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Abstract 
Versatile nature of copper oxide nanoparticles (CuO NPs) has made them an imperative nanomaterial being employed in 
nanomedicine. Various physical, chemical, and biological methodologies are in use for the preparation of CuO NPs. The 
physicochemical and biological properties of CuO NPs are primarily affected by their method of fabrication; therefore, selec-
tivity of a synthetic technique is immensely important that makes these NPs appropriate for a specific biomedical application. 
The deliberate use of CuO NPs in biomedicine questions their biocompatible nature. For this reason, the present review has 
been designed to focus on the approaches employed for the synthesis of CuO NPs; their biomedical applications highlighting 
antimicrobial, anticancer, and antioxidant studies; and most importantly, the in vitro and in vivo toxicity associated with these 
NPs. This comprehensive overview of CuO NPs is unique and novel as it emphasizes on biomedical applications of CuO 
NPs along with its toxicological assessments which would be useful in providing core knowledge to researchers working in 
these domains for planning and conducting futuristic studies.
 
Key Points 
• The recent methods for fabrication of CuO nanoparticles have been discussed with emphasis on green synthesis methods 

for different biomedical approaches.
• Antibacterial, antioxidant, anticancer, antiparasitic, antidiabetic, and antiviral properties of CuO nanoparticles have 

been explained.
• In vitro and in vivo toxicological studies of CuO nanoparticles exploited along with their respective mechanisms.
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Introduction

Nanotechnology is an emerging field of twenty-first cen-
tury and nanoparticles exhibit distinct structural, optical, 
electrical, magnetic, and mechanical characteristics due to 
their nanodimensional range (1–100 nm) as compared to 
their bulk counterparts (Bezza et al. 2020). There has been 

increasing attention given to transition metallic oxide nano-
particles for last two decades because of their wide range of 
applications in the fields of catalysis, biosensing, cosmet-
ics, pharmacy, food and agriculture, electronics, dentistry, 
energy, and environment (Javed et al. 2022a; Katwal et al. 
2015). Copper oxide (CuO) nanoparticles (NPs) have shown 
fascinating behavior in different areas of biomedicine and 
act as strong bactericidal, catalytic, anti-carcinogenic, and 
coating agents (Grigore et al. 2016). CuO NPs are highly 
abundant in nature and are low-cost materials. These NPs 
have interesting physicochemical features and are present 
in various oxidation states, viz., Cu0, CuI, CuII, and CuIII 
(Bhanushali et al. 2015). They have ~ 2 eV band gap energy 
and have attained captivating significance because of their 
chemical inertness and thermal stability (Naz et al. 2020a).

CuO NPs are inorganic and much more stable than 
organic NPs. These are p-type semiconductors that exist in 
monoclinic nanostructures. The controllability of synthetic 
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methods is very crucial in obtaining NPs of desired size and 
morphology. High energy ball milling, laser ablation, and 
sputtering are the physical methods documented in literature 
for the fabrication of CuO NPs (Gawande et al. 2016). These 
NPs can easily be synthesized by various solution methods 
like co-precipitation, sol–gel, microemulsion, hydrothermal, 
sonochemical, and microwave irradiation. Capping agents or 
surfactants are added to the NPs using the chemical methods 
to get controlled growth and stability of CuO nanoproducts 
(Tran and Nguyen 2014). Biological methods for preparing 
CuO NPs utilize extracts of different plant parts (leaf, root, 
seed, stem, flower, fruit) as well as microbes (bacteria, fungi) 
and algae as reported in literature (Shamsuddin et al. 2019).

CuO NPs are widely used for nanomedical purposes 
because of their tremendous antimicrobial activity and use as 
potential disinfectants against nosocomial infections. These 
are applied in wound dressings due to strong bactericidal 
property against different Gram + ve and Gram –ve bacterial 
strains (Grigore et al. 2016). The fungicidal activity of CuO 
NPs against few fungal strains is also documented. CuO NPs 
are widely used as biosensors for sensing of glucose, dopa-
mine, cholesterol, lactate, DNA, etc. Moreover, their poten-
tial role as antitumor agents in the treatment of lung, breast, 
prostate, kidney, and glioma cancer is indispensable. These 
are also being used as effective nanocarriers (Chevallet et al. 
2017; Naz et al. 2018). Furthermore, it plays a vital role in 
the cellular respiration, regulating level of neurotransmitters, 
production of collagen protein, and metabolism of essential 
nutrients like iron which is important part of major enzymes 
and proteins (Naz et al. 2020a).

Despite the promising applications of CuO NPs in biomed-
icine, the major concern for their use for diagnostic and thera-
peutic purposes is the toxic effects elucidated by researchers 
working on different vertebrates (specifically mammalian 
cells) and invertebrates. CuO NPs have been reported to 
induce oxidative stress by the over-generation of reactive oxy-
gen species (ROS) in living cells that leads to damage of DNA 
and cellular organelles. The size, surface charge, and dissolu-
tion of NPs are the major factors contributing to in vitro and 
in vivo toxicity caused by CuO NPs (Grigore et al. 2016; Kat-
sumiti et al. 2018). Hence, biocompatibility and non-toxicity 
are the key selection parameters for a particular nanoparticle 
to be employed in clinical research.

This review provides a detailed information to the read-
ers about CuO NPs, their fabrication techniques, biomedical 
applications (exclusively), and their toxicological analysis. 
CuO NPs are unique materials which have extensive applica-
tions in almost every field, but they have negative effects as 
well. Hence for biomedical applications, one must know which 
method is effective for the fabrication of CuO NPs to get a 
particular biological property with minimal in vitro and in vivo 
toxic effects. Although the promising influence of CuO NPs in 
the domain of biomedicine has been summarized previously. 

Similarly, the effects of toxicity have also been previously 
defined in the biological systems. Nevertheless, no single 
document exists in literature in which the different biological 
applications and toxicology of CuO nanoparticles could be 
comprehensively defined in interaction with one another. This 
review provides a wide knowledge about all these parameters 
which help readers to conduct their research accordingly.

Synthesis techniques

Fabrication of CuO NPs involves three general techniques, 
i.e., physical, chemical, and biogenic methods. These meth-
ods are further divided into other types as shown in Fig. 1.

Physical synthesis

All methods in this category utilize top-down synthetic 
approach. This is destructive methodology in which bulk 
materials are decomposed into smaller ones consequently 
transforming them in to NPs. In a recent study, CuO NPs 
were prepared by ultrasonic-assisted ball milling process 
which is the simplest mechanical method. The cupric acetate 
was used as precursor and milling speed was 256 r/min. At 
the end, 20 nm sized CuO NPs were produced (Yang and 
Chen 2017). In another study, 11 nm sized CuO NPs were 
prepared at 450 rpm milling speed and 0–60 h time (Khayati 
et al. 2013). Laser ablation is another process that has been 
utilized for CuO NPs fabrication by physical synthesis route. 
In this method, laser irradiation causes decomposition of 
precursor to form NPs. In a study, Nd-YAG laser source was 
used on Cu metal for 10 min to form CuO NPs of 8–10 nm. 
Pulse width, frequency, and wavelength applied was 7 ns, 

Fig. 1   Highlight of the general methods involved in the synthesis of 
CuO NPs
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1064 nm, and 5 Hz, respectively (Abdulateef et al. 2016). 
In another study, 9–26 nm of CuO NPs were fabricated 
using Nd-YAG laser source for 15 min duration on metal-
lic Cu foil at 5 ns pulse width, 532 nm wavelength, and 
10 Hz frequency (Gondal et al. 2013). Sputtering is another 
phenomenon that is reported for the physical synthesis of 
CuO NPs. It involves annealing of thin layer of NPs. Das 
et al. (2016) documented the production of 35 nm, 24 nm, 
and 22 nm sized CuO NPs using Cu as target material and 
0.02 M,0.03 M, and 0.04 M solution of [Cu(NO3)2.3H2O] 
and C6H12N4 HTMA. The sputtering gas used was argon for 
a duration of 5 min at 3.3 m Torr pressure and room tem-
perature. All physical methods produce pure nanoproducts 
but require expensive instruments and high energy.

Chemical synthesis

All chemical synthesis methods utilize bottom-up approach 
in which basic units assemble into larger structures ulti-
mately forming NPs. These methods are cost-effective and 
result in the formation of uniform-sized and shaped prod-
ucts on large scale without requiring high-throughput equip-
ments. Sol–gel is the most preferred method for chemical 
fabrication of CuO NPs because it is easy, scalable, and 
economical process. Recently, 100–140 nm crystalline sized 
CuO NPs of tunable surface area were prepared using copper 
carbonate species as precursors at a pH of 5.8 and > 250 °C 
calcination temperature (Dörner et al. 2019). In another 
study, CuO NPs of 32 nm size were prepared using copper 
nitrate precursor at a calcination temperature of 400 °C for 
4 h (Muthuvel et al. 2020). Co-precipitation is very simple 
and efficient method for fabrication of CuO NPs. Phiwdang 
et al. (2013) prepared CuO NPs of different size and mor-
phology using two different precursors, viz., copper nitrate 
and copper chloride by precipitation process. In another 
study, CuO NPs were prepared using different precursors, 
i.e., copper(II) sulfate, copper(II) chloride, and copper(II) 
acetate. In this way, different sized and shaped CuO NPs 
were fabricated (Gvozdenko et al. 2022).

