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Abstract 
Mildew poses a significant threat to tobacco production; however, there is limited information on the structure of the abun-
dant and rare microbial subcommunities in moldy tobacco leaves. In this study, we employed high-throughput sequencing 
technology to discern the disparities in the composition, diversity, and co-occurrence patterns of abundant and rare fungal 
and bacterial subcommunities between moldy and normal tobacco leaves collected from Guizhou, Shanghai, and Jilin 
provinces, China. Furthermore, we explored the correlation between microorganisms and metabolites by integrating the 
metabolic profiles of moldy and normal tobacco leaves. The results showed that the fungi are more sensitive to mildew 
than bacteria, and that the fungal abundant taxa exhibit greater resistance and environmental adaptability than the rare taxa. 
The loss of rare taxa results in irreversible changes in the diversity, richness, and composition of the fungal community. 
Moreover, rare fungal taxa and abundant bacterial taxa played crucial roles in maintaining the stability and functionality of 
the tobacco microecosystem. In moldy tobacco, however, the disappearance of rare taxa as key nodes resulted in reduced 
connectivity and stability within the fungal network. In addition, metabolomic analysis showed that the contents of indoles, 
pyridines, polyketones, phenols, and peptides were significantly enriched in the moldy tobacco leaves, while the contents 
of amino acids, carbohydrates, lipids, and other compounds were significantly reduced in these leaves. Most metabolites 
showed negative correlations with Dothideomycetes, Alphaproteobacteria, and Gammaproteobacteria, but showed positive 
correlations with Eurotiales and Bacilli. This study has demonstrated that abundant fungal taxa are the predominant biologi-
cal agents responsible for tobacco mildew, while bacteria may indirectly contribute to this process through the production 
and degradation of metabolites.

Key points
• Fungi exhibited greater sensitivity to mildew of tobacco leaf compared to bacteria
• Rare fungal taxa underwent significant damage during the mildew process
• Mildew may damage the defense system of the tobacco leaf microecosystem
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Introduction

As an essential raw material for cigarettes, high-quality 
tobacco leaves are a critical strategic resource for ciga-
rette enterprises, and tobacco storage security is crucial to 
ensure the quantity and quality of the raw materials (Luo 
et al. 2015). Mildew is a potentially significant threat to 
tobacco storage management. During the mildewing process, 
the molds grow rapidly on the tobacco leaves and absorb 
and decompose sugars, proteins, starch, and other nutrients 
from the leaves. Additionally, the molds release green, blue, 
and black pigments and a strong mildew stench (Welty and 
Vickroy 1975). This not only results in significant economic 
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losses for tobacco farmers and cigarette manufacturers but 
also causes dissatisfaction among consumers (Yang et al. 
2015). In addition, most mildew-causing molds can secrete 
mycotoxins (such as aflatoxin) into the leaves and release 
large amounts of mold spores into the environment, thereby 
threatening human health and environmental safety (Lander 
et al. 1988; Pauly and Paszkiewicz 2011).

Despite being the primary biological agents causing mil-
dew of stored tobacco leaves and products (Fleurat-Lessard 
2017), fungi rarely exist alone in natural ecosystems and 
instead form mixed communities with bacteria and yeast 
(Magan et al. 2004). In addition to fungal spores, a diverse 
array of bacterial cells such as Sphingomonas, Bacillus, 
Pseudomonas, Lactococcus, Stenotrophomonas, Acinetobac-
ter, and Methylobacterium are found within the epidermis 
and internal tissues of tobacco leaves (Ye et al. 2017; Zhou 
et al. 2020, 2021). Although bacteria are rarely responsi-
ble for causing mildew under dry conditions (Christensen 
1972), recent studies have shown that bacteria and fungi 
can interact to form complex food chains and webs, playing 
a pivotal role in driving biochemical cycles and maintaining 
the balance between animal and plant health and ecosystem 
biodiversity and stability (de Menezes et al. 2017; Deveau 
et al. 2018; Getzke et al. 2019; Ratzke et al. 2020). However, 
most studies focus on the role of fungi in the mildew of stor-
age materials.

In natural environments, microbial communities typically 
comprise a diverse array of microorganisms, with only a 
selected few exhibiting high abundance, some displaying 
moderate abundance, and the majority being rare (Pedros-
Alio 2012; Li et al. 2020b). The abundant taxa (AT) have 
broad ecological niches, strong competitive ability, and rapid 
growth rates, which considerably promote carbon cycling 
and energy flow (Pedros-Alio 2012; Tian et al. 2020). In 
contrast, rare taxa (RT) are more metabolically active and 
genetically diverse (Debroas et al. 2015), providing a virtu-
ally inexhaustible source of genetic and functional diversity 
(Lynch and Neufeld 2015; Jiao et al. 2017b) and making a 
disproportionate contribution to community diversity and 
variation (Shade et al. 2014). RT may dominate and play 
important roles in nutrient cycling (Jousset et al. 2017) and 
enhance community resistance to environmental distur-
bances under adverse conditions (Jiao et al. 2017a), thereby 
providing mechanisms for community persistence and stabil-
ity (Shade and Gilbert 2015; Xiong et al. 2020). The compo-
sition and function of microbial AT and RT have been exten-
sively studied in a variety of habitats, such as plant barks 
(Dong et al. 2021), soil (Xue et al. 2020), sphagnum (Tian 
et al. 2020), and marine systems (Wu et al. 2017). However, 
the investigation of microbial AT and RT in tobacco leaves 
and their significance in tobacco management practices, par-
ticularly under mildewing conditions, remains inadequate.

Metabolites are the terminal products of biological infor-
mation transmission and are important mediators of intra- 
and inter-species interactions in the tobacco leaf microe-
cosystem (Schmidt et al. 2019). In this system, microbial 
interaction can directly or indirectly lead to the degrada-
tion or transfer of macromolecules, such as starch, sugars, 
proteins, and carotenoids, and the formation of small mol-
ecules, such as low-carbonyl compounds, low fatty acids, 
furan compounds, and pyrazines and pyrrole derivatives 
(Baraniecki et al. 2002; Maldonado-Robledo et al. 2003). 
Thus far, more than 4000 chemical components have been 
identified in tobacco leaves and products, including carbo-
hydrates, nitrogenous compounds, heterocyclic compounds, 
enzymes, organic acids, phenolic compounds, pigments, 
ether extracts, and minerals (Rodgman and Perfetti 2013), 
all of which can be exploited by the tobacco leaf microeco-
system. For example, monosaccharides and disaccharides 
found in tobacco leaves can serve as sources of carbon and 
energy to support the growth and reproduction of molds 
(Li et al. 2014). Although molds can significantly affect the 
nutritional composition of tobacco leaves, our understanding 
of the interactions between metabolites and microorganisms 
in the mildewed leaves is still limited.

