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Abstract 
Anaerobic, acetogenic bacteria are promising biocatalysts for a sustainable bioeconomy since they capture and convert car-
bon dioxide to acetic acid. Hydrogen is an intermediate in acetate formation from organic as well as C1 substrates. Here, we 
analyzed mutants of the model acetogen Acetobacterium woodii in which either one of the two hydrogenases or both together 
were genetically deleted. In resting cells of the double mutant, hydrogen formation from fructose was completely abolished 
and carbon was redirected largely to lactate. The lactate/fructose and lactate/acetate ratios were 1.24 and 2.76, respectively. 
We then tested for lactate formation from methyl groups (derived from glycine betaine) and carbon monoxide. Indeed, also 
under these conditions lactate and acetate were formed in equimolar amounts with a lactate/acetate ratio of 1.13. When the 
electron-bifurcating lactate dehydrogenase/ETF complex was genetically deleted, lactate formation was completely abol-
ished. These experiments demonstrate the capability of A. woodii to produce lactate from fructose but also from promising 
C1 substrates, methyl groups and carbon monoxide. This adds an important milestone towards generation of a value chain 
leading from  CO2 to value-added compounds.

Key points
• Resting cells of the ΔhydBA/hdcr mutant of Acetobacterium woodii produced lactate from fructose or methyl groups + CO
• Lactate formation from methyl groups + CO was completely abolished after deletion of lctBCD
• Metabolic engineering of a homoacetogen to lactate formation gives a potential for industrial applications

Keywords CO2-based bioeconomy · C1 compounds · Lactate · Lactogenesis · Metabolic engineering

Introduction

Acetogenic bacteria are a group of strictly anaerobic bac-
teria that oxidize one mol of hexoses such as fructose to 
three mol of acetate, a metabolic trait known as homoace-
togenesis (Fontaine et al. 1942). Fructose is oxidized via 
the Embden-Meyerhof-Parnas pathway to four electrons 
and two mol of pyruvate which are further oxidized to two 
mol of acetyl-CoA,  CO2 and four more electrons (Rags-
dale 2003). Acetate formation yields 4 mol of ATP per 
hexose, the highest amount of ATP that can be obtained 

by fermentation (Müller 2008; Müller and Frerichs 2013). 
This is only possible by disposing the electrons in a special 
pathway for  CO2 reduction to acetate, the Wood-Ljungdahl 
pathway (WLP) in which two  CO2 are reduced by eight 
electrons to acetate (Müller 2003; Wood and Ljungdahl 
1991). The WLP is not only an electron sink for fructose 
oxidation, but also allows acetogens to grow on  H2 +  CO2 
(Schuchmann and Müller 2014; Wood et al. 1986) or other 
C1 compounds such as formate (Moon et al. 2021) or meth-
anol (Balk et al. 2003; Kremp and Müller 2021; Kremp 
et al. 2018; van der Meijden et al. 1984).  CO2 is reduced in 
two branches. In the methyl branch, one  CO2 is first reduced 
to formate by a formate dehydrogenase, or more specific, by 
a hydrogen-dependent  CO2 reductase in the model aceto-
gen Acetobacterium woodii (Schuchmann and Müller 2013). 
Formate is then bound in an ATP-dependent reaction to 
the C1 carrier tetrahydrofolate (THF) (Himes and Harmony 
1973; Lovell et al. 1988), yielding formyl-THF from which 
water is eliminated and the resulting methenyl-THF is 
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reduced via methylene- to methyl-THF (Bertsch et al. 2015; 
Ragsdale and Ljungdahl 1984). In the second branch,  CO2 
is reduced to CO which is then bound to the key enzyme 
of the pathway, CO dehydrogenase/acetyl-CoA synthase 
(CODH/ACS) and combined with the methyl group and 
CoA to acetyl-CoA (Ragsdale 2008). The substrates for-
mate (Moon et al. 2021) and carbon monoxide (Diekert 
and Thauer 1978; Diender et al. 2015; Genthner and Bryant 
1982; Weghoff and Müller 2016) are intermediates of the 
pathway and methyl groups from, for example, methanol or 
glycine betaine, enter the pathway by a methyltransferase 
system yielding methyl-THF (Kremp and Müller 2021; 
Kremp et al. 2018; Lechtenfeld et al. 2018).