Capping agents used as reducing and stabilizing agents 
are mostly added along with precursors at the start of reac-
tion during chemical fabrication of different nanoparticles 
(Javed et al. 2020, 2022b). For instance, in an investigation, 
CuO NPs were fabricated using copper sulfate salt as precur-
sor and aniline as capping agent (Rostami-Tapeh-Esmaeil 
et al. 2021). In another study, chitosan stabilized CuO NPs 
were fabricated via co-precipitation method using copper 
acetate precursor. 500 °C was the calcination temperature 
that produced < 35 nm sized NPs (Javed et al. 2021a). Simi-
larly, PEG and PVP capped CuO NPs of 27 nm size were 
fabricated using co-precipitation by (Javed et al. 2017). 
Sonochemical method uses ultrasonic waves for the fabri-
cation of NPs. Recently, CTAB stabilized CuO NPs were 

synthesized using copper sulfate precursor via this method 
by which NPs of 36 nm size were obtained (Silva et al. 
2019).

Green synthesis

Biogenic fabrication or “green synthesis” of NPs occurs 
using plant and microbial extracts such as extracts of bacte-
ria and fungi. The biogenic fabrication is ecofriendly, sim-
ple, low cost, and result in the formation of biocompatible 
and non-toxic NPs unlike physical and chemical methods 
that use hazardous and expensive chemicals (solvents, reduc-
ing, and stabilizing agents). The green synthesis using plant 
extracts does not require capping moieties because the sec-
ondary metabolites in extracts such as phenolics, alkaloids, 
flavonoids, and terpenoids and enzymes in microorganisms 
act as both reducing and capping agents, eventually produc-
ing stabilized NPs. However, microbes-based green synthe-
sis is non-attractive because it requires aseptic cultivation 
and is very costly for fabrication of NPs on commercial 
scale. Moreover, downstream processing is very tedious. 
Besides, the algae-based green synthesis is approach is also 
not appealing because it is slow and time-taking (Javed et al. 
2021b).

CuO NPs synthesis has been reported using different 
plant extracts as reducing agents and stabilizers as shown 
in Table 1.

Synthesis of CuO NPs using bacterial extracts of Pseu-
domonas aeroginosa and marine Streptomyces sp. MHM38 
has been reported (Bukhari et al. 2021; Khodair et al. 2019). 
Similarly, there are few reports about the biological syn-
thesis of CuO NPs using different fungal extracts such as 
Trichoderma asperellum, Aspergillus terreus, Trichoderma 
harzianum, and Stereum hirsutum (Consolo et al. 2020; 
Cuevas et al. 2015; Mani et al. 2021; Saravanakumar et al. 
2019). Additionally, Bhattacharya et al. (2019), Araya-Cas-
tro et al. (2021), and Taherzadeh Soureshjani et al. (2021) 
documented algae-mediated synthesis of CuO NPs using 
different algal species including Anabaena cylindrica, Mac-
rocystis pyrifera, Cystoseira myrica, Sargassum latifolium, 
and Padina australis.

Biomedical applications

Generally, physical, chemical, and biogenic synthetic meth-
ods are extensively used for the preparation of CuO NPs. 
Among them, green synthesis route utilizing plant materials 
is of great significance due to its biocompatible nature and 
minimal toxicity. Moreover, it is very economical and easy 
to handle. Henceforth, our emphasis is on green chemistry 
using plant-based compounds for the fabrication of CuO 
NPs and their possible biomedical implications. Although 
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Table 1   List of different plants species in the green synthesis of CuO NPs

Plant Plant part Size of 
CuO NPs 
(nm)

Shape of CuO NPs Methods of Characterization Reference

Acalypha indica Leaf 26–30 Spherical XRD, FTIR, SEM,TEM, 
EDX, UV–Vis spectros-
copy

(Sivaraj et al. 2014a)

Tabernaemontana divaricata Leaf 48 ± 4 Spherical UV–Vis spectroscopy, SEM, 
EDX, TEM, FTIR

(Sivaraj et al. 2014b)

Albizia lebbeck Leaf  < 100 Spherical UV–Vis spectroscopy, SEM, 
TEM, EDS, XRD

(Jayakumarai et al. 2015)

Theobroma cacao Leaf 40 Spherical TEM, EDS, FTIR, UV–Vis 
absorption spectroscopy

(Nasrollahzadeh and Sajadi 
2015)

Thymus vulgaris Leaf 30 Face-centered cubic XRD, SEM, EDS, FTIR, 
TEM, TGA, DTA

(Nasrollahzadeh et al. 2016)

Punica granatum Peel 40 NA FTIR, SEM, UV–Vis 
absorption spectroscopy, 
XRD

(Ghidan et al. 2016)

Rubus glaucus Fruit & Leaf 43.3 Spherical UV–Vis spectroscopy, DLS, 
TEM, XRD

(Kumar et al. 2017)

Stachys lavandulifolia Flower 80 Near-spherical TEM, FTIR, UV–Vis spec-
troscopy, XRD

(Khatami et al. 2017)

Calotropis procera Leaf 40 Cylindrical XRD, FTIR, UV–Vis spec-
troscopy, SEM, EDX, TGA​

(Reddy 2017)

Aloe vera Leaf 24–61 Octahedral & Spherical XRD, SEM, EDX, FTIR, 
UV–Vis spectroscopy

(Kerour et al. 2018)

Galeopsidis herba NA 10 ± 5 Spherical SEM, EDX, FTIR, UV–Vis 
spectroscopy, TEM

(Dobrucka 2018)

Citrofortunella microcarpa Leaf 54–68 Spherical XRD, FTIR, UV–Vis spec-
troscopy, SEM

(Rafique et al. 2020)

Ruellia tuberosa Leaf 83.23 Nanorods FTIR, SEM, EDS, TEM, 
DLS, zeta potential

(Vasantharaj et al. 2019)

Punica granatum Leaf 20.33 Spherical Zeta potential, TEM, SEM, 
EDX, XRD, UV–Vis 
spectroscopy

(Vidovix et al. 2019)

Psidium guajava Leaf 2–6 Spherical UV–Vis spectroscopy, FTIR, 
SEM, EDX, TEM, XRD, 
Zeta potential

(Singh et al. 2019)

Eupatorium odoratum, 
Acanthospermum hispidum

Leaf NA Spherical UV–Vis spectroscopy, FTIR, 
XRD, SEM, TEM

(Gowri et al. 2019)

Annona muricata Leaf 30–40 Spherical XRD, FTIR, SEM, EDX, 
TEM, UV–Vis spectros-
copy

(Kayalvizhi et al. 2020)

Carica papaya Leaf  < 100 Square or rectangle UV–Vis spectroscopy, FTIR, 
XRD, SEM, TEM

(Turakhia et al. 2020)

Catha edulis Leaf  ~ 25 Spherical XRD, SEM, EDS, TEM, 
FTIR

(Andualem et al. 2020)

Caesalpinia bonducella Seed NA Rice-shaped XRD, XPS, SEM, UV–Vis 
spectroscopy, FTIR, TGA​

(Sukumar et al. 2020)

Eletteria cardamomum Seed 1–100 Spherical UV–Vis spectroscopy, SEM, 
XRD, DLS, FTIR

(Venkatramanan et al. 2020)

Cordia africana Leaf 9 Spherical XRD, FTIR, SEM, EDS (Bekru et al. 2021)
Stachys lavandulifolia Flower 15–25 Spherical FTIR, SEM, EDS, TEM, 

XRD, TGA, UV–Vis 
spectroscopy

(Veisi et al. 2021)

Carica papaya Peel  ~ 90 Spherical XRD, FTIR, SEM, EDS, 
TEM, UV–Vis spectros-
copy

(Phang et al. 2021)
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the following sections describe biological activities of CuO 
NPs fabricated by any route, the main emphasis is on the 
various potent features of biologically prepared metallic 
oxide NPs, specifically CuO NPs in nanomedicine.