In this study, we investigated the microbial communities 
in moldy and normal tobacco leaves obtained from tobacco 
storage warehouses. The main objectives of this study were 
as follows: (1) to investigate the effects of mildew on the 
diversity and composition of fungal and bacterial AT and 
RT in tobacco leaves; (2) to reveal the responses of fun-
gal and bacterial AT and RT towards mildew using co-
occurrence network analysis; and (3) to preliminarily reveal 
the metabolic characteristics of moldy tobacco leaves and 
explore their relationship with microbial communities using 
metabolomics.

Materials and methods

Sample collection

A total of 18 samples of moldy (test samples) and nor-
mal (control samples) tobacco leaves were collected from 
tobacco warehouses in Guizhou, Jilin, and Shanghai, China. 
The samples were collected using sterile gloves and placed 
in sterile sealed bags. The samples were then transported 
to the Fungal Resources Research Laboratory of Guizhou 
University (Guiyang, China) and stored at − 20 °C until fur-
ther analysis. Additionally, considering the tobacco samples 
were from the same warehouse, but might not be from the 
same growing area, therefore, all tobacco samples for the 
study were stored for at least 5 years to mitigate the potential 
impact of leaf sources on the microbiome.
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High‑throughput sequencing

Microbial DNA extraction was performed following the 
method described by Zhou et  al. (2022). The internal 
transcribed spacer 1 (ITS1) region of fungal rRNA was 
amplified using the ITS1F and ITS2R primers by an ABI 
GeneAmp® 9700 PCR thermocycler (ABI, Los Angeles, 
CA, USA), while the V3-V4 hypervariable region of bac-
terial 16S rRNA gene was amplified using the 338F and 
806R primers (Adams et al. 2013; Xu et al. 2016). PCR 
reactions were performed in triplicate 20 µL mixture con-
taining 4 µL of 5 × FastPfu Buffer, 2 µL of 2.5 mM dNTPs, 
0.8 µL of each primer (5 µM), 0.4 µL of FastPfu Polymer-
ase, and 10 ng of template DNA. The PCR reactions were 
conducted using the following program for bacterial 16S 
rRNA gene: 95 °C for 3 min, 27 cycles of 95 °C for 30 s, 
55 °C for 30 s, 72 °C for 45 s, and a final extension at 72 °C 
for 10 min. The PCR reactions were conducted using the 
following program for fungal ITS1 region: 95 °C for 3 min, 
35 cycles of 95 °C for 30 s, 55 °C for 30 s, 72 °C for 45 s, 
and a final extension at 72 °C for 10 min. The PCR products 
were purified using the AxyPrep DNA Gel Extraction Kit 
(Axygen Biosciences, Union City, CA, USA) and quanti-
fied using QuantiFluor™-ST (Promega, Fitchburg, WI, 
USA). The purified PCR products were sequenced on the 
Illumina MiSeq platform (Illumina, San Diego, CA, USA) 
using paired-end sequencing by Shanghai Meiji Biological 
Technology Co., Ltd. (Shanghai, China).

The raw sequences were quality-controlled (with an aver-
age quality score > 20) and spliced using Fastp v.0.19.6 and 
FLASH v.1.2.11 software, respectively (Magoc and Salzberg 
2011; Chen et al. 2018). The optimized sequences were then 
classified into operational taxonomic units (OTUs) at a 97% 
similarity threshold using UPARSE v.7.1 software (Edgar 
2013). The most abundant sequence from each OTU was 
selected as the representative sequence, and the Ribosomal 
Database Project classifier was used to classify fungi and 
bacteria based on Unite 8.0 (https://​unite.​ut.​ee/) and Silva 
138 (https://​www.​arb-​silva.​de/) databases, respectively, with 
a confidence threshold of 70% (Wang et al. 2007). To reduce 
spurious OTUs, any OTU consisting of < 2 sequences was 
removed.

Molecular ecological network analysis

To gain further insight into the importance of interspecific 
interactions in the tobacco leaf microecosystem, we con-
structed co-occurrence networks for fungal and bacterial 
communities of the moldy and normal tobacco leaves based 
on the relative abundance of OTUs. The Molecular Eco-
logical Network Analysis (MENA) pipeline (http://​129.​15.​
40.​240/​mena/) was used to perform network analysis, with 
threshold identification based on the recommended Pearson 

correlation coefficient and random matrix theory modeling 
(Deng et al. 2012; Shi et al. 2016; Qian et al. 2020). Net-
work visualization was generated using the Gephi v.0.9.2 
software (https://​gephi.​org/). The topological role of each 
node in a network was defined by its “within-module con-
nectivity value” (Zi) and “among-module connectivity 
value” (Pi) (Guimera`and Nunes Amaral 2005). All the 
nodes were classified into four subcategories: modular hubs 
(highly connected nodes within a module, Zi > 2.5), network 
hubs (highly connected nodes within or among the modules, 
Zi > 2.5 and Pi > 0.62), peripherals (nodes with only a few 
links within or among the modules, Zi < 2.5 and Pi < 0.62), 
and connectors (highly connected nodes among the modules, 
Pi > 0.62) (Poudel et al. 2016). Modular hubs, network hubs, 
and connectors can be used to identify keystone species that 
play important roles in the stability and resistance of micro-
bial network structure and function (Fan et al. 2018); thus, 
the OTUs associated with these nodes are defined as key-
stone species.