Acetogenic bacteria have gained much interest in recent 
years since they capture the greenhouse gas  CO2 and reduce 
it to acetate. This small chain fatty acid has limited applica-
tion per se, but acetate may substitute glucose in the long 
run to a sustainable bioeconomy as feedstock for the pro-
duction of not only biofuels but also all the other products 
that are currently produced from sugars by, for example, 
Escherichia coli, Corynebacterium glutamicum or yeasts 
(Förster and Gescher 2014; Ingram et al. 1987; Inui et al. 
2004a, b; Jojima et al. 2015a, b; Lim et al. 2018; Mohd 
Azhar et al. 2017). In addition to acetate, some acetogens 
can produce ethanol from C1 compounds such as  CO2 and 
CO and this process is already used on an industrial scale 
(Liew et al. 2017, 2022; Mock et al. 2015). Higher carbon 
compounds are rarely produced and generally not from C1 
compounds. A C1 substrate of interest is methanol which 
is also used by acetogens as carbon and energy source 
(Kremp and Müller 2021; Kremp et al. 2018; van der Mei-
jden et al. 1984). Methanol is already produced from  CO2 
chemically on an industrial level and the use of methanol 
as a feedstock circumvents all the problems inherent to gas 
fermentation.

Recently, we discovered a novel metabolic trait in 
A. woodii, mixed acid fermentation of fructose (Moon 
et al. 2023a). A mutant in which the central enzyme of 
the WLP, the methylene-tetrahydrofolate reductase was 
genetically deleted, was able to grow on fructose. But 
acetate was not the only product; in addition molecular 
hydrogen, formate, ethanol and lactate were produced as 
end products (Moon et al. 2023a). This finding offered 
the possibility to engineer strains that convert fructose 
or even C1 compounds to reduced end products such as 
ethanol or lactate. Production of lactate is of great inter-
est since it is widely used in food, pharma- and cosmetic 
industries as well as serves as the precursor of a biologi-
cally degradable plastic, poly lactic acid (PLA) (Ahmad 
et al. 2022). Here, we have chosen lactate as a target and 
generated a strain of A. woodii that performs heterolactate 
fermentation from fructose or from methyl groups plus 
carbon monoxide.

Materials and methods

Strains and cultivation

A. woodii wild type (DSM1030) was obtained from the 
Deutsche Sammlung von Mikroorganismen und Zellkul-
turen (DSMZ; Braunschweig, Germany). The ∆pyrE strain 
was described before (Wiechmann et al. 2020). The hdcr 
deletion mutant ∆hdcr and the double mutant ∆hydBA/
hdcr were described recently (Moon et al. 2023b). The 
triple mutant ∆hydBA/hdcr/lctBCD in which the genes 
encoding the lactate dehydrogenase were deleted in 
addition was generated in this study. All strains were 
routinely cultivated under anoxic conditions at 30 °C in 
bicarbonate-buffered complex medium as described before 
(Heise et al. 1989). As substrates for growth, 60 mM fruc-
tose + 100 mM formate, or 50 mM glycine betaine + 10% 
CO were used. Growth was monitored by determining the 
optical density at 600 nm  (OD600).

Generation of A. woodii ΔhydBA/hdcr/lctBCD mutant

To generate the ΔhydBA/hdcr/lctBCD triple mutant, the 
plasmid pMTL84151_LW_dlct was constructed in E. 
coli HB101 (Promega, Madison, WI, USA) and trans-
formed into the A. woodii ΔhydBA/hdcr strain (Moon 
et al. 2023b), as described previously (Westphal et al. 
2018). The plasmid pMTL84151_LW_dlct originated 
from pMTL84151 (Heap et al. 2009) but lacks a Gram-
positive replicon. In pMTL84151_LW_dlct, 1000 bp of 
upstream flanking regions (UFR) of lctB (Awo_c08710) 
and 1000 bp of downstream flanking regions (DFR) of lctD 
(Awo_c08730) were cloned into the multiple cloning sites 
to delete the lctBCD genes by homologous recombination. 
The plasmid also has a catP marker from Clostridium per-
fringens coding for chloramphenicol/thiamphenicol resist-
ance (Werner et al. 1977) and a heterologous pyrE gene 
from Eubacterium limosum (Wiechmann et al. 2020) as 
a counter selectable marker. The first selection was car-
ried out on an agar plate with complex medium containing 
20 mM fructose + 50 mM formate and 30 ng/µl thiamphen-
icol after transformation of pMTL84151_LW_dlct into the 
A. woodii ΔhydBA/hdcr strain by electroporation (625 V, 
25 µF, 600 Ω, in 1 mm cuvettes). The second selection 
for disintegration was performed on an agar plate with 
minimal medium (Westphal et al. 2018) containing 20 mM 
fructose + 50 mM formate, 1 µg/ml uracil and 1 mg/ml 
5-fluoroortate (5-FOA). The deleted region was analyzed 
by PCR with primers binding upstream of UFR and down-
stream of DFR: aus_lct_for (5′-CAG GCA ATG TTT TTT 
AAT GTC AGG A-3′) and aus_lct_rev (5′-ATA ACT TTT 
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GCC AAA GCC ACAAT-3′). Consequently, PCR experi-
ments were performed to verify the purity of the mutant, 
with primers binding in the lctD gene: in_lct_for (5′-GGT 
AAT ATC AGT ACG AAT GCCGG-3′) and in_lct_rev (5′- 
GAA TCG CCT TGG ATT TAA TAA TCT TCG-3′). Subse-
quently, the sequence of the deleted region of the mutant 
was verified by DNA sequencing (Sanger et al. 1977).

