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Abstract 
Constipation is very pervasive all over the world. It is a common multifactorial gastrointestinal disease, and its etiology and 
pathomechanism are not completely clear. Now, increasing evidence shows that intestinal flora is closely related to constipa-
tion. Intestinal flora is the largest microbiota in the human body and has powerful metabolic functions. Intestinal flora can 
produce a variety of metabolites, such as bile acids, short-chain fatty acids, tryptophan metabolites, and methane, which 
have important effects on intestinal motility and secretion. The host can also monitor the intestinal flora and regulate gut 
dysbacteriosis in constipation. To explore the relationship between intestinal flora and host, the combination of multiomics 
technology has become the powerful and effective method. Furthermore, the homeostasis restoration of intestinal flora also 
provides a new strategy for the treatment of constipation. This review aims to explore the interaction between intestinal flora 
and host in constipation, which contributes to disclose the pathogenesis of constipation and the development of novel drugs 
for the treatment of constipation from the perspective of intestinal flora.

Key points
• This review highlights the regulation of gut microbiota on the intestinal motility and secretion of host.
• The current review gives an insight into the role of the host on the recognition and regulation of intestinal ecology under 
constipation.
• The article also introduces some novel methods of current gut microbiota research and gut microbiota-based constipation 
therapies.
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Introduction

Constipation is common worldwide and a frequent clini-
cal symptom. According to statistics, the global incidence 
of constipation ranges from 2 to 35% (Andromanakos et al. 
2006; Mugie et al. 2011). Constipation can be induced by 
many factors, including lifestyle, diet, psychosocial factors, 
colonic propulsive or rectal emptying disorders, and the use 

of some drugs (such as anticholinergics, opioids, antihista-
mines, antipsychotics) (Vriesman et al. 2020). According 
to the duration of constipation, it is divided into acute con-
stipation (usually lasting no more than a week) and chronic 
constipation (usually lasting more than 4 weeks or 3 months) 
(Camilleri et al. 2017). The main symptoms of constipation 
are dry and hard feces, difficult defecation and reduced def-
ecation times. Currently, intestinal dysfunction is considered 
to be the main mechanism of the pathogenesis of constipa-
tion, including intestinal fluid transport, intestinal motility, 
mucus secretion and intestinal nerve conduction disorder 
(Zhao et al. 2021). However, a large number of recent studies 
showed that gut microbiota imbalance was also an important 
factor in the occurrence and development of constipation.

Recently, with the growing interest in the gut microbi-
ome, our understanding of gut health and disease has been 
greatly advanced. The gut microbiota has been implicated in 
various diseases, such as type 2 diabetes, ulcerative colitis, 
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and chronic kidney disease (Zhang et al. 2021a, b; Xiao et al. 
2020; Zou et al. 2020). There are numerous bacteria living 
in the gut whose number is 10 times that of our human cells, 
and they even control 100 times more genetic information 
than ours (Fujimura et al. 2010). They play an important 
role on assisting host metabolism, maintaining the func-
tion of intestinal barrier and promoting the development of 
immune system (Obata and Pachnis 2016; Schoeler and Cae-
sar 2019). Many studies found that the intestinal flora was 
disordered in constipation patients and animal models (Fan 
et al. 2022; Liang et al. 2019). It was shown that the ben-
eficial bacteria were reduced and the potential pathogenic 
bacteria were increased in the gut of constipation (Huang 
et al. 2022; Mancabelli et al. 2017; Zhu et al. 2014). These 
phenomena suggest that the intestinal flora is involved in the 
occurrence and development of constipation. Although the 
intestinal flora imbalance is prevalent in constipation, the 
exact mechanism of how dysbiosis is involved in constipa-
tion needs to be fully explored.

This review focuses on clarifying the potential mecha-
nisms by which the gut microbiota is involved in the occur-
rence and progress of constipation and introduces the 
research progress and technical replacement. Furthermore, 
the regulation of host on the disordered intestinal flora in the 
state of constipation is also introduced. Currently, the modu-
lation of intestinal flora has become a clinical therapy for 
improving constipation. However, the mechanism of intes-
tinal flora in the process of constipation is not completely 
clear. We hope that this review can give readers a new under-
standing on the relationship between intestinal flora and con-
stipation and provide novel ideas for the research and clinical 
treatment of constipation.