Metabolomic analysis

The tobacco leaf samples were weighed (50 mg) and placed 
in a 2-mL centrifuge tube with a 6-mm grinding bead. 
Thereafter, 400 µL of extraction solution (4:1 methanol to 
water, v/v) containing 0.02 mg/mL L-2-chlorophenylalanine 
(internal standard) was added to the tube. Subsequently, the 
mixture was cryogenically ground at − 10 °C and 50 Hz for 
6 min, followed by low-temperature ultrasonic extraction at 
5 °C and 40 kHz for 30 min. Thereafter, the extract was left 
undisturbed for 30 min at − 20 °C and then centrifuged at 
13,000 rpm at 4 °C for 15 min. Finally, the supernatant (200 
µL) was transferred to a sample bottle with an inner can-
nula for liquid chromatography-mass spectrometry (LC–MS) 
analysis.

An ultra-high-performance liquid chromatography sys-
tem (Thermo Scientific, Waltham, MA, USA) coupled with 
a Fourier transform mass spectrometer (Thermo Scientific, 
Waltham, MA, USA) was used for metabolite detection. 
The Acquity UPLC HSS T3 column (100 mm × 2.1 mm, 
1.8 µm; Waters, Milford, MA, USA) was utilized for chro-
matographic separation. The injection volume was set at 2 
µL and the column temperature was maintained at a con-
stant value of 40 °C. Spectral detection was performed in 
both positive and negative ion modes, with the spray volt-
age being adjusted accordingly. The capillary temperature 
was maintained at 325 °C, and the sheath gas and auxiliary 
gas flow rates were set to 50 and 13 arb, respectively. The 
data were analyzed using Progenesis QI software (Waters 
Corporation, Milford, MA, USA), and metabolite identifica-
tion and annotation were conducted using the HMDB v.4.0 
(http://​www.​hmdb.​ca/) and KEGG public databases (https://​
www.​genome.​jp/​kegg/) (Li et  al. 2020a). Unsupervised 

https://unite.ut.ee/
https://www.arb-silva.de/
http://129.15.40.240/mena/
http://129.15.40.240/mena/
https://gephi.org/
http://www.hmdb.ca/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
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principal component analysis and orthogonal partial least 
squares-discriminant analysis (OPLS-DA) were performed 
using SIMCA v.14.1 software (Umetrics, Umeå, Sweden) to 
observe the overall distribution of the metabolites between 
the moldy and normal tobacco leaf samples. Significant dif-
ferences in metabolites were identified between the moldy 
and normal tobacco leaf samples by combining the variable 
influence on projection (VIP) values of OPLS-DA and Stu-
dent’s t-test p-values that were adjusted by false discovery 
rate (FDR) (Xin et al. 2019). Metabolites with VIP > 1 and 
p < 0.05 were considered significantly altered.

Statistical analysis

In this study, we classified all the OTUs into AT, interme-
diate taxa (IT), and RT based on their relative abundance 
(> 1%, 0.01–1%, and < 0.01%, respectively) (Jiao and Lu 
2020; Dong et al. 2022). To assess microbial community 
composition in different samples, we used the ggplot2 R 
package to map species stacks (Wickham 2016) and the 
UpSetR R package to visualize shared and unique taxa 
among the different samples (Gehlenborg 2019). We used 
the Vegan R package to calculate the Shannon and Chao 
indexes to assess the α-diversity of the samples (Oksanen 
et al. 2022), while we used the Picante R package to compute 
the Bray–Curtis distances and visualize them using PCoA to 
assess the β-diversity of the samples (Kembel et al. 2010). 
Similarity analysis was used to assess the difference in the 
microbial community structure between the moldy and nor-
mal tobacco leaves.

To explore the species characteristics and ecological 
adaptability of different microbial subcommunities, we 
calculated the Levin niche breadth index for AT, IT, and 
RT using the Spaa R package (Zhang 2016). We further 
explored the relationship between the niche breadth and 
relative abundance of species through Spearman correla-
tion analysis. The psych package was used to compute 
Spearman’s correlations between the microbial taxa and 
metabolites (Revelle 2021), which were then visualized as 

heatmaps. All statistical analyses were performed using R 
v.4.0.5 (https://​www.r-​proje​ct.​org) and RStudio v.1.1.463 
(https://​www.​rstud​io.​com/) software. Non-parametric sta-
tistical tests (Kruskal–Wallis or Wilcoxon test) were used 
to analyze microbial composition, α-diversity index, niche 
breadth index, and network properties between the moldy 
and normal tobacco leaves.

Results

Effects of tobacco leaf mildew on the fungal 
and bacterial community diversity

A total of 1,202,609 ITS sequences (51,464–73,943 
sequences per sample) with an average length of 232 bp and 
83,764 16S rRNA sequences (28,952–54,535 sequences 
per sample) with an average length of 421 bp were gener-
ated from the 18 tobacco samples (Supplemental Table S1). 
After quality-filtering and rarefying based on the minimum 
sequencing depth of any individual sample (51,354 reads 
per fungal sample and 7426 reads per bacterial sample), a 
total of 924,372 remaining ITS sequences were assigned 
to 599 fungal OTUs, while 133,668 remaining 16S rRNA 
sequences were assigned to 756 bacterial OTUs. Among 
the identified fungal OTUs, fungal AT accounted for only 
5.34%; however, these accounted for > 97% of the total 
sequence count. Conversely, fungal IT and RT constituted 
9.68% and 84.97% of the OTUs, respectively, while their 
contribution to the overall sequence count was 1.84% and 
0.8%, respectively. Among the 756 bacterial OTUs, bacterial 
AT accounted for only 7.14% of the OTUs but contributed 
to a significant proportion (93.67%) of the total sequences, 
while bacterial IT and RT accounted for 18.78% and 74.08% 
of the OTUs, respectively, but contributed to smaller propor-
tions (4.63% and 1.70%, respectively) of the total sequences 
(Table 1). Interestingly, in comparison to normal tobacco 
leaves, moldy tobacco leaves exhibited a significant increase 
in the number and proportion of OTUs associated with 

Table 1   The number of OTU and sequences of all, abundant, and rare communities in moldy and normal tobacco leaf samples

The numbers outside the parentheses denote the number of OTUs or sequences, respectively, while those inside indicate their respective propor-
tions in the sample

