of OpLAMT1 expression led to camptothecin 
expression, and further OpNAC1 (NAC transcription factor) 
was demonstrated to suppress the expression of OpLAMT1 
and identified as a candidate gene for CPT production (Hao 
et al. 2023).

Extraction and quantification of camptothecin

Extraction

The extraction method is one of the most imperative meth-
ods for the recovery of CPT from its source. It plays a crucial 
role in the estimation of CPT obtained from various sources. 
For the extraction of CPT, the development of simple, faster, 
accurate extraction methods that require a lesser amount of 
solvents is important. Various extraction methods such as 
stirring extraction, soxhlet extraction, and microwave extrac-
tion have been developed for the extraction of camptothecin 
(Fulzele and Satdive 2005). Sonication is one of the most 
commonly used extraction methods. Camptothecin ranging 
from 0.85 to 3.6% and 0.15 to 0.23% has been extracted by 
sonication method from callus cultures of C. acuminata (van 
Hengel et al. 1994) using 18 mL water and 20 mL dichlo-
romethane solvent, and from O. mungos (Nagesha et al. 
2018) using 50 mL of methanol, respectively. 0.014% and 
0.008–0.0096% of CPT were extracted from cultures of O. 
mungos (Krishnan et al. 2018) and rugosa var. decumbens 
(Roja 2006) using methanol solvent by soxhlet extraction 
method, respectively. 0.51% of CPT has been extracted from 
I. coccinea by water bath extraction method using 61% of 
methanol by incubating for 3 h at 45 °C (Saravanan and Boo-
palan 2011). The cultured endophytes have been subjected to 
different extraction methods such as solvent extraction, water 
bath extraction, and ultrasonication. The highest CPT con-
tent of 283 mg L−1 has been extracted by ultrasound-assisted 
extraction from F. oxysporum kolhapuriensis isolated from 

N. nimmoniana (Bhalkar et al. 2015). Table S2 illustrates 
the different extraction methods for CPT from different plant 
cultures and endophytes.

Quantification methods

Quantification of CPT in different plant sources using 
advanced techniques provides a viable option to determine 
the possible accurate amounts of CPT production in the 
plant species, microbial cultures, and in vitro cells. Among 
these, HPLC is one of the most commonly used methods for 
CPT estimation. Studies have been conducted on quantifi-
cation of CPT by HPTLC and TLC methods (Lokesh et al. 
2014; Hashim et al. 2016). The CPT content of 0.85–3.6% 
and 0.70–2.62% was quantified using HPLC-Waters model 
510 with acetonitrile: water (25:75) solvent system at 1 mL 
min−1 flow rate (van Hengel et al. 1994), and 0.024–0.030% 
of CPT has been quantified by using HPLC Jasco PU 
2080 in C. acuminata (Namdeo and Sharma 2012). About 
0.010–0.084% of CPT has been quantified in N. nimmoniana 
using TLC plate coated with silica gel 60F254 pre-coated 
(20 × 20 cm) using chloroform: ethyl acetate (1: 1) as sol-
vent system (Lokesh et al. 2014). Recently, a new RP HPLC 
method (90:10; Acetonitrile: Water as the mobile phase, 1 
mL/min flow rate at 30 °C) has been developed for estima-
tion of camptothecin in mixed micelles (CPT, PF108, and 
TPGS). The recovery of camptothecin was determined to be 
between 98 and 102%, showing that the method proposed is 
reliable (Patil et al. 2022). Table S2 illustrates the different 
quantification methods of CPT in different plant cultures 
and endophytes.

Bioreactor studies for the production of CPT

The tremendous market demand requires increased produc-
tion of CPT. Owing to this, efforts have been made to study 
the potentiality of its production at a large scale. Thus, the 
adoption of bioreactor technology has served to enhance 
CPT production. However, it is one of the most challeng-
ing possibilities because of the unstable productivity, slow 
growth rate, high shear sensitivity, and low oxygen require-
ment in the plant cells. Bioreactors are highly efficient, pre-
dictable, and enable the easy harvest of metabolites from 
biomass or cultivation media. At present, bioreactors are 
specially designed for plant tissue cultures which are differ-
ent from conventional bioreactors. The high shear-stress-
sensitive cells are cultured in wave reactors, slug bubble 
reactors, and undertow reactors, while less shear-sensitive 
cells are cultured in airlift bioreactors. The optimization of 
culture conditions and the measurement of biomass pro-
ductions are the factors that influence secondary metabolite 
production in these bioreactors (Gonçalves and Romano 
2018). About 16.5% camptothecin has been produced on a 
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large scale from hairy roots culture of C. acuminata in a 3 L 
bioreactor (length 235 mm; diameter, 140 mm) with 5-mm 
stainless steel mesh at 25 °C; 0.25/min aeration rate (Sudo 
et al. 2002). 0.0045% of CPT has been produced from Nod-
ulisporium isolated from N. nimmoniana cultured in the bio-
reactor with 18 L working volume, maintained at an aeration 
rate of 1 vvm, 0.2 kg/cm pressure, 28 °C, and an agitation 
rate of 220 rpm (Rehman et al. 2009). Table S3 illustrates 
the bioreactor studies for large-scale production of CPT by 
plants and endophytes.

Conclusion and prospects

The major sources of camptothecin are the plants, for which 
a wide variety of valuable plants have been overexploited to 
meet the increased market demand, and that has resulted in 
their depletion. Clonal propagation does not yield satisfac-
tory amounts of CPT. Thus, plant tissue culture techniques 
are the alternative strategies for the sustainable production 
of CPT rather than overharvesting of the plants, and these 
techniques serve as an alternative system for sustainable and 
economical production of camptothecin throughout the year 
irrespective of climatic conditions. The current review has 
made attempts to investigate the various plants which are 
the sources for CPT alkaloid, various endophytes that can 
serve as a new source for CPT production, plant tissue cul-
ture strategies, and the optimization of the culture conditions 
for both the plants and endophytes. During this exploration, 
it is evident that there is a crucial need to develop novel 
techniques for plant tissue culture and refined extraction 
techniques to increase the production and extraction of such 
metabolites that are produced in minute quantities in plant 
parts. Currently, CPT production can be enhanced by using 
bioreactors in addition to the use of elicitors and precursors. 
However, in some cases, CPT is produced at very low yields 
due to limited information about the biosynthetic pathways 
and the enzymes and genes involved in these pathways. 
Hence, identifying and understanding the functions of can-
didate genes involved in the biosynthetic pathways and their 
engineering using modern biotechnological approaches pro-
vides a viable option to enhance CPT production. CRISPR/
Cas9 system can be used in the manipulation of the genes 
that control overexpression of enzymes involved in biosyn-
thetic pathways of CPT and the knockout of genes that are 
involved in competing pathways.
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