Constipation and imbalance of intestinal 
flora

Increasing evidence suggests that the shift of intestinal 
flora is closely associated with constipation (Table 1). In 
the past, with culture-based methods, researchers found that 
constipation was usually accompanied by the disorder of 
gut microbiota. Zoppi et al. firstly indicated the imbalance 
of intestinal flora in constipation by using the culture-based 
microbiological method (Zoppi et al. 1998). Subsequently, 
Khalif et al. also used this method to conduct a similar study 
on adult patients. Results showed that the abundance of Bifi-
dobacterium and Lactobacillus in patients with constipation 
was lower than that in the control groups, while the levels of 
Enterobacteriaceae (such as Escherichia coli), Staphylococ-
cus aureus, and fungi increased (Khalif et al. 2005). How-
ever, this conventional detection technique underestimates 
about half of the colonic microbes, which limits our further 
understanding of gut microbiota in constipation (Quigley 

2011). There are several reasons: many species are not cul-
tured, strictly anaerobic bacteria die in aerobic conditions, 
and in vitro culture changes the original structure of the 
microflora. But, the culture-based microbiological approach 
made us initially understand the relationship between con-
stipation and gut microbes.

With the maturity of sequencing technology, gut micro-
biome sequencing technology enables us to have deeper 
understanding of gut microbiota and it has been widely used 
to reveal the effect of gut microbiota on constipation. Zhu 
et al. used 16S rRNA gene pyrosequencing to show that the 
abundance of phylum Bacteroidetes in children with func-
tional constipation (FC) was significantly reduced, while 
the level of several species in the phylum Firmicutes was 
markedly increased (Zhu et al. 2014). Subsequently, Kim 
et al. also reported that the species of Bifidobacteria and 
Bacteroides were notably decreased in the feces of adult 
patients with FC by real-time quantitative polymerase chain 
reaction (Kim et al. 2015). Conversely, Tian et al. found that 
Bifidobacterium was more abundance in slow transit consti-
pation patients than in healthy controls (Tian et al. 2021). 
Mancabelli et al. employed 16S rRNA sequencing and whole 
genome sequencing to detect the intestinal microbial com-
position of FC patients (Mancabelli et al. 2017). Their data 
showed that short-chain fatty acids-producing bacteria (such 
as Bacteroides, Roseburia, and Coprococcus 3) were signifi-
cantly reduced in the gut of FC patients, and the genes asso-
ciated with hydrogen production, methanogenesis, and glyc-
erol degradation had high abundance. In addition to fecal 
samples, some studies also examined mucosal microflora 
with mucosal biopsy samples. Durbán et al. found that the 
levels of Bacteroides and Enterobacteriaceae were elevated 
in the intestinal mucosa of constipated patients by 16S rRNA 
metagenomic analysis (V1-V2) (Durbán et al. 2012). Using 
this technique, Parthasarathy et al. reported that Bacteroides 
were remarkably enriched in the intestinal mucosa of con-
stipated patients (Parthasarathy et al. 2016). Compared with 
the ancient culture methods, intestinal microbial sequencing 
can more comprehensively and accurately reflect the changes 
of the original structure and function of gut microbes.

Collectively, gut microbiota in constipated patients is 
mainly characterized by the relative reduction of beneficial 
bacteria (such as Lactobacillus and Bifidobacterium), the rela-
tive increase of potential pathogens, and the decrease of spe-
cies richness (Ohkusa et al. 2019). However, as mentioned 
above, there are opposite situation that constipation patients 
have more beneficial bacteria in their guts than healthy con-
trols. For example, Du et al. observed that beneficial bacte-
ria (such as Bifidobacterium and Lactobacillales) were the 
predominant bacteria in the gut of Parkinson’s patients with 
constipation (Du et al. 2022). Differences in the type of con-
stipation may be the main reason for this situation. The envi-
ronment is crucial to the shaping of the microbiome, and the 
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intestinal environment is also different for different types of 
constipation, resulting that the intestinal flora may be different 
(Coyte and Rakoff-Nahoum 2019). In addition, the relationship 
between gut microbiota and constipation may be bidirectional. 
Prolonged colonic transit during constipation may promote the 
expansion and colonization of slow-growing species, leading 
to profound changes in the structure and function of the whole 
microbiome. On the other hand, external factors (such as diet, 
drugs, and exercise) can cause the disorder of the intestinal 
flora and its metabolism, which contributes to intestinal dys-
function and promote the development of constipation.