Kingdom Groups OTU Sequences

All Normal Mildew All Normal Mildew

Fungi Abundant 32 (5.34%) 32 (5.35%) 30 (35.72%) 899,928 (97.36%) 440,718 (95.35%) 459,210 (99.36%)
Intermediate 58 (9.68%) 58 (9.70%) 28 (33.33%) 17,010 (1.84%) 14,180 (3.07%) 2830 (0.61%)
Rare 509 (84.98%) 508 (84.95%) 26 (30.95%) 7434 (0.80%) 7288 (1.58%) 146 (0.03%)

Bacteria Abundant 54 (7.14%) 52 (9.14%) 54 (8.84%) 125,211 (93.67%) 62,265 (93.16%) 62,946 (94.18%)
Intermediate 142 (18.78%) 137 (24.08%) 135 (22.09%) 6192 (4.63%) 3509 (5.25%) 2683 (4.02%)
Rare 560 (74.08%) 380 (66.78%) 422 (69.07%) 2265 (1.70%) 1060 (1.59%) 1205 (1.80%)

https://www.r-project.org
https://www.rstudio.com/
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bacterial RT, while demonstrating a significant decrease in 
those related to fungal RT (Table 1).

The diversity and richness of fungal communities in 
moldy tobacco leaves were significantly lower compared to 
those in normal tobacco leaves (Supplemental Fig. S1A). 
Surprisingly, the Shannon and Chao indices of fungal RT 
were significantly higher than those of fungal AT and IT in 
normal tobacco leaves (p < 0.05, Supplemental Fig. S2A-
B). However, the Chao index of fungal RT was signifi-
cantly lower than that of fungal AT in moldy tobacco leaves 
(Fig. 1A–C, Supplementary Fig. S2C–D). In contrast to the 
fungal community, there were no significant differences 
in bacterial community diversity and richness observed 
between moldy and normal tobacco leaves at any level 
(AT, IT, RT or All) (Fig. 2A–C, Supplementary Fig. S1D). 
However, the diversity and richness indices of bacterial RT 
were significantly higher than those of bacterial AT in both 
moldy and normal tobacco leaves (Supplementary Fig. S3). 
The PCoA analysis showed mildew had no significant effect 
for tobacco fungal and bacterial communities in the over-
all community level (Supplemental Fig. S1B and E). How-
ever, it showed significant effects on fungal RT (p < 0.05, 
Figs. 1D–F and 2D–F), this suggested that variations in 
microbial communities within moldy tobacco leaves may 
primarily be attributed to the differences in fungal RT. More-
over, fungal communities were notable disparities among 
the three sites (R2 = 0.379, p = 0.001, Supplemental Fig. S1C 
and F), this implied that the fungal community structure 
of tobacco leaf might be more susceptible to alterations 
induced by storage conditions.

Furthermore, mildew had a significant impact on 
the niche breadth of fungal and bacterial communities 
(Figs. 1G–I and 2G–I). Among the fungal and bacterial 
communities, taxa with high abundance exhibited the high-
est niche breadth indices, while those with low abundance 
showed the lowest indices (Figs. 1G and 2G). Moreover, the 
niche breadth of fungi and bacteria in moldy tobacco leaves 
was significantly lower than that in normal tobacco leaves 
(Figs. 1H and 2H). Additionally, the relative abundance of 
individual OTUs was positively correlated with the Levin 
niche breadth index (p < 0.001) (Figs. 1I and 2I).

Effects of tobacco leaf mildew on the fungal 
and bacterial community composition

The community composition of fungi and bacteria in moldy 
and normal tobacco leaf samples exhibited high similarity 
in composition with fungal AT and bacterial AT, respec-
tively (Fig. 3), indicating that the microbial communities in 
tobacco leaf samples were primarily regulated by AT. How-
ever, a few differences were observed in the distribution of 
the dominant microflora among the subgroups. For instance, 
Eurotiomycetes, Wallemiomycetes, and Microbotryomycetes 

were predominantly distributed within fungal AT, whereas 
Agaricomycetes and Dothideomycetes were observed in fun-
gal RT and IT (Fig. 3A). Furthermore, the abundances of 
Dothideomycetes, Sordariomycetes, Microbotryomycetes, 
Tremellomycetes, and Agaricomycetes in moldy tobacco 
leaves were significantly lower than those in the normal 
tobacco leaves (Supplemental Fig. S4). Specifically, the 
majority of bacterial AT were classified as Gammaproteo-
bacteria, whereas Bacilli, Actinobacteria, Bacteroidia, and 
Clostridia were predominantly found in bacterial IT and RT 
subcommunities (Fig. 3B). Compared to the normal tobacco 
leaves, the relative abundances of Alphaproteobacteria, Act-
inobacteria, and Clostridia decreased, while those of Gam-
maproteobacteria, Bacilli, and Bacteroidia increased in 
the moldy tobacco leaves; however, these changes were not 
statistically significant (Supplemental Fig. S5). Altogether, 
these results indicate that the community composition of 
fungi and bacteria in tobacco leaves was dominated by AT 
having a wide range of niche widths.

Additionally, the microbial communities in different 
samples were further subjected to comparative analysis. 
In Guizhou tobacco leaves, the relative abundance of 
OTU210 and OTU254 in the fungal community as well 
as OTU704 in the bacterial community exhibited signifi-
cantly higher abundance in moldy tobacco leaves than 
in normal ones. Conversely, in Shanghai tobacco leaves, 
there was a significant decrease in the relative abundance 
of OTU264 and OTU252 in the fungal community as well 
as of OTU197 and OTU31 in the bacterial community in 
moldy tobacco leaves compared to normal ones. Similarly, 
in Jilin tobacco leaves, the relative abundance of OTU482 
and OTU285 in the bacterial community in moldy tobacco 
leaves was significantly lower than in normal ones (Sup-
plemental Fig. S6). Moreover, a total of 10 fungal OTUs 
were shared between the moldy and normal tobacco leaves, 
including Aspergillus (OTU331, OTU324, OTU260, 
OTU133, OTU327, OTU259, and OTU25), Xeromyces 
(OTU210), and Wallemia (OTU426 and OTU191). Nor-
mal tobacco leaves from Guizhou, Shanghai, and Jilin had 
individual 289, 74, and 35 unique OTUs; unfortunately, 
these OTUs were almost absent in moldy tobacco leaves 
(Supplemental Fig. S7 and Supplemental Data 1). Fur-
thermore, a total of 90 bacterial OTUs shared between the 
moldy and normal tobacco leaves, which represented over 
90.21% of the total sequences. Moreover, 23, 30, and 40 
unique bacterial OTUs were observed in normal tobacco 
leaves from Guizhou, Shanghai, and Jilin, respectively, 
but they were entirely absent in moldy tobacco leaves. 
Surprisingly, 26, 82 and 32 unique bacterial OTUs were 
detected in the moldy samples from these three regions, 
this suggested they might be more adapted to the mildew 
environment than other taxa (Supplemental Fig. S8 and 
Supplemental Data 2). Remarkably, the number of shared 
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community members were significantly higher than the 
number of unique members in each sample across all the 
samples. These findings suggested that moldy and normal 
tobacco leaves may share a similar set of core bacterial 
functional communities.