Antimicrobial activities of metal oxide NPs

Microorganism-borne infectious diseases are a major culprit 
of human suffering throughout the world. Researchers are 
trying to develop new strategies to fight against microbial 
infections. One of the significant reasons behind continuous 
research is the development of resistance against conven-
tional drugs, i.e., antibiotic resistance which subsequently 

limits the potentiality of traditional medicines to fight 
against microbial infections. Universal efforts were in pro-
gress to prevent and inhibit microbe-borne diseases; as a 
result, nanomaterials were explored as a novel antimicro-
bial candidate (Javed et al. 2017). Nowadays, nano-based 
therapies have been extensively applied to diagnose and treat 
diseases and formulate novel drugs. Among different kinds 
of green nanomaterials, metal oxide nanoparticles (MONPs) 
such as CuO NPs have been vigorously screened for their 
antimicrobial potential against different human pathogenic 
bacterial strains and showed substantial result (Halbus et al. 
2017; Shkodenko et al. 2020). Also, CuO NPs are actively 
explored for their action as disinfectants, food processing 
agents, and in medical devices (Marambio-Jones and Hoek 

Table 1   (continued)

Plant Plant part Size of 
CuO NPs 
(nm)

Shape of CuO NPs Methods of Characterization Reference

Aerva javanica Leaf 15–23 Spherical XRD, FTIR, SEM, UV–Vis 
spectroscopy

(Amin et al. 2021)

Camellia sinensis, Lavan-
dula anguistifolia

Leaf 50 Rod-shaped, spherical XRD, SEM, TEM (Khaldari et al. 2021)

Muntingia calabura Leaf 23–79 Rod-shaped SEM, TEM, FTIR, XRD, 
XPS

(Salvanathan et al. 2021)

Eucalyptus globoulus Leaf 88 Spherical SEM, DLS, XRD, Zeta 
potential, FTIR, TEM

(Alhalili 2022)

Fig. 2   Antimicrobial Mecha-
nism of CuO NPs
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2010). Figure 2 describes the antibacterial mechanism of 
CuO NPs. A brief insight on the antibacterial and anti-
fungal applications of CuO NPs is given in the following 
subsections.

Antibacterial activity of CuO NPs

Biogenic CuO NPs as antibacterial agents have attained 
considerable attention due to their unique physico-chemi-
cal properties and biocompatibility. For instance, Nagore 
et al. (2021b) reported the green synthesis of CuO NPs 
using Polyalthia longifolia leaf extract. The CuO NPs 
exhibited significant antibacterial effects against various 
bacterial strains such as E.coli, Streptococcus pyogenes, 
Pseudomonas aeruginosa, and Staphylococcus aureus. In 
another study, CuO NPs were synthesized via Aloe vera 
leaf extract, and their antibacterial ability was investigated 
against various bacterial pathogens including Aeromonas 
hydrophila (MTCC 646), Flavobacterium branchiophi-
lum (MTCC 671), and Pseudomonas fluorescens (ATCC 
35,036) by agar well diffusion method. Significant anti-
bacterial activity was shown by CuO NPs against all the 
tested organisms in dose-dependent manner, i.e., at higher 
dose (100  μg/mL), no bacterial growth was observed, 
with zones of inhibition being 21, 19, and 17 mm for A. 
hydrophila, P. fluorescens, and F. branchiophilum, respec-
tively. The minimum inhibitory concentration (MIC) was 
determined via micro-dilution broth method. Zone of inhi-
bition, i.e., 13, 15, and 11 mm was obtained against A. 
hydrophila, P. fluorescens, and F. branchiophilum, respec-
tively, at MIC of 20 μg/mL (Kumar et al. 2015). CuO NPs 
synthesized via leaf extract of Malva sylvestris exhibited 
strong antibacterial activity as evaluated by disc diffusion 
method against Shigella and Listeria with 15 and 18 mm 
zone of inhibition, respectively (Awwad 2014). CuO NPs 
produced through the bark of Syzygium alternifolium stem 
were investigated for their antibacterial potential against 
a few bacterial strains including Staphylococcus aureus 
(ATCC 6538), Escherichia coli (ATCC 25,922), Bacil-
lus subtilis (ATCC 6633), Klebsiella pneumonia (ATCC​ 
43,816), Proteus vulgaris (ATCC 13,315), Pseudomonas 
aeruginosa (ATCC 15,442), and Salmonella typhimurium 
(ATCC 14,028). Among all these tested strains, E. coli 
exhibited maximum antibacterial activity followed by S. 
aureus. Furthermore, MIC was calculated in various dilu-
tions of 5, 10, 20, 40, and 80 lg/ml and demonstrated that 
20 lg/ml exhibit minimum, while 80 lg/ml exhibit almost 
lethal effect against all microbial strains. The lethal dose 
(LD50) value of CuO NPs turned out to be 40 lg/ml in this 
case (Yugandhar et al. 2018). In a study conducted by Yal-
cinkaya and Kumarek (2019), CuO NPs have been proven 
efficacious bactericidal agents against the Gram-negative 
bacteria: E. coli.

Antifungal activity of CuO NPs

The antifungal assessment of CuO NPs synthesized from tea 
was carried out by agar dilution method against Fusarium 
solani at various concentrations, i.e., 5, 25, and 50 μg/ml (ppm). 
More than 90% mycelium growth inhibition was observed at 
50 ppm of CuO NPs (Khatami et al. 2019). The antifungal effect 
of CuO NPs synthesized through Cissus quadrangularis extract 
demonstrated extreme antifungal activity against A. niger and A. 
flavus at 500 and 1000 ppm concentration as determined by 
the Clinical and Laboratory Standards Institute (CLSI) method. 
Maximum percent growth inhibition was observed against A. 
niger, i.e., 85 and 90% at 500 and 1000 ppm. Overall, the % 
mycelium inhibition was noteworthy against both strains com-
pared to the positive standard. It depicts that CuO NPs exhibit 
potent antifungal activity against tested strains (Devipriya and 
Roopan 2017). The bark of Syzygium alternifolium was used for 
the synthesis of CuO NPs. Its antifungal potential 5, 10, 20, 40, 
and 80 lg/ml concentrations were tested against various fungal 
strains, including Alternaria solani (ATCC 32,904), Aspergillus 
flavus (ATCC 9643), Aspergillus niger (ATCC 16,404), Penicil-
lium chrysogenum (ATCC 11,709), and Trichoderma harzianum 
(ATCC 20,476) through disc diffusion assay. Results revealed 
the highest zone of inhibition against T. harzianum with 40 lg/ml 
concentrations used as LD50 (Yugandhar et al. 2018).

As the citrus black rot disease is a major disease of citrus 
plants caused by Alternaria citri that results in 30–35% eco-
nomic loss on annual basis, in a recent study by Sardar et al. 
(2022), antifungal applications of ZnO NPs, CuO NPs, and their 
mixture (CuO NPs/ZnO NPs) synthesized from lemon peels 
extract were explored against Alternaria citri. The maximum 
zone of inhibition, i.e., CuO NPs/ZnO NPs (53 ± 0.6 mm), 
was followed by CuO NPs (50 ± 0.5  mm) and ZnO NPs 
(51.5 ± 0.5 mm). Moreover, the minimum fungicidal concen-
tration (MFC) and minimum inhibitory concentration (MIC) 
results revealed that 80 mg ml−1 NPs concentration showed 
potential antifungal activity while > 100 mg ml−1 completely 
inhibited the growth. In another study, antifungal potential of 
CuO NPs was found against a devastating pathogen named 
Colletotrichum gloeosporioides that causes anthracnose dis-
ease in a wide range of crops. 74.2% and 89% growth inhibition 
against the fungal hyphal pathogen was obtained at 500 mg/L 
and 1000 mg/L, respectively elucidating a dose-dependent 
response of CuO NPs (Oussou-Azo et al. 2020). Table 2 exam-
plifies plant-based green synthetic route for CuO NPs exhibiting 
antimicrobial activities.