Preparation of resting cells

Cells were cultivated either on 60 mM fructose + 100 mM 
formate or 50 mM glycine betaine + 10% CO in 1 l bicar-
bonate-buffered complex medium to the late exponential 
growth phase (on 60  mM fructose + 100  mM formate, 
 OD600 of 1.5; on 50 mM glycine betaine + 10% CO,  OD600 
of 0.7). Cells were harvested by centrifugation (Avanti J-25 
and JA-10 Fixed-Angle Rotor; Beckman Coulter, Brea, CA, 
United States) at 8,000 rpm and 4 °C for 10 min, washed 
with 30 ml of buffer containing 50 mM imidazole (pH 7.0), 
20 mM KCl, 20 mM  MgSO4, 4 mM DTE and 4 µM resazurin 

and pelleted by centrifugation at 8,500 rpm and 4 °C for 
10 min (Avanti J-25 and JA-25.50 Fixed-Angle Rotor; Beck-
man Coulter, Brea, CA, United States). Subsequently, the 
pellets were resuspended in 5 ml imidazole buffer and trans-
ferred to 16-ml Hungate tubes. All steps were performed 
under strictly anoxic conditions in an anoxic chamber (Coy 
Laboratory Products, Grass Lake, MI, United States) filled 
with  N2/H2 (96–98%/2–4%; v/v). To get rid of residual  H2 
from the anoxic chamber, the gas phase of the cell suspen-
sions was changed to 100%  N2. The total protein concen-
tration of the cell suspensions was measured as described 
before (Schmidt et al. 1963).

Cell suspension experiments

For fructose fermentation, the cells were resuspended in 
20 ml of bicarbonate-containing imidazole buffer (50 mM 
imidazole, 20 mM KCl, 20 mM NaCl, 20 mM  MgSO4, 
60 mM  KHCO3, 4 mM DTE, 4 µM resazurin, pH 7.0) in 
120-ml serum flasks under a  N2/CO2 atmosphere (80:20, 

Fig. 1  Deletion of the lctBCD genes in the chromosome of the 
ΔhydBA/hdcr mutant. (a) Genetic organization after deletion of the 
lctBCD genes using plasmid pMTL_LW_dlct. Only 3 bp of the lctB 
gene and 3 bp of the lctD gene remained in the ΔhydB/hdcr/lctBCD 

mutant. Genotypic analyses of the ΔhydBA/hdcr/lctBCD mutant were 
carried out by colony PCR with primers binding outside the deleted 
region (b) (aus_lct_for and aus_lct_rev) or inside (c) (in_lct_for and 
in_lct_rev)
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v/v) to a final protein concentration of 2 mg/ml. As substrate, 
60 mM fructose was added. For glycine betaine + CO fer-
mentation, resting cells were prepared in 10 ml of bicarbo-
nate-containing imidazole buffer under a  N2/CO2/CO atmos-
phere (2 bar, 72:18:10, v/v/v) to a final protein concentration 
of 1 mg/ml. For the experiment under bicarbonate-depleted 
conditions, bicarbonate-depleted buffer (50 mM imidazole, 
20 mM KCl, 20 mM NaCl, 20 mM  MgSO4, 4 mM DTE, 
4 µM resazurin, pH 7.0) was used and the gas phase was 
replaced to a  N2/CO atmosphere (2 bar, 90:10, v/v). For the 
experiments under  Na+-depleted conditions,  Na+-depleted 
buffer (50 mM imidazole, 20 mM KCl, 20 mM  MgSO4, 
60 mM  KHCO3, 4 mM DTE, 4 µM resazurin, pH 7.0) was 
used and the contaminating  Na+ concentration in the buffer 
was determined with an Orion 84–111 ROSS sodium elec-
trode (Thermo Electron, Witchford, UK) according to the 
supplier's instructions. As substrate, 50 mM glycine betaine 
was added to the resting cells. The resting cells were pre-
incubated at 30 °C in a water bath with shaking (150 rpm) 
and the experiments were started by adding the substrate(s). 
During the experiments, 1-ml samples were routinely taken 
for metabolite analyses.

Metabolite analyses

The concentrations of fructose, formate, acetate, and 
lactate were determined by high-performance liquid 

chromatography as described previously (Moon et al. 2019). 
 H2 or ethanol were analyzed by gas chromatography 
(Trifunović et al. 2016; Weghoff and Müller 2016).