Effect of mildew on the molecular ecological 
network of fungal and bacterial communities

To explore the impact of mildew on ecological interactions 
among the microbial populations in tobacco leaves, we 
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constructed co-occurrence networks for fungal and bacte-
rial communities in moldy and normal tobacco leaves. The 
fungal network in the normal tobacco leaves consisted of 
169 nodes and 1746 edges, with AT, IT, and RT account-
ing for 2.37%, 17.16%, and 80.47% of the OTUs, respec-
tively (Fig. 4A). There were a total of 434 edges between 
RT and IT nodes, with only 3 and 17 edges connecting AT 
to IT and RT, respectively (Fig. 4A). Moreover, the node 
attribute values of RT, including degree, eigenvector central-
ity, and closeness centrality, were significantly higher than 
those of AT and IT (Supplemental Fig. S9A), thus suggest-
ing that fungal RT play a crucial role in the normal tobacco 
network by coexisting with fungal IT and themselves, but 
rarely with fungal AT. However, compared with the normal 
tobacco leaves, the fungal network in the moldy tobacco 
leaves consisted of only 42 nodes and 106 edges. Among 
these, 40.48%, 33.33%, and 26.19% of the nodes (OTUs) 
belonged to AT, IT, and RT, respectively (Fig. 4B). The 
sub-networks linking AT to IT, AT to RT, and IT to RT con-
tained 26, 28, and 25 edges, respectively (Fig. 4B), with no 
significant differences in the node attributes (Supplemental 
Fig. S9B). These findings suggest that the contribution of 

fungal AT is significantly amplified in the moldy tobacco 
leaves compared to the normal tobacco leaves and that they 
coexist with fungal IT and RT. However, the fungal networks 
in the moldy tobacco leaves exhibited significantly lower 
values for average clustering coefficient (avgCC), average 
path length (APL), network diameter (ND), and average 
degree (AD) compared to those in the normal tobacco leaves 
(Supplemental Table S2), indicating a weaker interaction 
among the fungal species under mildew conditions. Addi-
tionally, the majority of co-occurrence network structures 
in the normal tobacco leaves exhibited negative correlations 
(92.55%), indicating competition among the fungal com-
munities. In contrast, the network in moldy tobacco leaves 
displayed a relatively high proportion of positive correla-
tions between the edges (23.58%), highlighting the role of 
ecological mutualism or cooperation in the aggregation of 
fungal communities in the moldy tobacco leaves (Supple-
mental Table S2). The majority of nodes in both the moldy 
and normal fungal co-occurrence networks were associated 
with 5 dominant classes, including Dothideomycetes, Sord-
ariomycetes, Eurotiomycetes, Microbotryomycetes, and Wal-
lemiomycetes; however, not all the dominant groups played 

Fig. 3   Taxonomic composition 
of the fungal (A) and bacterial 
(B) communities in the moldy 
and normal tobacco leaf sam-
ples. Taxa accounting for < 1% 
of the total reads were grouped 
as “Others.” GZ, Guizhou 
province; JL, Jilin Province; 
SH, Shanghai; All, all taxa; AT, 
abundant taxa; IT, intermediate 
taxa; and RT, rare taxa
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significant roles in either of the networks. For example, Aga-
ricomycetes did not play any role in the moldy co-occurrence 
network (Fig. 4).

Bacterial networks showed similar structural features in 
both moldy and normal tobacco leaf samples. In normal 
tobacco leaves, the bacterial network was composed of 
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Fig. 4   Co-occurrence network of fungal communities in the normal 
(A) and moldy (B) tobacco leaves at the OTU level. The nodes of 
the network are colored according to different subcommunities (left) 
and fungal classes (right). The size of a node represents the degree of 
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middle shows the inter-associations between different subcommuni-
ties. The numbers outside and inside the parentheses represent posi-
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214 edges and 103 nodes, with AT, IT, and RT account-
ing for 51.46%, 43.69%, and 4.85% of the OTUs (Fig. 5A). 
Among these, 94, 2, and 8 edges connected AT to IT, AT 
to RT, and IT to RT, respectively. Furthermore, different 

subcommunities exhibited similar node topology character-
istics (Supplemental Fig. S10A). In moldy tobacco leaves, 
the bacterial network comprised 176 edges and 73 nodes, 
with AT, IT, and RT accounting for 53.42%, 45.21%, and 
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1.37%, respectively (Fig. 5B). Among these, 62, 2, and 3 
edges connected AT to IT, AT to RT, and IT to RT, respec-
tively. However, AT exhibited significantly higher degrees, 
eigenvector centrality, and closeness centrality compared to 
IT and RT (Supplemental Fig. S10B). These findings indi-
cate that the bacterial network in both moldy and normal 
tobacco leaf samples was primarily regulated by bacterial 
AT, which frequently co-occurs with bacterial IT, but rarely 
with bacterial RT. The proportion of positive links (65.42% 
and 79.55%) was significantly higher than that of negative 
links (34.58% and 20.45%) in bacterial networks of both 
the moldy and normal tobacco leaf samples, indicating a 
predominantly cooperative rather than a competitive rela-
tionship between the bacterial communities (Supplemen-
tal Table S2). Moreover, the nodal composition of the two 
bacterial networks exhibited similarities, with Alphaproteo-
bacteria, Gammaproteobacteria, Bacilli, and Actinobacte-
ria being the dominant classes. Notably, the significance 
of Actinobacteria was found to be considerably higher in 
the moldy tobacco leaf network compared with the normal 
tobacco leaf network (Fig. 5).