Microbial signals in intestinal motility 
and secretion

The normal motility and secretion of the intestine can 
ensure the normal operation of the intestinal contents, 
and at the same time, it can maintain the homeostasis of 
the intestinal environment and provide a suitable habitat 
for the intestinal flora. In the past, it was believed that the 
motility and secretory functions of the gut were regulated 
by the host. For example, the loss of enteric nerve sub-
sets and interstitial cells of Cajal, malfunction of smooth 

Table 1   The changes of intestinal bacteria in constipation

FC functional constipation, IBS-C irritable bowel syndrome with constipation, ND no description, ↑ increased abundance of bacteria, vs healthy 
control, ↓ decreased abundance of bacteria, vs healthy control

References Microbiota analysis method Biological samples Study population Outcomes

Zoppi et al. 1998 Microbial culture Feces 28 children with FC (age 
7.9–9.8), 14 healthy con-
trols (age 7.9–9.8)

Constipation patients:
Bifidobacteria ↑
Clostridia ↑

Khalif et al. 2005 Microbial culture Feces 57 FC patients (age 17–70), 
25 healthy controls (age 
ND)

Constipation patients:
Bifidobacterium ↓
Lactobacillus ↓
Clostridium ↓
Bacteroides ↓
Enterobacteriaceae (E. 

coli) ↑
Staphylococcus aureus ↑
Fungi ↑

Durbán et al. 2012 16S rRNA gene sequencing 
(V1–V2)

Intestinal mucosa 3 IBS-C patients and 9 
healthy control, age ND

Constipation patients:
Bacteroidetes ↑
Enterobacteriaceae ↑

Zhu et al. 2014 16S rRNA pyrosequencing Feces 8 children with FC (age 
10.3–13.3), 14 healthy 
controls (age 12.5–13.9)

Constipation patients:
Blautia ↑
Coprococcus ↑
Ruminococcus ↑
Anaerotruncus ↑
Clostridium ↑
Prevotella ↓

Kim et al. 2015 qRT-PCR Feces 30 FC patients (age 30–40), 
30 healthy control (age 
29–35)

Constipation patients:
Bifidobacterium ↓
Bacteroides ↓

Parthasarathy et al. 2016 16S rRNA gene sequencing 
(V3–V5)

Feces and intestinal mucosa 13 FC, 6 IBS-C and 6 mixed 
IBS patients (age 33–63), 
25 healthy controls (age 
29–49)

Constipation patients:
Bacteroidetes ↑

Mancabelli et al. 2017 16S rRNA and shotgun 
metagenomics

Feces 68 FC patients (age 24–64), 
79 health controls (age 
15–63)

Constipation patients:
Bacteroides ↓
Roseburia ↓
Coprococcus ↓
Faecalibacterium ↑
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muscle, and changes in the immune cells were regarded 
as the basis of internal motility obstacle (Mazzone and 
Farrugia 2007). However, a recent series of studies have 
shown that gut microbial signals can also influence gut 
motility and secretion (Bhattarai et al. 2020; Fukui et al. 
2018; Vicentini et al. 2021). The effect of gut microbiota 
on gut motility and secretory function is shown in Fig. 1.

Motility

Abnormal intestinal motility is an important factor in the 
occurrence of constipation. Previous studies showed that the 

intestinal nervous system could strictly control the move-
ment of the intestine. There are abundant receptors in the 
intestinal cells, which can sense physical and chemical 
stimuli and transmit excitation to intestinal smooth mus-
cle through enteric nerves (Joshi et al. 2021; Steensels and 
Depoortere 2018). It has been found that gut microbiota-
derived metabolites such as bile acids, short-chain fatty 
acids, and tryptophan metabolites, are also able to modu-
late gut motility by stimulating gut chemoreceptors (Dalziel 
et al. 2021).