Gene expression analyses

The ∆pyrE, ∆hdcr, ∆hydBA/hdcr mutants grown on 50 mM 
glycine betaine under a  N2/CO2/CO atmosphere (72:18:10, 
v/v/v) in bicarbonate-buffered complex media were har-
vested in the exponential growth phase. Preparation of RNA 
and cDNA was performed as described before (Dönig and 
Müller 2018). Transcript levels of the lctB, lctC, and lctD 
genes were analyzed with real-time qPCR in a Rotor Gene 
RG-3000 qPCR cycler (Corbett Research, Cambridge, UK) 
using Maxima SYBR Green qPCR Master Mix (Thermo 
Fisher Scientific, Waltham, MA, USA) following the suppli-
er's instructions. The housekeeping gene gyrA (Awo_c00060) 
was used as reference and the relative gene expression lev-
els were calculated using the  2−ΔΔCt method (Livak and 
Schmittgen 2001). For the amplification, following primers 
were used: qlctB_for (5′-GCG CTG ATG AGG GTT GTT TA-3′) 
and qlctB_rev (5′-TCA CCC AAT CGT TTG GTG -3′) for lctB, 
qlctC_for (5′-GTC GAT CAT ATT GAA GGC CAGAT-3′) and 
qlctC_rev (5′-ACA AGG CAT AAA CCG GAT GT-3′) for lctC, 
and qlctD_for (5′-GAT TCC AAC GGC GAT TGA AT-3′) and 
qlctD_rev (5′-TAT AAG CGT TGC TAC TGG AGTC-3′) for 
lctD.

Fig. 2  Conversion of fructose in resting cells of A. woodii. Cells of 
the Δhdcr (a), ΔhydBA/hdcr (b) and ΔhydBA/hdcr/lctBCD mutants 
(c) were grown in bicarbonate-buffered complex media under a  N2/
CO2 atmosphere (80:20, v/v) with 60 mM fructose + 100 mM formate 
and harvested in the early stationary growth phase. The cell suspen-
sions were prepared in 10 ml of cell suspension buffer (50 mM imida-
zole, 20 mM  MgSO4, 20 mM KCl, 20 mM NaCl, 60 mM  KHCO3, pH 

7.0) in 120 ml serum flasks under a  N2/CO2 atmosphere at a final pro-
tein concentration of 2 mg/ml. 60 mM fructose was given to the cell 
suspensions as carbon and energy source. Fructose (●), acetate (■), 
ethanol (▲), formate (▼),  H2 (♦) and lactate ( ×) were determined. 
Each data point presents a mean with standard deviation (SD); n = 2 
independent experiments
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Results

Strain design

There are two hydrogenases encoded in the genome of A. 
woodii, the HydA2 subunit of the HDCR and the elec-
tron-bifurcating HydABC hydrogenase (Poehlein et al. 
2012); both have been deleted solely or in tandem (Moon 
et al. 2023b; Wiechmann et al. 2020). There is only one 
known lactate dehydrogenase in A. woodii, the electron 
bifurcating LDH/ETH complex, encoded by lctBCD 
(Awo_c08710 – Awo_c08730) (Poehlein et al. 2012). 
This enzyme complex is known to be responsible for 
lactate oxidation during growth of A. woodii on lactate 
(Weghoff et al. 2015). Recently, it has been reported that 
the lctBCD genes were highly expressed in the ΔmetVF 
mutant grown on fructose where lactate was formed as 
a side product (Moon et al. 2023a). Therefore, to verify 
that a possible lactate formation was indeed catalyzed by 
LctBCD we genetically deleted the LDH/ETF complex. 
For the generation of the ΔhydBA/hdcr/lctBCD mutant, 
the suicide plasmid pMTL_84151_LW_dlct was con-
structed, which contains each 1000 bp of upstream flank-
ing region (UFR) of lctB and downstream flanking region 
(DFR) of lctD leaving only the start codon of lctB and the 
stop codon of lctD (Fig. 1a). For selection, this plasmid 
carries the pyrE gene from Eubacterium limosum (Wiech-
mann et al. 2020) and the chloramphenicol/thiamphenicol 
resistance cassette (catP) from Clostridium perfringens 

Fig. 3  Growth of the A. woodii strains on glycine betaine + CO. 
Growth experiments were performed in 20  ml bicarbonate-buffered 
complex medium in 120-ml serum flasks with 50 mM glycine betaine 
under a  N2/CO2/CO atmosphere (72:18:10, v/v/v) at 30 °C. Depicted 
are the optical densities of the ∆pyrE (●), ∆hdcr (■), ∆hydBA/hdcr 
(▲), and the ∆hydBA/hdcr/lctBCD mutant (▼). Additionally, acetate 
(open symbols) was determined during growth. Each data point pre-
sents a mean ± SD; n = 2 independent experiments

Fig. 4  Conversion of glycine betaine + CO in resting cells of A. woo-
dii. Cells of the ΔpyrE (a), Δhdcr (b) and ΔhydBA/hdcr mutants (c) 
were grown in bicarbonate-buffered complex media under a  N2/CO2/
CO atmosphere (72:18:10, v/v/v) with 50  mM glycine betaine and 
harvested in the early stationary growth phase. The cell suspensions 
were prepared in 10 ml of cell suspension buffer (50 mM imidazole, 