Four Zi-Pi plots were constructed to assess the poten-
tial topological roles of different subcommunities within 
the fungal and bacterial networks of the moldy and nor-
mal tobacco leaf samples (Fig. 6). Specifically, all fun-
gal OTUs present in the moldy tobacco leaves were cat-
egorized as peripherals, whereas 11 nodes (OTUs) were 
classified as connectors within the normal co-occurrence 
network (Fig. 6A), all of which belonged to fungal IT 
and RT. However, two bacterial AT and two bacterial IT 
OTUs were identified as the module hubs and connectors, 
respectively, in the normal tobacco leaf network, whereas 
five bacterial AT OTUs were categorized as the module 
hubs and connectors in the moldy tobacco leaf network 
(Fig. 6B). Altogether, these results revealed that the fun-
gal network may exhibit lower stability than the bacterial 
network under moldy conditions, and both fungal RT and 
bacterial AT likely play a crucial role in maintaining the 
functioning of the tobacco leaf microecosystem.
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Correlation between the microbiota 
and metabolome of the moldy tobacco leaves

To explore the impact of mildew on tobacco leaf metab-
olism, we conducted non-targeted metabolomics using 
LC–MS to identify global differences in the metabolic 
profiles of the moldy and normal tobacco leaf samples. 
Compared to the normal tobacco leaf samples, 208 com-
pounds exhibited significant upregulation, while 50 com-
pounds showed significant downregulation in the moldy 
tobacco leaf samples (VIP > 1 and p < 0.05) (Supplemental 
Table S3). Among these, lipids and organic oxygenated com-
pounds were the most abundant metabolites, accounting for 
25.97% and 20.16% of the differential metabolites, respec-
tively. Organic oxygen compounds were predominantly 
composed of carbohydrates (12.79%, with 24 upregulated 
and 9 downregulated metabolites) and carbonyl compounds 
(5.43%, with 11 upregulated and 3 downregulated metabo-
lites), while lipids primarily consisted of fatty acids (9.13%, 
with 18 upregulated and 6 downregulated metabolites), pre-
nol lipids (8.14%, with 18 upregulated and 3 downregulated 
metabolites), and glycerophospholipids (4.65%, 3 upregu-
lated and 9 downregulated metabolites). Moreover, the 
contents of amino acids and their analogs (8.14%, with 19 
upregulated and 2 downregulated metabolites) and benzene 
and its derivatives (4.65%, p < 0.05, with 11 upregulated and 
1 downregulated metabolites) changed significantly in the 
moldy tobacco leaves, compared with the normal tobacco 
leaves. Notably, moldy tobacco leaves displayed a signifi-
cant increase in the concentration of organic heterocycles, 
organic acids, polyketones, and benzene ring metabolites, 
including indoles, pyridines, flavonoids, cinnamides, phe-
nols, and peptides.

To further investigate the relationship between the differ-
ential metabolites and microbial communities in the moldy 
and normal tobacco leaf samples, we performed a correla-
tion analysis between the abundant microbial taxa and sig-
nificant differential metabolites (Supplemental Fig. S11). 
Remarkably, the OTUs of Dothideomycetes (OTU389 and 
OTU415) and Alphaproteobacteria (OTU1207, OTU1354, 
OTU193, and OTU460) predominantly exhibited signifi-
cant negative correlations with most metabolites, while they 
displayed a significant or insignificant positive correlation 
with pyrrolines and pyrrolidines. The majority of Gam-
maproteobacteria (OTU273, OTU288, OTU292, OTU327, 
OTU337, OTU777, OTU816, OTU826, and OTU831) and 
a subset of Alphaproteobacteria (OTU375, OTU781, and 
OTU785) displayed significant negative correlations with 
benzoxazines, homoisoflavonoids, lactones, tetrapyrroles, 
tetracyclines, diazanaphthalenes, as well as benzimidazole 
ribonucleosides and ribonucleotides. In contrast, the major-
ity of Eurotiales (OTU133, OTU264, and OTU265) and 
Bacilli (OTU1175, OTU1328, and OTU641) as well as a 

few Alphaproteobacteria (OTU454) were predominantly 
positively correlation with most differential metabolites, 
while they displayed a significant or insignificant positive 
correlation with saccharolipids. The aforementioned find-
ings suggest a strong correlation between the activities of 
fungi and bacteria and the biosynthesis and catabolism of 
metabolites in tobacco leaves during mildew.

Discussion

Fungal communities were more sensitive to mildew 
than bacterial communities

In a tobacco storage ecosystem, the tobacco leaves serve as 
both an energy source and a habitat for numerous hetero-
trophic species, including fungi, bacteria, insects, and mites, 
and microbial activity is the primary contributor to the deg-
radation of stored materials in this ecosystem (Dunkel 1992). 
In this study, we found that the diversity, composition, and 
network properties of the fungal communities were signifi-
cantly altered in moldy tobacco leaves compared to normal 
tobacco leaves. This is consistent with the results of previous 
studies that established fungi as the primary causative agents 
of mildew spoilage in stored and processed foods (Chris-
tensen 1972; Fleurat-Lessard 2017). However, no significant 
alterations were observed in the diversity, composition, and 
network properties of the bacterial communities between 
the moldy and normal tobacco leaves, indicating that bacte-
rial communities may exhibit a relatively lower susceptibil-
ity to the mold hazard compared to the fungal communi-
ties. One possible explanation for these results is that fungi 
and bacteria employ different mechanisms for community 
assembly. Previous studies have demonstrated that bacterial 
communities are primarily influenced by diffusion limita-
tions, whereas fungal communities are dominated by envi-
ronmental selection (Xiao et al. 2018). In general, tobacco 
leaves are stored in a dry state (< 13% moisture), which sig-
nificantly restricts the activities of most microorganisms. 
However, fungi possess the ability to sense and respond to 
their environment at the micron scale (Peay et al. 2016). 
Transient fluctuations in water availability, temperature, pH 
levels, and foreign compounds exert an influence on fungal 
interactions and ultimately determine the dominance of fun-
gal communities (Magan and Aldred 2008). Another pos-
sible explanation is that physiological variations lead to the 
allocation of diverse microorganisms to optimal ecological 
niches based on their nutritional preferences and functional 
specificities (Qian et al. 2020). It is widely acknowledged 
that fungi possess a broader range of enzymatic capabilities, 
exhibit slower biomass turnover rates, and have a higher 
carbon use efficiency than bacteria (Xiao et al. 2018). In 
natural ecosystems, fungi play a prominent role in carbon 
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cycling, owing to their ability to degrade complex substrates 
(Treseder and Lennon 2015), while bacteria contribute more 
significantly to nitrogen cycling due to their robust ammoni-
fication and nitrification capacities (Huang et al. 2020; Wang 
et al. 2020). In this study, the metabolomic analysis revealed 
that the majority of significantly altered metabolites in the 
moldy tobacco leaves comprised carbohydrates, lipids, car-
bonyl compounds, and other carbon-containing compounds 
and derivatives. These results are consistent with the results 
of a previous study that demonstrated a significant decrease 
in the total carbon content in moldy tobacco leaves com-
pared to normal tobacco leaves (Zhou et al. 2022). These 
results suggest that carbon turnover might be a crucial factor 
driving microbial succession in moldy tobacco leaves.