Anticancer and cytotoxic activities of metal oxide 
NPs

Cancer is characterized by rapid and uncontrolled cell 
division. It grows progressively and eventually breaches 
the cell matrix evading distant body areas from its origin 
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Table 2   Antimicrobial applications of CuO NPs synthesized through green synthesis route

Plant NPs Size (nm) and shape Application Reference

Moringa oleifera CuO 61 Antibacterial activity (Ingle et al. 2022)
Dodonaea angustifolia CuO NA Antibacterial activity (Andra et al. 2022)
Pseudomonas fluorescens CuO 40–100

Irregular
Antifungal activity (Sawake et al. 2022)

Trichoderma viride 20–80
Spherical

Quercus infectoria CuO 30
Spherical

Antibacterial activity (Khatamifar and Fatemi 2022)

Calotropis procera CuO 20–80
Spherical

Antibacterial activity (Shah et al. 2022)

Aspergillus terreus CuO 11–47
Spherical

Antibacterial activity (Shaheen et al. 2021)

Polyalthia longifolia CuO 40–90
NA

Antibacterial and antifungal activ-
ity

(Nagore et al. 2021a)

Aspergillus terreus CuO NA
Spherical

Antibacterial activity (Mousa et al. 2021)

Citrus CuO 48–76
Spherical

Antibacterial activity (Tshireletso et al. 2021)

Sesbania aculeata CuO NA Antibacterial & Antifungal activity (Tamil Elakkiya et al. 2021)
Ginkgo biloba CuO NA

Short rod
Antibacterial activity (Huang et al. 2021)

Moringa oleifera CuO 45.30
NA

Antibacterial activity (Kalaiyan et al. 2021)

Almond gum CuO 16–25
Spherical

Antibacterial activity (Nithiyavathi et al. 2021)

Penicillium chrysogenum CuO 10.5–59.7
Spherical

Antibacterial & Antifungal activity (Mohamed et al. 2021)

Abies spectabilis CuO 50
Spherical

Antibacterial activity (Liu et al. 2020)

Cymbopogon citratus CuO 11.4–14.5
NA

Antibacterial activity (Cherian et al. 2020)

Monotheca buxifolia CuO 38, 47, and 62
NA

Antibacterial & Antifungal activity (Ahmad et al. 2010)

Ruellia tuberosa CuO 83.23
Rod

Antibacterial activity (Vasantharaj et al. 2019)

Asparagus racemosus CuO 50–100
Rod

Antibacterial activity (Panduranga Naga Vijay Kumar 
2019)

Bauhinia tomentosa CuO 22–40
Spherical

Antibacterial activity (Sharmila et al. 2018)

Sida acuta CuO 50
NA

Antibacterial activity (Sathiyavimal et al. 2018)

Cordia sebestena CuO 20–35
Spherical

Antibacterial activity (Prakash et al. 2018)

Malus domestica CuO & Ag-CuO 18 and 20
Spherical

Antibacterial activity (Jadhav et al. 2018)

Ocimum
basilicum

CuO 70
Spherical

Antibacterial activity (Altikatoglu et al. 2017)

Seidlitzia rosmarinus CuO 30–222.5
NA

Antibacterial activity (Rezaie et al. 2017)

Cissus quadrangularis CuO 30 ± 2
Spherical

Antifungal activity (Devipriya and Roopan 2017)

Acanthospermum hispidum L CuO 5–25
Quasi-spherical

Antibacterial, antifungal, antiviral, 
antimalarial, and antimycobacte-
rial activity

(Pansambal et al. 2017)
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via metastasis. As per GLOBOCAN 2020 reports, female 
breast, liver, and lung cancers remain the substantial causes 
of cancer death, covering 6.9%, 8.3%, and 18%, respec-
tively (Abu‑Serie and Eltarahony 2021a). Cancer complex-
ity and heterogeneity promotes the ferocious spreading of 
cancerous cells leading to substantial mortality (Naz et al. 
2018). Presently, cancer is considered a lethal disease with 
higher incident rate worldwide. This demands imperative 
research to find out ways to target cancer cells specifically. 
Currently, NPs are being effectively used to combat can-
cer. NPs can efficiently attach to other metals, minerals, and 
drugs to be effective against cancer cells specifically (Bilek 
et al. 2019; Sisubalan et al. 2018; Suganthy et al. 2018). 
Recently, MONPs in treating cancer have become an attrac-
tive research area. Some nanoproducts have FDA approval 
for their use as anticancer agents while others are tested for 
effective anticarcinogenic potential and cytotoxic estimation. 
Figure 3 describes the anticancer mechanism of MONPs.

Anticancer and cytotoxic activities of CuO NPs

The anticancer properties of bimetallic ZnO-CuO NPs 
produced using S. nigra were examined against A549 
and A375 cancer cells (Cao et al. 2021). Results depicted 

dose-dependent anticancer capability against A375 cells 
while showed low toxicity against A549 cells. The lower 
toxicity might be attributed to the different serum levels 
of trace elements in every cancer cell. The biosynthesized 
CuO NPs through aqueous black bean extract revealed 
a significant reduction in the cervical carcinoma cells 
(HeLa) through SRB cytotoxic with few changes in the 
structure of mitochondria (Nagajyothi et al. 2017). The 
cytotoxic potential of CuO NPs was measured up to 54.5% 
as compared to the normal cells (Chung et al. 2017). In 
another study, CuO NPs produced through leaf extract of 
Pterolobium hexapetalum revealed improved cytotoxic-
ity against MDA-MB-231 human breast cancer cell line 
(Nagaraj et  al. 2019a). In a study conducted by Gian-
nousi et al. (2016), PEGylatyed CuO NPs showed anti-
cancer activity against human cervical carcinoma HeLa 
cells. IC50 values of 11.91–25.78 μg/mL elucidated sig-
nificant reduction in viability of tumor cells. DNA elec-
trophoresis, nitroblue tetrazolium (NBT), and enzymatic 
assays revealed cell membrane damage by ROS produc-
tion and anti-inflammatory activity. Recently, Al-Jawhari 
et al. (2022) reported CuO NPs synthesis from spinach 
leaf extract and evaluated their biomedical applications. 
For comparative studies, two types of CuO NPs were 

Table 2   (continued)

Plant NPs Size (nm) and shape Application Reference

Tecoma castanifolia CuO Less than 100
Spherical

Antibacterial activity (Sharmila et al. 2016)

Malva parviflora CuO NA Antibacterial activity (Sulak 2021)

Fig. 3   Anticancer Mechanism 
of MONPs
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produced. One was synthesized through conventional route 
(CuO NPs)chem, and the other was a green approach using 
curcumin (CuO NPs)cur. The CuO NPs’ antioxidant proper-
ties were observed as (CuO NPs)sp > (CuO NPs)cur > (CuO 
NPs)chem at a concentration of 92, 86, and 84%, corre-
spondingly. Also, the (CuO NPs)sp revealed promising 
antiproliferative activity (IC50 21 ± 6 g/ml) than (CuO 
NPs)cur and (CuO NPs)chem. These reports affirmed the sig-
nificant anticancer potential of biosynthesized CuO NPs 
and declare them potent cancer therapeutic agents. Table 3 

shows few examples CuO NPs fabricated via plant-based 
green synthesis revealing significant anticancer potential.

Antioxidant activities of metal oxide NPs

Recently, the total antioxidant potential, total reducing power, 
and free radical scavenging activity of MONPs have become 
an attractive research area. During the phyto-mediated synthe-
sis of these NPs, biological molecules bound on the surface of 
NPs might be linked with some antioxidant activities of NPs. 

Table 3   Anticancer application of green synthesized CuO NPs

Plant NPs Size and shape Anticancer effect Reference

Artemisia deserti CuO 9.72 ± 7.80 nm
Spherical

A2780-CP cells (Shahriary et al. 2022)

Lime juice Co-CuO 18–21 nm MDA-MB-231 (Sathyananda et al. 2022)
Starch CuO 20–30 nm

Quasi-spherical
Gastric cancer (AGS, KATO 

III), pancreatic cancer (AsPC-
1, MIA PaCa-2), colon cancer 
(HCT 116 and HCT-8)

(Chen et al. 2022)

Pterocladia capillacea CuO 62 nm
Spherical

Hepatocellular carcinoma, 
breast cancer, and ovarian 
cancer cell

(Aboeita et al. 2022)

Sambucus nigra ZnO-CuO 20–130 nm
Spherical

Melanoma cancer cells (Cao et al. 2021)

Ocimum americanum CuO  ~ 68 nm
Spherical

A549 cells (Manikandan et al. 2021; 
Rajamma and Nair 2020)

Atalantia monophylla CuO  ~ 23 nm
Spherical to rod-shaped

HeLa cells (Verma et al. 2021)

Cylindrospermum stagnale CuO 12.21 nm Spherical HepG2 cell lines (Sonbol et al. 2021)
Aspergillus terreus CuO NA HT-29 (Mani et al. 2021)
Nilgirianthus ciliatus CuO 20 nm

Spherical
Breast cancer cell line (MCF‐7) 

and lung cancer cell line 
(A549)

(Rajamma and Nair 2020)

Streptomyces pluricolorescence CuO 143.07 ± 1.13 nm Breast, liver, and lung cancer 
cells

(Abu‑Serie and Eltarahony 
2021b)

Scoparia dulcis L CuO 11.95–16.64 nm
Spherical

Adenocarcinomic human alveo-
lar basal epithelial cells

(Navada et al. 2020)

Andrographis paniculata CuO 30 nm A549 cells (Kannan et al. 2020)
Alchornea cordifolia Cu2O/CuO 75.22 nm and 16.25 nm HeLa cells (Elemike et al. 2020)
Solanum tuberosum CuO 54 nm Monodispersed and 

spherical
MCF-7 breast cancer cells (Alishah et al. 2017)

Dovyalis caffra CuO Monoclinic MCF-7 breast cancer cell lines (Adeyemi et al. 2022)
Pterolobium hexapetalum leaf 

extract
CuO 10–50 nm

Spherical
MDA-MB-231 cell lines (Nagaraj et al. 2019b)