20 mM  MgSO4, 20 mM KCl, 20 mM NaCl, 60 mM  KHCO3, pH 7.0) 
in 120-ml serum flasks with 50 mM glycine betaine under 2 bar of a 
 N2/CO2/CO (72:18:10, v/v/v) atmosphere at a final protein concentra-
tion of 1 mg/ml. Acetate (●) and lactate (▲) were determined. Each 
data point presents a mean ± SD; n = 2 independent experiments
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(Werner et al. 1977). The plasmid was integrated into the 
chromosome of the ΔhydBA/hdcr mutant by homologous 
recombination at one flanking region in the presence of 
thiamphenicol and subsequently, disintegration was car-
ried out by counter-selection with 5-fluoroorotate. Single 
colonies were picked on agar plates with fructose + for-
mate as carbon and energy source. PCR experiments with 
primers binding outside the deleted region revealed that 
the lctBCD genes were successfully deleted (Fig. 1b), and 
the lctD gene could not be amplified with primers bind-
ing inside of lctD (Fig. 1c). Subsequently, the absence of 
the lctBCD genes in the chromosome was confirmed by 
DNA sequencing (Sanger et al. 1977).

Heterolactate fermentation with fructose 
in the ∆hydBA/hdcr double mutant

In a previous study we have found conversion of fruc-
tose to molecular hydrogen, formate, ethanol and lactate 
as end products in a ΔmetVF mutant of A. woodii (Moon 
et al. 2023a). Here, we aimed to redirect fructose metabo-
lism to lactate. Since ethanol was only produced in very 
minor amounts, and since A. woodii has eleven different 
alcohol dehydrogenases, it was not attempted to genetically 
delete ethanol production. Hydrogen was produced in huge 
amounts (Moon et al. 2023a) and therefore we analyzed 
whether  H2 production would be abolished in the ∆hdcr, 
and the ΔhydBA/hdcr double mutant. The growth phenotype 
of these mutants has been described before; in brief, they 
do not grow on fructose,  H2 +  CO2, methanol, or formate 
(Moon et al. 2023b). Therefore, the mutants were grown 
on fructose + formate, harvested in the exponential growth 
phase and we then analyzed the fermentation balance from 
fructose in resting cells. Since we have seen that high con-
centrations of sugars stimulated production of a reduced end 
product, ethanol, under certain conditions (Moon and Müller 
2021), we performed the experiments with 60 mM instead 
of 20 mM fructose.

Upon addition of fructose to resting cells of the 
∆hdcr mutant, 21.4 ± 1.4  mM fructose was consumed, 
and 21.0 ± 0.4  mM acetate was produced, giving a 
fructose:acetate ratio of 1:1 (Fig. 2a). Formate was not 
produced, as expected. As seen before with the ΔmetVF 
mutant (Moon et al. 2023a), hydrogen was still formed in 
huge amounts (45.4 ± 2.2 mM) with a fructose:H2 ratio of 
1:2.1. Ethanol (1.5 ± 0.0 mM) and lactate (2.1 ± 0.9 mM) 
were only formed in very minor amounts. Since electrons 
were apparently released as hydrogen, we checked the effect 
of deletion of the hydrogenase HydABC in the ∆hdcr back-
ground. In resting cells of the ∆hydBA/hdcr mutant, hydro-
gen formation was completely abolished, and less acetate 
(14.0 ± 2.5 mM) was produced from 31.1 ± 1.1 mM fruc-
tose with a fructose:acetate ratio of only 1:0.45 (Fig. 2b). 
Ethanol formation increased a bit (4.5 ± 0.6  mM) with 
a fructose:ethanol ratio of 1:0.14 and an acetate:ethanol 
ratio of 1:0.32. In contrast, lactate production increased 
dramatically from almost zero to 38.6 ± 2.1 mM, giving a 
fructose:lactate ratio of 1:1.24 and an acetate:lactate ratio 
of 1:2.76.

Since the lctBCD genes are the only genes annotated to 
encode a lactate dehydrogenase (Poehlein et al. 2012), we 
expected a complete loss of lactate formation and increase 
in ethanol production in the triple mutant ∆hydBA/hdcr/
lctBCD. However, this was not observed. Lactate produc-
tion had a longer lag phase of around 8 h, compared to the 
double mutant, but lactate was then produced with rates and 
yields similar to the double mutant (Fig. 2c).