In addition, compared to bacteria, fungi are more capable 
of adapting to various stresses and colonizing food resources 
(Snyder et al. 2019). Additionally, the majority of opportun-
istic fungi, such as Aspergillus and Penicillium, and xero-
philic fungi adopt a stress-ruderal selected survival strategy 
to successfully colonize various niches on tobacco leaves 
(Magan and Aldred 2008; Snyder et al. 2019). Although they 
generally have a slow growth rate, these fungi are capable of 
surviving and reproducing under harsh conditions, including 
high temperatures, low pH, or limited water availability, and 
they allocate resources to facilitate accelerated reproduction 
when the conditions improve. Therefore, the differences in 
physiology and community assembly strategies enable fungi 
to play a more important role than bacteria in the mildew 
process of tobacco leaves.

The disappearance of fungal RT may serve 
as a crucial indicator of mildew occurrence

The ecological functions of the tobacco storage system 
were modulated by the microbiota inhabiting the tobacco 
leaves. In normal tobacco leaves, fungal RT exhibited the 
highest richness and diversity, suggesting that low-abundant 
microbes are important contributors to species diversity 
(Lynch and Neufeld 2015). However, significant alterations 
were observed in both α- and β-diversities of the fungal com-
munities in the moldy tobacco leaves compared to the nor-
mal tobacco leaves. Furthermore, the majority (94.88%) of 
fungal RT were eliminated from the moldy tobacco leaves, 
suggesting that fungal RT may exhibit increased suscep-
tibility to mildew rather than fungal AT, which exhibited 
stronger resistance and adaptability towards mildew-induced 
environmental changes. This can be attributed to their dis-
tinct ecological strategies (Lynch and Neufeld 2015). For 
instance, AT possessed a broad niche breadth, enabling them 
to competitively exploit a range of resources, effectively 
adapt to environmental changes, and maintain their persis-
tence and plasticity (Zhao et al. 2022). Conversely, RT, with 
narrow niche breadths, may exhibit lower competitiveness, 

growth rate, and resistance against mold-induced environ-
mental changes (Jousset et al. 2017). In contrast, the abun-
dance of AT contributes to the rapid increase in their repro-
duction rate, which enables them to rapidly occupy more 
ecological niches (Magan and Aldred. 2008). Therefore, 
fungal AT demonstrate high resistance and adaptability 
under unfavorable and complex heterogeneous environments 
caused by mildew.

Compared to simple diversity indices and community 
structure descriptions, network analysis may provide more 
profound insights into the interactions among microbial sub-
populations (Ziegler et al. 2018). To our knowledge, this 
is the first study to use correlation-based network analysis 
to investigate co-occurrence patterns among microbial RT 
and AT subcommunities in stored tobacco leaves. Network 
topology can reflect the interactions among microorganisms, 
and node centrality indicates the potential impact of a spe-
cies on the co-occurrence of other nodes (Hu et al. 2017). 
Nodes with high centrality may occupy a core and central 
position in the network, and the corresponding species may 
have a strong influence on other interactions (Zhang et al. 
2020). Our results show that the majority of nodes in the 
fungal network of normal tobacco leaves belong to fungal 
RT (80.47%), and their degree, eigenvector, and closeness 
centrality values were significantly higher than those of fun-
gal IT and AT, indicating that fungal RT more frequently 
occupied central positions within the network. In contrast, 
the fungal network in moldy tobacco leaves exhibited a sig-
nificant reduction in the proportion of RT (26.19%), along 
with a decrease in their degree, eigenvector, and closeness 
centrality values compared to the IT and AT. This indicates 
that fungal RT are significantly marginalized within moldy 
tobacco leaves, while fungal AT exert significant influence 
on the fungal network. Surprisingly, the majority of nodes 
in all bacterial networks were attributed to the AT and IT, 
implying that these subcommunities are responsible for 
maintaining the bacterial network structure.

Microbial keystones are defined as highly connected 
nodes that strongly influence the community structure and 
network characteristics, either alone or within a guild, irre-
spective of their abundance (Banerjee et al. 2018). In this 
study, the key fungal species in the normal tobacco leaves 
belonged to the RT and IT, which had low abundance; how-
ever, key fungal species were not identified in the fungal 
network of moldy tobacco leaves. Conversely, most key-
stone bacterial species in both moldy and normal tobacco 
leaf samples belonged to the AT. A study demonstrated that 
RT were just as crucial as AT in upholding ecosystem func-
tion (Shi et al. 2016) and that the absence of keystone spe-
cies could result in the fragmentation of microbial networks 
(Xue et al. 2020). Our previous studies found that network 
structures of fungal community in moldy tobacco leaves tend 
to be fragmented (Zhou et al. 2022). Therefore, it can be 
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inferred that the maintenance of tobacco storage ecosystems 
was dependent on the indispensable roles played by fungal 
RT and bacterial AT and that the disappearance of fungal 
RT may serve as a crucial indicator for mildew occurrence.