Stigmaphyllon ovatum Au-CuO 6.40 nm
Spherical

Hela cells (Elemike et al. 2019)

Azadirachta indica CuO 36 ± 8 nm
Crystalline and spherical

MCF-7 and Hela (Dey et al. 2019)

Pomegranate peel and date 
stones

CuO 6 nm PP-CuO-NPs
20 nm DS-CuO-NPs

Human breast cancer (MCF7) 
cell

(Mahmoud et al. 2020)

Rhus punjabensis CuO 36.6 and 31.27 nm
Spherical and circular

HL-60 and PC-3 prostate 
cancer

(Naz et al. 2020b)

Beta vulgaris L CuO 33.47 nm
Spherical and irregular

A549 (Chandrasekaran et al. 2020)
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Literature has reported various data where the antioxidant poten-
tial of MONPs has been assessed to estimate the overall antioxi-
dant efficacy of these NPs. For instance, iron oxide NPs greenly 
produced from Camellia sinensis (Paulpandian et al. 2022), 
Achillea nobilis (Sepasgozar et al. 2022), ginger (Zingiber offic-
inale), and cumin seeds (Cuminum cyminum L.) (Noor et al. 
2022); ZnO NPs from Thymbra spicata L. (Gur et al. 2022), 
Caesalpinia crista (Donga and Chanda 2022), Cladosporium 
tenuissimum (Mani et al. 2022), Cystoseira crinite (Elrefaey 
et al. 2022); and CeO2 NPs from turmeric (Kalaycıoğlu et al. 
2022), Spirulina platensis microalgae (Khaligh and Asoodeh 
2022), etc., exhibited significant antioxidant potential. Herein, 
we briefly discuss the antioxidant activities of CuO NPs.

Antioxidant potential of CuO NPs

In a recent study conducted by Asghar et al. (2022), syn-
thesis of CuO NPs from Rosa delicia (Rd), Rosa kardina 
(Rk), and Rosa foetida (Rf) petals was reported. Differ-
ent sizes were exhibited by (CuO NPs)RF, (CuO NPs)RD, 
and (CuO NPs)RK which were 17.7, 14.9, and 26.3 nm, 
respectively. The maximum antioxidant potential observed 
by (CuO NPs)RK was 98.700.3 μg AAE/mg and reducing 
power capacity of 73.50.18 μg AAE/mg. Also, the (CuO 
NPs)RK depicted the highest DPPH scavenging activity of 
60.9%. Vinothkanna et al. (2022) prepared CuO NPs from 
Rubia cordifolia bark and examined their antioxidant poten-
tial. Fabrication of CuO NPs from Andean blackberry fruit 
(ABF) and leaf (ABL) was done, and further synthesized 
NPs were evaluated for their antioxidant effect. Results dem-
onstrated that ABF-mediated CuO NPs exhibited the highest 
antioxidant potential (89.02%) compared to ABL-mediated 
CuO NPs that revealed 75.92% in DPPH assay at a concen-
tration of 1 mM (Kumar et al. 2017). A study conducted 
by Ruiz et al. (2015) elucidated induction of superoxide 
dismutase (SOD) and catalase (CAT) activities in different 
organs of mussels, Mytilus galloprovincialis upon CuO NPs’ 
exposure. In another study, antioxidant enzymatic activities 
of CuO NPs were revealed in mature female rats, i.e., Rat-
tus norvegicus var. albinos. SOD, glutathione peroxidase 
(GPx), CAT, glutathione S-transferase (GST), and glu-
tathione reductase (GR) were measured in the liver of rats. 
Transmission electron microscopy (TEM) analysis demon-
strated significant variations in the antioxidant enzymes of 
liver after administration of CuO NPs (Canli et al. 2019).

Other biomedical applications of CuO NPs

Despite the aforementioned applications of CuO NPs, it can 
be widely used in many other applications, such as antiviral, 
antidiabetic, and antiparasitic. Yet, only limited reports are 

available regarding these applications of CuO NPs. Hence-
forth, we briefly discuss these applications.

Antiviral activity

Metal oxide NPs such as ZnO and CuO are extensively 
known to have antiviral capabilities. As SARS-CoV-2 being 
responsible for millions of deaths globally, researchers have 
found extraordinary antiviral applications of the mentioned 
NPs supported by several studies (Tortella et al. 2021). For 
instance, Merkl et al. (2021) reported deposition of these 
well-known antimicrobial materials on a solid flat surfaces 
and porous filter media. They checked their antiviral activ-
ity against SARS-CoV-2 viability and compared with viral 
plaque assays. The produced ZnO and CuO NPs displayed 
antiviral coatings on surfaces and on filter media to reduce 
the transmission. A research reported by Cui et al. (2021) 
produced CuO NPs incorporated electrospun nanofibers 
amalgamated with PVP to remove viruses. To demonstrate 
its antiviral application, H1N1 virus was utilized as a tar-
get material. Upon exposure to CuO NPs for 4 h, 70% of 
the viruses were inactivated. This indicates that CuO NPs 
exhibit significant antiviral efficiency. Moreover, antiviral 
properties of CuO NPs prepared from Syzygium alternifo-
lium showed noticeable efficiency against Newcastle Disease 
Virus (NDV) (Yugandhar et al. 2018).

Antidiabetic activity

Metal oxide NPs have shown great potential against diabetes 
illness (Malaikozhundan et al. 2020). Faisal et al. (2022) 
reported antidiabetic activity of biosynthesized CuO NPs 
using Bacopa monnieri leaves extract. CuO NPs of size 
34.4 nm vividly reduced the glucose levels in STZ-induced 
diabetic mice. Results showed 33.66% and 32.19% reduc-
tion in blood glucose levels in CuO NPs and CuO-NP/insu-
lin induced mice. Murraya koenigii and Zingiber officinale 
derived Ag/CuO nanocomposites were evaluated for in vitro 
antidiabetic activity using α-amylase, α-glucosidase, glu-
cose-6-phosphatase enzymes, and glucose uptake assays. For 
comparison, CuO NPs, AgO NPs, and Ag/CuO compos-
ites were also prepared by chemical method. The obtained 
results showed maximum antidiabetic potential of phyto-
synthesized Ag/CuO composite compared to other materi-
als because of maximum phytoconstituents in these extracts 
(Arumai Selvan et al. 2022).

Antiparasitic activity

Different metal oxide NPs have been investigated for 
determination of their potential against various parasites 
and researchers have obtained good findings (do Carmo 

1048 Applied Microbiology and Biotechnology (2023) 107:1039–1061



1 3

Neto et al. 2022; Franco et al. 2016). In a recent study by 
Faisal et al. (2021), CuO, NiO, and Cu/Ni hybrid NPs were 
greenly obtained by using Curcuma longa roots extract. At 
400 μg/mL (for promastigote and amastigotes), maximum 
anti-leishmanial activity was shown by Cu/Ni hybrid NPs 
(60.5 ± 0.53 and 68.4 ± 0.59) than NiO NPs (53.2 ± 0.48 
and 61.2 ± 0.44), and CuO-NPs (56.2 ± 0.45), respectively. 
Acanthospermum hispidum derived CuO NPs were tested 
for their in vitro antimalarial and antimycobacterial potential 
against Plasmodium falciparum strain and Mycobacterium 
tuberculosis (H37RV). CuO NPs demonstrated significant 
antimalarial activity against Plasmodium falciparum with 
MIC of 1.08 µg/ ml as compared to standard Chloroquine 
and Quinine (0.020 and 0.268 µg/ ml), respectively, while 
Mycobacterium tuberculosis H37RV was inhibited entirely 
at the MIC of 100 μg/ml (Pansambal et al. 2017).

Toxicological assessment of nanomaterials

In the last few decades, the development of nanotechnology 
and its role in subsequent applications have increased the 
exposure of NPs to the environment and human beings. The 
occurrence of NPs in the environment is significant regard-
ing their impact on human health (Galdiero et al. 2014; Jamil 
et al. 2018; Krug 2022; Solano et al. 2021). MONPs’ toxicity 
has been studied but exclusively focused on inducing cyto-
toxicity in living systems. In causing toxicity, the dissolution 
of metal ions from NPs and the environment in which the 
NPs are administered plays a vital role (Wang et al. 2012). 
The three primary screening schemes followed in the toxic-
ity of nanomaterials are physiological characterization and 
in vitro and in vivo assays (Oberdörster et al. 2009). Among 
all these strategies, the in vivo assay is considered ethically 
safe, cost-effective, and has reduced risk assessment effi-
cacy and reliability. Verily, the use of in vitro testing and the 

short-term procedure of NPs’ toxicity can play a tremendous 
role in demonstrating the mechanistic studies of nanotoxi-
cology (Scherer et al. 2002) (Fig. 4). However, the available 
toxicological data is generally contradictory; hence, more 
in vitro and in vivo studies are required to assess the fac-
tors and mechanisms involved in the nanomaterial-mediated 
toxicity. This is a crucial challenge to standardize/regulate 
the investigation methods and establish a database compris-
ing the risks linked to NPs that will be freely available for 
researchers, manufacturers, and consumers. There are very 
few reports available on the in vitro and in vivo toxicological 
assessment of biogenic MONPs compared to the other fabri-
cation routes. Hence, in this section, we discuss the in vitro 
and in vivo toxicity of CuO NPs in general irrespective of 
the synthesis route.