Fig. 5  Quantification of transcript levels of the lctB, lctC, and 
lctD genes in the ΔhydBA/hdcr mutant during growth on gly-
cine betaine + CO. cDNA was synthesized from the ∆pyrE, 
Δhdcr and ΔhydBA/hdcr mutants grown on 50  mM glycine 
betaine in bicarbonate-buffered complex media under a  N2/CO2/
CO atmosphere (72:18:10, v/v/v). The transcript levels of the 
lctB, lctC, and lctD genes in the Δhdcr (grey bars) and ΔhydBA/
hdcr mutants (black bars) were analyzed with quantitative real-
time PCR and the relative expression was normalized to a house 
keeping gene gyrA. As control, cDNA of the ∆pyrE strain was 
used (white bars). Each data bar presents a mean ± SD; n = 3 
independent experiments
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Lactate formation from glycine betaine and carbon 
monoxide

Next, we analyzed whether cells would produce lactate from 
C1 compounds. The wild type of A. woodii was shown to 
grow on methanol + CO which are converted to acetate; the 
methyl-group and CO are intermediates of the WLP which 
are condensed by CODH/ACS to acetyl-CoA (Litty et al. 
2022). The HDCR is not involved in that metabolism. Since 
the ∆hdcr and the ∆hydBA/hdcr mutants do not grow on 
methanol (Moon et al. 2023b) regardless of the presence 
or absence of CO, we tested for growth on another methyl 
group-containing substrate, glycine betaine, that A. woo-
dii can use as carbon and energy source (Lechtenfeld et al. 
2018). We recently showed that the ∆hdcr and the ∆hydBA/
hdcr mutants grow on glycine betaine and produce formate 
as final product alongside acetate (Moon et al. 2023b). Gly-
cine betaine serves as methyl group donor and dimethylg-
lycine is excreted by the cells (Lechtenfeld et al. 2018). The 
∆pyrE as well as the ∆hdcr, ∆hydBA/hdcr, ∆hydBA/hdcr/

lctBCD mutants grew well on 50 mM glycine betaine + CO 
and produced only acetate (∆pyrE, 47.5 ± 1.3 mM; ∆hdcr, 
46.6 ± 2.1 mM; ∆hydBA/hdcr, 44.9 ± 1.8 mM; ∆hydBA/
hdcr/lctBCD, 45.5 ± 0.6  mM) via the WLP similar to 
growth on methanol + CO (Litty et al. 2022) (Fig. 3). We 
then checked for product formation in resting cells. Resting 
cells of the ∆pyrE strain produced 50.9 ± 1.6 mM acetate 
from 50 mM glycine betaine and CO (Fig. 4a) and the same 
was true for the HDCR mutant (48.2 ± 1.0 mM) (Fig. 4b), as 
expected. Cells produced hydrogen (0.5 mM in both strains), 
most likely from CO oxidation. CO oxidation is coupled 
to reduction of ferredoxin followed by the production of 
molecular hydrogen in two steps: first, reduced ferredoxin 
is reoxidized by the Rnf complex (with reduction of NAD) 
(Hess et al. 2013) and the electron-bifurcating hydrogenase 
then forms hydrogen from reduced ferredoxin and NADH 
(Schuchmann and Müller 2012). Therefore, we reasoned 
that deletion of the electron bifurcating hydrogenase should 
redirect electrons to another acceptor. Indeed, resting cells 
of the ∆hydBA/hdcr double mutant no longer produced  H2 

Fig. 6  Conversion of glycine betaine + CO in resting cells of the 
ΔhydBA/hdcr mutant under (a)  CO2/HCO3

−- or (b)  Na+-depleted 
conditions. Cells of the ΔhydBA/hdcr mutants were grown in bicar-
bonate-buffered complex media under a  N2/CO2/CO atmosphere 
(72:18:10, v/v/v) with 50  mM glycine betaine and harvested in the 
early stationary growth phase. The cell suspensions were prepared 
in 10  ml of (a) bicarbonate-depleted (50  mM imidazole, 20  mM 
 MgSO4, 20 mM KCl, 20 mM NaCl, pH 7.0) or (b)  Na+-depleted cell 

suspension buffer (50 mM imidazole, 20 mM  MgSO4, 20 mM KCl, 
60  mM  KHCO3, pH 7.0) in 120-ml serum flasks with 50  mM gly-
cine betaine under 2 bar of a (A)  N2/CO (90:10, v/v) or (B)  N2/CO2/
CO (72:18:10, v/v/v) atmosphere at a final protein concentration of 
1 mg/ml. The contaminating  Na+ concentration was 0.1 mM. Acetate 
(●) and lactate (▲) were determined. Each data point presents a 
mean ± SD; n = 2 independent experiments
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but lactate instead, alongside with acetate (Fig. 4c). Acetate 
production was a bit faster, but final acetate and lactate con-
centrations were similar. From 50 mM glycine betaine + CO, 
18.1 ± 1.1  mM acetate and 20.4 ± 0.5  mM lactate were 
formed with an acetate:lactate ratio of 1:1.1. As a minor 
product, we also detected 2.5 mM ethanol. In agreement 
with the lactate production, we found that the lctBCD genes 
were highly upregulated in the ∆hydBA/hdcr mutant during 
glycine betaine + CO fermentation (Fig. 5). Compared to 
the ∆pyrE strain, the lctB gene in the ∆hydBA/hdcr mutant 
was upregulated with a  log2 fold change of 9.9 ± 0.6. The 
same was true for the lctC gene with a  log2 fold change 
of 10.0 ± 0.2 and the lctD gene with a  log2 fold change of 
11.0 ± 0.3. Lactate must have been formed from acetyl-CoA 