Mildew may have compromised the defense 
mechanisms within the tobacco microecosystem

Metabolites play a crucial role as signaling molecules for 
both intra- and inter-species communication (Schmidt et al. 
2019). Intracellular metabolic pathways can be altered by 
diffusible molecules or by direct cell–cell contact (Liu and 
Kakeya 2020). Microorganisms produce various second-
ary metabolites that modulate individual and collective 
responses, ultimately shaping the entire microbial commu-
nity (Schmidt et al. 2019; Liu and Kakeya 2020). Carbohy-
drates constitute a significant proportion of tobacco (40–50% 
by weight), most of which can be hydrolyzed to produce 
glucose and fructose, which serve as vital energy sources 
for mold-inducing microorganisms (Tsaballa et al. 2020). 
Amino acids and carbonyl compounds (alcohols, aldehydes, 
ketones, essential oils, and other aromatic substances) are 
important components or precursors of the aromatic com-
pounds in tobacco (Sun et al. 2011). In this study, the proline 
content in moldy tobacco leaves was significantly lower than 
that in normal tobacco leaves, which is consistent with the 
results observed in a previous study (Li et al. 2014). Fur-
thermore, a study demonstrated that proline can enhance 
plant tolerance to abiotic stresses, such as drought and salt 
stress (Yamchi et al. 2007). Lipids, including fatty acids, 
phospholipids, steroids, and glycolipids, were the primary 
constituents of cell membranes, organelle membranes, and 
the cuticle and wax of plant epidermis. These compounds 
play a crucial role in protecting plant tissues against external 
mechanical damage and pathogen attack (Fischer et al. 2004; 
Yang et al. 2017); however, their content was significantly 
lower in moldy tobacco leaves compared to normal tobacco 
leaves. In addition, polyketones (flavonoids, cinnamic acids, 
isoflavonoids, and coumarins), phenols (arbutin, caftaric 
acid, vanillic acid, and vanillin acetate), and polypeptides 
(threoninyl-isoleucine, asparaginyl-isoleucine, and arginyl-
proline), which are known antioxidant and antibacterial 
compounds (Martens and Mithofer 2005; Sato et al. 2011; 
Li et al. 2020c; Marchiosi et al. 2020), are not only crucial 
for human beings but are indispensable for plant growth, 
development, and survival. In plants, these compounds act as 
protective agents against abiotic stresses or as phytoantitox-
ins against pathogens and herbivores (Tsaballa et al. 2020). 
Interestingly, these compounds were significantly higher in 
moldy tobacco leaves. Therefore, the significant alteration in 
the metabolites associated with stress resistance and defense 
mechanisms in moldy tobacco leaves suggests that microbial 
activities during mildew growth may seriously compromise 

the defense system of tobacco leaves. However, the functions 
of most of these compounds are unknown, necessitating fur-
ther studies to elucidate their role in mildewing.

Microbial interactions have the potential to affect the 
production of host metabolites, particularly those related to 
quorum sensing (Tourneroche et al. 2019). In turn, these 
metabolites may modulate the composition and activity of 
microbial communities. For instance, within the gastroin-
testinal tract, some microorganisms, such as Clostridium, 
Peptostreptococcus, and Lactobacillus, can metabolize 
tryptophan into indole and its derivatives. These secondary 
metabolites subsequently modulate the ecological balance of 
bacteria, fungi, and viruses or confer a competitive advan-
tage to one community (Roager and Licht 2018). In this 
study, the majority of fungal taxa exhibited a significant neg-
ative correlation with compounds, while only a few taxa of 
Eurotiales, such as Xeromyces bisporus (OTU254), Asper-
gillus penicillioides (OTU324, OTU260, and OTU256), 
and Aspergillus amstelodami (OTU133), displayed positive 
correlations with changes in some metabolites. One possi-
ble explanation for this phenomenon is that acclimated spe-
cies may have secreted antibiotic or antifungal compounds 
to inhibit the growth of other species, or their secondary 
metabolites could substitute for the corresponding functional 
microorganisms.

Surprisingly, we observed positive correlations between 
differential metabolites and bacterial taxa such as Bacillales, 
Gammaproteobacteria, and Alphaproteobacteria. A previ-
ous study demonstrated the significant influence of bacteria 
on the production of volatile flavor compounds and flavors 
in cigar leaves (Zheng et al. 2022a, c). Additionally, Aci-
netobacter, Sphingomonas, Solibacillus, and Lysinibacil-
lus were main carbonyl compound-producing microbes in 
fermented cigar tobacco leaves (Zheng et al. 2022b). These 
findings provide evidence for the involvement of bacteria 
in the occurrence of tobacco leaf mildew, indicating their 
significant role in both metabolite production and degrada-
tion. It is worth noting that while metabolomics can analyze 
the metabolites of organisms under specific conditions at a 
particular time, further investigation is necessary to explore 
the dynamic changes in the tobacco leaf metabolite profiles 
during mildewing and their correlation with the tobacco leaf 
microbial community structure.

In summary, we conducted an analysis of the fungal and 
bacterial AT, IT, and RT in moldy and normal tobacco leaf 
samples. Our findings indicate that compared to the bacterial 
communities, the diversity and composition of the fungal 
communities were more vulnerable to mildew. Additionally, 
we found that fungal RT and bacterial AT were crucial for 
maintaining the stability and function of the tobacco leaf 
ecosystem, while fungal AT exhibited strong resistance and 
adaptability to mold damage. Furthermore, the metabolomic 
analysis revealed that mildew may have inflicted irreversible 
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damage on the defense mechanisms of tobacco leaf micro-
ecosystem. The majority of differential metabolites showed 
a negative correlation with most fungi and bacteria, while 
only a few Eurotiales and Bacilli showed a positive corre-
lation. This study demonstrated that fungi are the primary 
biological agents responsible for tobacco leaf mildew and 
provided evidence supporting the irreplaceable role of bac-
teria in the tobacco leaf mildew process. Thus, this study 
provides novel insights for a comprehensive understanding 
of the mildew process in a tobacco storage ecosystem and 
establishes a theoretical foundation for the management of 
tobacco storage.
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