In vitro toxicity of CuO NPs

Recently, the toxicity of CuO NPs has attained valuable 
attention and becoming a major trend. This portion high-
lights the in vitro toxicity of CuO NPs, induced oxidative 
stress, and apoptosis mechanism in different cell lines. 
Dose-dependent toxicity of CuO NPs was studied in vitro 
in human airway epithelial cells (Hep-2). Results showed 
altered morphology of HEP-cells when exposed to 1–40 µg/
ml CuO NPs for 24 h. In addition, cytotoxicity was induced 
by oxidative stress that subsequently increased the lipid per-
oxidase (LPO) levels and ROS generation as well as lowered 
glutathione (GSH) and matrix metalloproteinase (MMP). 
The altered apoptotic genes in Hep-2 cells and activated 
caspase enzymes induced apoptosis (Farshori et al. 2022b). 
Toxicity of CuO NPs in Hep-2 cells was also investigated 
by Abudayyak et al. (2020). In another study, in vitro toxic-
ity of novel L-valine polyviny alcohol/CuO NPs (PVA/CuO 
NPs) and PVA/carboxymethyl cellulose/CuO nanocomposite 

Fig. 4   Schematic illustration 
of in vitro and in vivo systems 
implemented for toxicity assess-
ment of MONPs
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(PVA/CMC/CuO NCs) was elucidated against human 
embryonic kidney cell lines. The CuO NPs used for NCs 
films were produced via green synthesis from Euphorbia 
heterophylla. Results indicated > 80% cell viability by NC 
films (Amaregouda and Kamanna 2022). Moreover, in vitro 
toxicity of CuO NPs was studied in digestion model (Büttner 
et al. 2022) and CuO/ZnO NPs in lung and human mela-
noma cells (Cao et al. 2021). CuO NPs prepared through leaf 
extract of Rhus punjabensis exhibited concentration- and 
time-dependent toxicity against brine shrimp Leishmania 
tropica in in vitro study (Naz et al. 2021a).

Induction of in vitro cytotoxicity and oxidative stress of 
CuO NPs have been examined in A549 and HepG2 cells. 
Higher lipid peroxidation and ROS production was observed 
in A549 cells while lower antioxidant glutathione (GSH) 
levels in HepG2 (human hepatocellular carcinoma) cells. 
Researchers observed that malondialdehyde (MDA), a lipid 
peroxidation marker and antioxidant enzymes like super-
oxide dismutase (SOD) and catalase (CAT), significantly 
increased followed by reduction in glutathione (GSH) level. 
These outcomes suggested that oxidative strain might be the 
key mechanism behind the toxicity of CuO NPs (Akhtar et al. 
2016; Farshori et al. 2022a). Other studies also reported the 
cytotoxicity of CuO NPs in the primary liver cells of catfish 
and HepG2 due to ROS generation (Piret et al. 2012; Wang 
et al. 2011). The cytotoxicity of CuO NPs was also observed 
in human cell lines like human lung epithelial A549, human 
cardiac microvascular endothelial, kidney, and neuronal cells 
(Akhtar et al. 2016; Fahmy and Cormier 2009; Maynard and 
Kuempel 2005; Perreault et al. 2012; Sun et al. 2011; Xu 
et al. 2013). Another work stated that there was no differ-
ence in the case of SOD activity while 25% and 29% inhibi-
tion in CAT and glutathione reductase (GR) activities was 
observed (Fahmy and Cormier 2009). Researchers found a 
100% and 150% increase in 8-isoprostanes and glutathione 
peroxidase (GPx) activity upon exposure of Hep-2 cells to 
80 lg/cm2 of CuO NPs. An increase (150%) in oxidized to 
total glutathione ratio showed that oxidized GSH directed 
the failure of epithelial cells to inhibit ROS produced by 
CuO NPs. This led to the generation of oxidative stress that 
was responsible for oxidative damage and cell death. Moreo-
ver, CuO NPs even caused genotoxicity in A549 cells that 
exhibited time- and dose-dependent genotoxicity through 
inducing lesions and damages that ultimately caused cyto-
toxicity (Costa et al. 2018). Exposure of CuO and PbO NPs 
on human fibroblasts was done and in vitro cytotoxicity was 
measured through the cellular dehydrogenase activity and 
ATP content, while continuous impedance-based measure-
ment of the normalized cell index was carried out to study 
cell proliferation, viability, adherence to the substrate, and 
spreading. All these parameters revealed a marked dam-
age induced by both CuO and PbO NPs on human fibro-
blasts in concentration-dependent manner (Bushueva et al. 

2019). Similar was observed earlier where both CuO and 
PbO NPs exhibited similar cytotoxic effect studied through 
some non-specific in vivo toxicity (Minigalieva et al. 2017). 
Another study reported the comparative in vitro cytotoxic 
effect of both chemical and green synthesized CuO NPs. 
Results demonstrated that chemical CuO NPs induced severe 
toxicity in dose-dependent manner through the production 
of ROS and induced apoptosis and necrosis. Treated lym-
phocytes were characterized with hemolysis and reduced 
viable lymphocytes through higher intracellular deposition, 
elevation in NO generation, NADPH oxidase activity, MDA, 
LDH level, the pro-inflammatory cytokine TNF-α level, and 
pro-apoptotic proteins, while reduction in anti-inflammatory 
cytokine IL-10 and anti-apoptotic protein level (Dey et al. 
2019).

Exposure of CuO NPs (50 nm) to pulmonary epithelial 
cells induced concentration-dependent manner DNA dam-
age, mediated through lipid peroxidation and oxidative 
stress, leading to apoptosis (Ahmad et al. 2010). HepG2 
cells treated with 22 nm CuO NPs encouraged ROS pro-
duction, cytotoxicity, p53 and apoptotic gene caspase-3 
upregulation, and apoptosis in HepG2 cells via mitochon-
drial pathway (Prabhu et al. 2010), while human bronchial 
epithelial cell line (BEAS-2B) exhibited size-dependent 
toxicity when treated with CuO NPs in the size range of 
20–200 nm. These NPs caused cytotoxicity by inducing 
oxidative stress, cell cycle arrest, and apoptosis (Karlsson 
et al. 2009). These studies support that NPs cause cytotox-
icity by generating oxidative stress followed by genotox-
icity. In another report, Monotheca buxifolia derived CuO 
NPs exhibited pronounced dose-dependent cytotoxic effects 
against brine shrimp at various concentrations (200, 100, 
50, and 25 μg/ml). Maximum mortality of 80 ± 0.970 was 
observed at 200 μg/ml followed by 40 ± 0.7 at lower tested 
dose. The IC50 value was 40.3 μg/ml determined via table 
curve 2D v5.01 software (Ali et al. 2020).