via carboxylation to pyruvate by pyruvate:ferredoxin oxi-
doreductase (PFOR), and indeed, a reduced lactate forma-
tion was observed under  CO2/bicarbonate-depleted condi-
tions (Fig. 6a) compared to  CO2/bicarbonate-rich conditions 
(cf. Figure 4c). Since NADH is required for lactate produc-
tion by the LDH/ETF complex, the Rnf complex must be 
involved i.e., the lactate production must be  Na+ dependent. 
Indeed, lactate production (cf. Figure 4c) was completely 
abolished in the absence of NaCl and the ∆hydBA/hdcr 
mutant produced only acetate (44.0 ± 1.8 mM) (Fig. 6b).

In the ∆hydBA/hdcr/lctBCD triple mutant, lactate forma-
tion was nearly completely abolished (Fig. 7), demonstrating 
that lactate is produced by the electron bifurcating LDH/ETF 
complex. Interestingly, the ΔhydBA/hdcr/lctBCD mutant 
produced double the amount of ethanol (6.0 ± 0.2 mM) com-
pared to the ΔhydBA/hdcr mutant, indicating electrons are 
partially shifted towards ethanol production in the absence 
of the LDH/ETF complex.

Discussion

Acetogenic bacteria are prime candidates as biocatalysts 
required to transform our bioeconomy to a sustainable, 
sugar-free bioeconomy. This group of bacteria does not 
require oxygen, is easy to handle under strict anoxic con-
ditions, grows robust even in industrial size fermenters, 
and can use carbon monoxide (Diekert and Thauer 1978; 
Diender et al. 2015; Genthner and Bryant 1982; Savage et al. 
1987; Weghoff and Müller 2016), or more reduced C1 com-
pounds such as formate (Moon et al. 2021) or methyl groups 
derived from various methyl group donors such as methanol 
or glycine betaine as building blocks for acetyl-CoA (Kremp 
and Müller 2021; Kremp et al. 2018; Lechtenfeld et al. 2018; 
Litty et al. 2022; van der Meijden et al. 1984). Electrons for 
the reduction can be derived from the oxidation of molecular 
hydrogen, carbon monoxide or organic substrates such as 
sugars. Moreover, many acetogens can grow mixotrophically 
on sugars and molecular hydrogen thus increasing the poten-
tial for a zero carbon-emission technology (Schuchmann and 
Müller 2016).

While acetate is the main product for all acetogens, 
some can naturally produce reduced end products such as 
ethanol from C1 compounds (Abrini et al. 1994; Köpke 
et al. 2010; Wilkins and Atiyeh 2011). Production of lac-
tate has rarely been observed from C1 compounds. Lac-
tate is a compound of significant industrial value due to 
its role as the precursor of PLA (Ahmad et al. 2022). A. 
woodii is one of the best studied acetogens and not only 
the biochemistry and bioenergetics of the WLP has been 
studied to a great detail, but also the metabolic pathways 
that feed C1 substrates into the WLP such as methanol, gly-
cine betaine or CO (Kremp and Müller 2021; Schuchmann 

Fig. 7  Lactate formation from glycine betaine + CO was abolished 
in resting cells of the ΔhydBA/hdcr/lctBCD mutant. Cells of the 
ΔhydBA/hdcr/lctBCD mutant were grown in bicarbonate-buffered 
complex media under a  N2/CO2/CO atmosphere (72:18:10, v/v/v) 
with 50  mM glycine betaine and harvested in the early stationary 
growth phase. The cell suspensions were prepared in 10  ml of cell 
suspension buffer (50 mM imidazole, 20 mM  MgSO4, 20 mM KCl, 
20 mM NaCl, 60 mM  KHCO3, pH 7.0) in 120-ml serum flasks with 
50 mM glycine betaine under 2 bar of a  N2/CO2/CO (72:18:10, v/v/v) 
atmosphere at a final protein concentration of 1  mg/ml. Acetate 
(●) and lactate (▲) were determined. Each data point presents a 
mean ± SD; n = 2 independent experiments
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and Müller 2014). Recently, we have shown that a meth-
ylene-THF reductase deletion mutant performed mixed 
acid fermentation and produced lactate along with other 
fermentation products (Moon et al. 2023a). Here, we fur-
ther investigated lactate production using genetically engi-
neered strains, the ∆hdcr and ∆hydBA/hdcr mutants. When 
the electron bifurcating hydrogenase was deleted, lactate 
was the main product of fructose fermentation, implying 
that the electrons generated during glycolysis were used 
for lactate production. Unexpectedly, the ∆hydBA/hdcr/
lctBCD mutant still produced lactate, although no other ldh 
genes could be identified in the genome. Interestingly, in 
some microbes  NAD+-dependent LDH requires fructose-
1,6-bisphosphate, an intermediate of the glycolysis, for 
catalytic activity (Arai et al. 2002; Brown and Wittenberger 
1972; Freier and Gottschalk 1987; Machida et al. 1985a, 
b). In the triple mutant, fructose-1,6-biphosphate could 
have been accumulated due to slow fructose conversion 
and triggered the formation/activation of an alternative 
unknown LDH. But there is also an alternative way to pro-
duce lactate during fructose fermentation. An intermediate 