In vivo toxicity of CuO NPs

Recent study investigated the antioxidant and immuno-toxic 
effect of CuO NPs on 6-week-old female mice (ICR line) for 
a period of 6 weeks. Preferably higher accumulation of cop-
per was observed in the lungs and liver as compared to other 
organs. Besides this, noteworthy increment was observed 
in the production of certain cytokines like IL-12p70; Th1-
cytokine IFN-g and Th2-cytokines IL-4, IL-5; and prolifera-
tion of splenocytes and T-lymphocytes. Immunogenic assays 
demonstrated remarkable phagocytic activity in granulocytes 
with fewer respiratory burst, while no significant differences 
were observed in monocytes. No obvious difference was 
observed in the hematological parameters and percentages of 
CD3 + , CD3 + CD4 + , CD3 + CD8 + , and CD3-CD19 + cell 
subsets in spleen, thymus, and lymph nodes. Moreover, mice 
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treated with CuO NPs expressed marked reduction in the 
GSH level depicting alteration in antioxidant status. These 
results demonstrated that CuO NPs lead to unnecessary 
variations in the immune response (Tulinska et al. 2022). 
Another study reported induced pulmonary inflammation 
upon sub-acute inhalation of CuO NPs. Researchers found 
an elevation in the level of lactate dehydrogenase, total cell 
counts, macrophages, neutrophils, inflammatory cytokines, 
iron in BALFs, and changes in lung weight. Moreover, a 
dosimetry study of lungs and BALF indicated a gradual 
increase in the concentration of Cu upon administration 
and a decrease after exposure. Marked increment occurred 
in the level of Cu in blood and heart depicting the possible 
translocation of Cu into the bloodstream and cardiac tis-
sues. Elimination of Cu from the lungs followed first-order 
kinetics with 6.5 days of half-life. Furthermore, a significant 
weight increase in the kidneys and a decrease in the spleen 
demonstrated toxic effects of Cu on these organs along with 
reduced concentration of selenium in them revealing distur-
bance in the homeostasis of trace elements (Areecheewakul 
et al. 2022). Rainbow trout intestinal cell (RTgutGC) serving 
as an in vitro intestinal barrier was employed to assess the 
toxicity and translocation of various NPs including PVP-
coated and uncoated Ag NPs, CuO, ZnO, and TiO2 NPs. 
Results demonstrated greater resistance to stress genera-
tion via NPs on cells cultured with permeable membranes 
with fewer to no impact on cell viability or barrier integrity 
in comparison to conventional monolayers on imperme-
able supports, although high levels of Ag, Cu, and Zn were 
observed in the basolateral side depicting translocation of 
these NPs and ions liberated from them via the epithelial 
cell. Among these NPs, CuO NPs were translocated as intact 
particles through apical caveolae-mediated endocytosis fol-
lowed by delayed export onto the basolateral side (Geppert 
et al. 2021). Repeated exposure of CuO NPs (5 and 15 mg/
kg) on 1-day-old broiler chickens showed a dose-dependent 
elevation in MDA levels, copper contents, percent DNA 
fragmentation, and a notable fall in catalase activity, weight 
gain, food conversion ratio, and antibody titer of both New 
Castle and Avian Influenza viruses. Histopathological analy-
sis revealed noteworthy variations in dose-dependent man-
ner (Morsy et al. 2021). CuO NPs/PEI (polyethyleneimine) 
and CuO NPs/ASC (ascorbate) in vivo pulmonary toxicity in 
dose-dependent manner was studied in rats for 5 days. Upon 
6 and 27 day post-exposure, in both types (CuO NPs/PEI and 
CuO NPs/ASC), histopathological findings revealed altera-
tions in bronchoalveolar lavage fluid (BALF), lung, and tran-
scriptome. Also, in CuO NPs/ASC case, evidences regarding 
dysregulation of drug metabolism-linked genes were found 
in rats (Gosens et al. 2021). Comparative in vivo acute toxic-
ity of CuO-NPs and CuO microparticles revealed that CuO 
NPs were accumulated in the liver tissues and feces and 
caused histopathological alterations including binucleation 

and megalocytosis as compared to counterparts (Maciel-
Magalhães et al. 2019). Cytotoxic effects of CuO and ZnO 
NPs were studied on land snail (Cornu aspersum) that dem-
onstrated agglomeration of these NPs in hemocytes along 
with elevated ROS production, lipid peroxidation, DNA 
damage, protein carbonyl content, ubiquitin conjugates, 
and breakdown of caspases conjugate levels, although the 
toxic effects of ZnO NPs were more obvious as compared to 
the CuO NPs (Feidantsis et al. 2020). Another study com-
pared the toxic effects of biologically (B-CuO) and chemi-
cally synthesized CuO (C-CuO) NPs (500 mg/kg/ body 
weight) through oral administration in mice. Both B-CuO 
and C-CuO NPs caused leukocytosis, increased serum ATL, 
AST, urea, creatinine while in hepatic tissues, increased P53 
mRNA and caspase-3 protein expression was also observed. 
Moreover, CuO NPs also caused necrosis and degeneration 
in hepatic, renal, and splenic tissues. Among both NPs, 
B-CuO NPs were found to provoke more persuasive toxic-
ity as compared to C-CuO NPs (El Bialy et al. 2020). Expo-
sure of zebrafish embryos with plant-based synthesized 
CuO NPs induced accumulation on skin surface and chorion 
which induced abnormalities in yolk sacs and pericardial 
edema (Santhoshkumar and Venkatkumar 2020). In vivo 
acute toxicity of CuO NPs was studied through exposure 
of chemical (C-CuO) and green (G-CuO) synthesized CuO 
NPs (100, 200, 500, and 1000 μg/Kg) in Balb/C mice via I.P 
route. Results demonstrated significant toxicity in C-CuO 
treated mice in dose-dependent manner characterized with 
significant body weight loss, while organ weight increased 
in case of the kidney and liver and decreased in the spleen, 
whereas no weight change was observed in heart. Serum 
chemistry demonstrated higher LDH, SGOT, and creatinine 
levels. Higher accumulation of C-CuO NPs was observed 
in the liver, kidney, lungs, heart, and intestine as compared 
to G-CuO NPs, while fecal elimination of C-CuO NPs was 
less as compared to G-CuO NPs. Moreover, histopathology 
revealed significant changes in the liver and kidney’s struc-
ture treated with high dose C-CuO NPs (Dey et al. 2019). 
Sub-acute oral administration of CuO NPs (250 and 500 mg/
kg) for 2 weeks on rats effect their cognitive functioning by 
inducing minor alterations in memory and learning. Moreo-
ver, CuO NPs also effect locomotor activity of treated rats 
with higher anxiety index, liver, and stomach weights with 
few changes in biochemical parameters (Ouni et al. 2020). 
Swiss male albino mice orally administered with green syn-
thesized Cu NPs demonstrated significant increase in weight 
of liver and kidney while reduction in weight of spleen 
which affects digestive system at higher dose at 800 mg/
kg (Sulaiman et al. 2018). Intoxication of Danio rerio with 
CuO, ZnO, and NiO NPs showed that CuO NPs were more 
lethal among them. These NPs effected nucleic acid metab-
olism through variations in its binding. The NPs linked 
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toxicity led to enhanced production of ROS and impair-
ments in DNA replication and repair (Hou et al. 2018).

As per reports of Elsayed et al. (2021), in vivo toxic-
ity of CuO NPs/chitosan/quercetin (CuO NPs/CH/Q) was 
assessed for anti-breast cancer activity in female rats. The 
research data exhibited remarkable reduction in breast 
tumor cells of 1,3-methylbutylamine (DMBA)-stimulated 
rats exposed to CuO NPS/CH/Q. The treatment induced 
apoptosis via enhanced p53 gene causing cell cycle arrest-
ment and increased caspase-3 and c-3 (cytochrome c) lead-
ing to mammary cancer cells’ death. Moreover, the CuO 
NPs/CH/Q decreased the carcinoma cells’ proliferation by 
suppressing PCNA genes. In interesting research study, oral 
exposure effects of CuO NPs of 50 nm size (10 mg/kg) were 
explored in vivo in male and female Sprague–Dawley (SD) 
rat pups for four consecutive daily doses between 7 and 10 
post-natal day (PND). Findings revealed that the stimulated 
gastric digestion in rates led towards CuO NPs dissolution 
at the PND14 and PND2. Moreover, hyperspectral imaging 
of intestinal cross sections showed the intestinal uptake of 
CuO NPs. Also, the immune cells increased in the intestinal 
tissues upon NPs’ administration (Mortensen et al. 2021). 
Neurotoxicological impacts of CuO NPs were examined in 
thirty Wister albino rats for 28 days. Pomegranate juice (PJ) 
is a rich source of polyphenols with enhanced antioxidant 
potentials. In this study, mechanistic role of PJ was also stud-
ied to reduce the CuO NPs’ toxicity. The substantial increase 
was observed in MDA levels and reduction in antioxidant 
capacity linked with significant changes in all brain parts 
(cerebellum, hippocampus, and cerebrum) was revealed. 
Rats exposed to CuO NPs without PJ showed progressive 
decline of memory and noticeable cognitive and psychiatric 
disturbances. Also, the continuous exposure of NPs resulted 
over expression of caspase-3, iNOS, GFAP, and down-
regulation of HO-1/Nrf2 genes in whole brain tissues. In 
contrast, PJ co-treated rats expressed improvements in the 
entire neurotoxicological parameters. Overall, PJ reduced the 
oxidative stress damage through the up-regulation of HO-1/
Nrf2 genes (Hassanen et al. 2021). Green synthesized CuO 
NPs exhibited dose- and time-dependent toxicity in both 
male and female SD rats. Notable variations were observed 
in liver functional tests (LFTs), antioxidant enzymes, total 
proteins, and nitrites in both genders, whereas no significant 
differences were observed in renal functional tests (RFTs), 
lipid profile, and histopathology in females; however, males 
exposed to high dose demonstrated significant toxicity. This 
finding revealed that CuO NPs at lower dose were some-
what biocompatible (Naz et al. 2021a). Another study dem-
onstrated that among both chemical and green synthesized 
CuO NPs, chemically synthesized CuO NPs were found 
to be hepatotoxic at higher dose against both parents and 
off-springs supported by LFTs, histopathology, antioxidant 
enzyme assay, and genotoxicity studies (Naz et al. 2021b).