of glycolysis, dihydroxyacetone phosphate (DHAP) can be 
converted to methylglyoxal and further reduced to lactal-
dehyde. Then, lactaldehyde can be reoxidized to lactate 
(Bhowal et al. 2020; Stewart et al. 2013). The genome of 
A. woodii encodes enzymes that may catalyze these reac-
tions (Poehlein et al. 2012). However, this way does not 
reoxidize reducing equivalents formed by glycolysis. How 
exactly lactate is produced from fructose by the double 
mutant must be investigated by further mutant analyses. 
Noteworthy, deletion of the LDH/ETF complex abolished 
lactate formation from C1 compounds (see below), indicat-
ing the need for (partial) glycolysis to trigger the alterna-
tive LDH way.

Production of lactate from C1 compounds is most attrac-
tive for biotechnological applications. Recently, a lctBCD 
deletion mutant of A. woodii harboring a lactate dehydroge-
nase gene from Leuconostoc mesenteroides fused to fluores-
cence-activating and absorption-shifting tag protein (FAST) 
was shown to produce lactate from  H2 +  CO2 (Mook et al. 
2022). This strain produced 18.8 mM lactate from  H2 +  CO2 
in batch experiments, but lactate was a side product with a 

Fig. 8  Biochemistry and 
bioenergetics of lactate produc-
tion from glycine betaine + CO 
in the ΔhydBA/hdcr mutant 
of A. woodii. Fd, ferredoxin; 
PFOR, pyruvate:ferredoxin 
oxidoreductase; LDH/ETF, 
electron-bifurcating lactate 
dehydrogenase, GB, glycine 
betaine; DMG, dimethylglycine; 
THF, tetrahydrofolate; CODH/
ACS, CO dehydrogenase/
acetyl-coenzyme A synthase; 
CoFeSP, corrinoid iron-sulfur 
protein; MTI, methyltransferase 
I; MTII, methyltransferase II; 
CoP, corrinoid protein. The stoi-
chiometry of the ATP synthase 
is 3.3  Na+/ATP (Matthies et al. 
2014) and for the Rnf complex 
a stoichiometry of 2  Na+/2  e− is 
assumed



5500 Applied Microbiology and Biotechnology (2023) 107:5491–5502

1 3

lactate/acetate ratio of 0.33 (Mook et al. 2022). For explor-
ing lactate production from more reduced C1 compounds, 
we chose glycine betaine as a methyl group donor plus CO as 
substrate. As described before for methanol plus CO (Litty 
et al. 2022), resting cells of ∆pyrE strain produced only 
acetate from glycine betaine + CO according to:

A likely scenario for lactate formation from glycine 
betaine + CO in the ∆hydBA/hdcr mutant is depicted in 
Fig. 8. The methyl group of glycine betaine is first trans-
ferred to THF by the methyltransferase system, yielding 
methyl-THF which is then condensed with CO and CoA 
on the CODH/ACS complex for acetyl-CoA production; 
0.5 mol acetyl-CoA are then converted to acetate yielding 
0.5 mol acetate. The other 0.5 mol of acetyl-CoA have to 
be reduced to 0.5 mol pyruvate via PFOR and the required 
reduced ferredoxin and  CO2 were generated from oxida-
tion of CO by the CODH. To produce 0.5 mol lactate, one 
mol NADH should be required which is produced by the 
Rnf complex. In sum, 0.5 mol acetate and 0.5 mol lactate 
are produced from one mol glycine betaine and 2 mol CO 
according to Eq. 2:

Dur ing growth on glycine betaine + CO, the 
∆hydBA/hdcr mutant produced only acetate, similar to the 
∆pyrE and ∆hdcr mutants; the ATP gain of this fermenta-
tion is 0.5 mol per mol of carbon of products or educts. 
On the other hand, during heterolactate fermentation, the 
ATP gain decreased to 0.37 mol per carbon of products or 
educts. Therefore, acetogenesis appears to be more favora-
ble over heterolactate fermentation during growth but in 
resting cells, where a maximum ATP gain is not required, 
lactate fermentation is obviously preferred for unknown 
reasons. Moreover, pyruvate produced during growth is 
probably not accumulated, instead, utilized to build up 
biomass.

In conclusion, this study shows that a directed genetic 
engineering of a homoacetogen leads to lactate formation not 
only from sugar fermentation but also from C1 compounds, 
which gives a new perspective for industrial applications.
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