A comparative toxicity study was performed on the 
biogenic and chemically derived CuO NPs against Wistar 
rats to assess their nephrotoxic effect against LLC PK1 
cells line (renal proximal epithelial cells) and isolated renal 
mitochondria. The biogenic CuO NPs employed in this 
study were synthesized through aqueous root extract of 
Desmodium gangeticum while chemically derived CuO 
NPs fabricated via standard chemical approach. Results 
revealed that chemical CuO NPs caused significant 
nephrotoxic effects against LLC PK1 cell lines character-
ized by the higher renal oxidative stress leading to renal 
tissue injury by compromising the levels of alanine ami-
notransferase (ALT), aspartate aminotransferase (AST), 
urea, uric acid, and creatinine. However, both NPs did 
not induce any toxicity in mitochondrial function (Ansari 
and Kurian 2018). Intoxication of rats with different CuO 
NPs’ concentrations (50, 100, and 200 mg/kg) reported 
significant biochemical and histopathological alterations in 
rats administered with 200 mg/kg compared to the control 
group. A five-fold increase in AST, bilirubin test (TB), 
creatinine (CRE), and blood urea nitrogen (BUN) was 
noticed, while about two-fold increase was observed in 
ALT, triglyceride (TG), and total bile. Furthermore, alka-
line phosphatase (ALP) and total cholesterol (TCHO) level 
reduction occurred, while TCHO and TG were slightly 
increased in mid- and low-dose treated groups. Research-
ers observed a higher level of glucose, citrate, amino acid, 
acetate, lactate, succinate, and trimethylamine N-oxide 
(TAMO), while creatinine levels dropped in urine spectra 
of rats treated with Cu NPs. Furthermore, it was found that 
200 mg/kg of nano Cu caused toxic effects, including prev-
alent necrosis in the proximal tubule and cell debris pre-
sent in the tubule’s lumen where orange crystalline mate-
rial was deposited in the renal tissues. At the same time, 
scattered dot necrosis in liver cells was also observed at 
the same dose. Moreover, other doses (50 and 100 mg/kg) 
caused proximal tubule swelling in renal tissues and did 
not exhibit any toxic sign in the liver (Lei et al. 2008). CuO 
NPs induced hemolysis of red blood cells (RBCs), result-
ing in decrease in level of RBCs, hemoglobin (HB), iron, 
hematocrit (HCT), and mean corpuscular volume (MCV); 
however, increase in reticulocytes (RET) was observed. 
Researchers also found that reduction in lymphocytes 
(LYM) percentage was due to the differential white blood 
cells’ (WBC) count that in turn affected defense system of 
the organisms. Meanwhile, increased percentages of mono-
cytes (MON) and neutrophils (NEU) indicated inflamma-
tion in the exposed organs. Furthermore, dose-dependent 
increase in AST, ALP, ALT, TBIL, CRE, BUN, and LDH 
was noticed, while the level of total protein (TP) and tri-
glyceride (TG) decreased significantly. Dysregulation in 
the electrolytes’ balance and an increase in protein, WBCs, 
ketone bodies, specific gravity, nitrite, and occult blood in 
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urine were found. Moreover, the comparative effect of nano 
and micro Cu on the spleen, thymus, hepatic, and nephrotic 
tissues of rats suggested that nano Cu is more toxic and 
causes major alterations in these organs. In contrast, micro 
Cu did not cause any change. Major alterations found in 
these organs were the appearance of atrophic white pulp, 
yellow coloration, decreased cellularity, and follicular 
number observed in the spleen interrupted demarcation of 
cortex and medulla. Reduced cells and vacuolation in the 
cytoplasm was exhibited by thymus and hepatic tissues that 
represented sinusoid dilation, mononuclear cell infiltration, 
deteriorated or binucleated liver cells, tubule dilation, and 
cell fragments with purple or pink pigmented tubular casts, 
while nephrotic cells displayed disintegrated tubule cells 
along with inflammatory cell infiltration (Lee et al. 2016).

Comparative intoxication of male and female rats with 
CuO NPs was done previously (Wang et al. 2016). Rats 
treated with 1250 mg/kg CuO NPs showed a reduction in 
TG, Na, and Cl and elevation in ALT, AST, BUN, LDH, 
and TCHO in males, while increased CPK and LDH were 
found in female rats. Additionally, a significant increase in 
ALT, AST, TCHO, CPK, LDH, and total proteins, whereas 
a decrease in TG, Cl, and K was reported in female rats 
exposed to 2500  mg/kg CuO NPs. Histological altera-
tions were noticed in the liver, spleen, and kidney in male 
(1250 mg/kg) and female (2500 mg/kg) rats. The liver of 
male and female rats with the doses mentioned above also 
displayed slight inflammatory cell infiltration, sinusoid dila-
tion, and vacuolation. Similar was observed when male and 
female rats were treated with Cu ions (625 mg/kg). Inflam-
matory cell infiltration, cellular fragments deposition in the 
tubule, hyaline cast, tubular dilation, and glomerulus atrophy 
were found in the kidneys treated with Cu NPs. In contrast, 
mild cast and dilation were observed in the kidney’s tubule 
when exposed to Cu ions. Multinucleated spleen and decline 
in cell’s white pulp was observed in both sexes administered 
with Cu NPs, while no such alterations were found in Cu 
ion-treated rats (Wang et al. 2016). In another experiment, 
female rats were exposed to CuO NPs, and these NPs conju-
gated with quercetin at 3 mg/kg and 50 mg/kg, respectively. 
It was found that CuO NPs exhibit a significant increase in 
liver enzymes (ALT, AST, and ALP) in a dose-dependent 
manner as compared to the control. Moreover, CuO NPs 
induced severe damage to the liver like lobular liver struc-
ture, liver cells with ballooning and bi-nucleated cell infiltra-
tion, microsteatotic, dilated sinusoids, and congested central 
vein as compared to the control CuO NPs conjugated with 
quercetin (Arafa et al. 2017). By summation of all these 
reports, we have found that biogenic CuO NPs exhibit lesser 
toxic effects compared to chemically prepared CuO NPs but 
need further research to elucidate the comparative toxicity of 
both types of CuO NPs in different animal models.

Conclusions and future prospects

CuO NPs exhibit unique physicochemical properties which 
make them potent nanomaterials to be used in almost every 
field of science. This review provides essential knowledge 
regarding preparation, nanomedical application, and toxic-
ity of CuO NPs. Synthesis of CuO NPs can be achieved 
through various processes each of them having their own 
advantages and limitations. Green chemistry is commonly 
used method for the synthesis of biocompatible nanomateri-
als and their applications in biomedical sciences due to their 
antimicrobial, anticancerous, and antioxidant nature. Plant-
based moieties act as an effective and powerful reducing and 
capping agents during the synthesis of CuO NPs with note-
worthy biocompatibility. Moreover, assessment of in vitro 
and in vivo toxicity of CuO NPs reveals that plant-based 
green synthesized CuO NPs exhibit lower toxicity in com-
parison to chemically synthesized CuO NPs. Toxicological 
studies have depicted that CuO NPs induce oxidative stress 
mediated toxicity through the production of reactive oxy-
gen species (ROS). This consequently leads to the cascade 
of chemical reactions like effecting enzymes balance, lipid 
peroxidation, denaturation of proteins and nucleic acids, 
deterioration of organs, and their functions ultimately com-
promising hematological parameters, metabolites, etc. This 
review study concludes that CuO NPs synthesized through 
plant-based materials act as an effective nanomaterials with 
plentiful biomedical applications, and it aids in addition of 
useful knowledge to the existing one.

Although significant advancement has been done regard-
ing different metal NPs, the metal oxide NPs research is 
still in its early stages. Therefore, tailoring of CuO NPs 
is required in context of its size, morphology, and surface 
composition by devising novel protocols for their synthesis. 
Different reaction parameters contribute in determining the 
appropriate structure–function relationship. Similarly, the 
dose and concentration of NPs are crucial in determining 
particular biological function and its associated toxicity. 
Moreover, the challenges of toxicity of CuO NPs should be 
properly tackled to enhance their broad-spectrum biomedical 
approaches. This could be done by the regulation of CuO 
nanomaterial interface that would augment their interac-
tion with biomolecules of model animals (prokaryotes and 
eukaryotes) and humans. The hybrid CuO nanomaterials 
should also be studied for different areas of nanomedicine. 
The green synthesis methods reduce toxicity of CuO NPs 
by using non-hazardous biological extracts, while chemical 
synthesis can control the toxic effects of CuO NPs by using 
surface modifying capping agents. The surface modifica-
tion would not only make the aggregated NPs stable but 
also enhance the functionalization of these NPs by minimiz-
ing their size and maximizing targeted and specific binding 
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with the surface receptors. Hence, groundbreaking research 
should be done on the routes opted to reduce toxicity of CuO 
NPs and increase their efficacy in biological systems.
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