Bile acids (BAs) are an important regulator of intestinal 
function, which are produced by the host and metabolized by 

Fig. 1   Regulation of gut microbiota on host intestinal motility and 
secretion-related functions. A Stimulated by bacterial metabolites, 
intestinal epithelial cells can secrete water and ions into the intesti-
nal cavity through ion pump, transporter, and exchanger. B Bacterial 
metabolites can induce goblet cells to secrete mucin and form a natu-
ral physical barrier in the intestine. In addition, intestinal microflora 

metabolites and cellular constituents can directly stimulate intestinal 
neurons (C) or regulate intestinal movement through intestinal endo-
crine cells (D). 5-HT, 5-hydroxytryptamine; 5-HTR, 5-HT receptor; 
AhR, aryl hydrocarbon receptor; BA, bile acid; TGR5, Takeda G 
protein-coupled receptor 5; TLR, Toll-like receptor; TRPA1, transient 
receptor potential ankyrin subtype 1 protein
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the intestinal flora. About 5% of bile salts in bile entered the 
colon, where they were uncoupled or metabolized into sec-
ondary bile acids by gut flora (Appleby and Walters 2014; 
Wahlström et al. 2016). BAs could activate G-protein cou-
pled BA receptor of enterochromaffin cells and endogenous 
primary afferent neurons to stimulate the release of seroto-
nin 5-hydroxytryptamine (5-HT) and calcitonin gene-related 
peptide, resulting in intestinal peristaltic reflex (Begley et al. 
2006; Bunnett 2014). Several studies showed that the inhibi-
tor of the ileal BA transporter (Elobixibat) could increase 
the levels of colonic BAs and improve the colonic transport 
(Chedid et al. 2018; Nakajima et al. 2018, 2022). Micro-
bial transplantation study in mice revealed that the altered 
microflora could influence the gastrointestinal transport by 
affecting the uncoupling of bile salts (Dey et al. 2015; Li 
et al. 2021a, b). Of note, the effect of bile acids on intestinal 
motility requires the participation of intestinal flora, but its 
mechanism remains to be clarified.

Tryptamine metabolized from tryptophan by Clostridium 
sporogenes and Ruminococcus gnavus could reduce the 
colonic transport time through 5-HT receptor 4 (5-HTR4) in 
colonic epithelial cells (Bhattarai et al. 2018; Williams et al. 
2014). Additionally, tryptamine also was a ligand for aryl 
hydrocarbon receptor (AhR) in intestinal cells (Vyhlídalová 
et al. 2020). Interestingly, Obata and his colleagues recently 
concluded that intestinal flora could induce the expression 
of AhR in intestinal neurons and make them respond to AhR 
ligands derived from microflora, which was beneficial to 
their excitation and intestinal peristalsis (Obata et al. 2020). 
Indeed, compared with germ-free mice, mice colonized 
by Ruminococcus gnavus showed the induction of several 
genes involved in tryptophan metabolism (Hoffmann et al. 
2016). Ruminococcus gnavus was found in about 90% of 
adults and infants, and their ability to produce tryptamines 
could affect human health (Qin et al. 2010; Sagheddu et al. 
2016). Ye et al. explored a new mystery that the transient 
receptor latent ankyrin A1 (TRPA1) could sense microbial 
tryptophan metabolites (indole, indoleacetic acid) to stimu-
late enteroendocrine cells to secrete 5-HT, and then transmit 
bacterial signals to the gut and vagus nerve (Ye et al. 2021). 
Thus, the perturbation of tryptophan metabolism, which 
were closely associated with the composition, diversity, and 
metabolism of gut microbiota, might affect intestinal transit 
time (Roager et al. 2016; Vandeputte et al. 2016).

Short-chain fatty acids (SCFAs) produced by intestinal 
bacteria from carbohydrate fermentation were the energy 
source of intestinal tissue and the regulator of colon motility 
(Vonk and Reckman 2017), among them, acetic acid, propi-
onic acid, and butyric acid are the most common short-chain 
fatty acids in the human body (Li et al. 2021a, b). The stimu-
lating effect of SCFAs on intestinal motility is hormone-
dependent (Martin-Gallausiaux et al. 2021). SCFAs could 
regulate some gastrointestinal hormones, such as glucagon 

like peptide-1 (GLP-1) and peptide YY (PYY), which could 
regulate gastrointestinal motility, were released in response 
to SCFAs (Gribble and Reimann 2019). Recently, a study 
showed that depletion of gut microbiota led to a decrease in 
enteric neurons and induced intestinal hypomotility, whereas 
the supplementation with SCFAs could promote the recov-
ery of enteric neurons (Vicentini et al. 2021). Butyrate was 
found to restore gut motility in germ-free mice in the pres-
ence of 5-HT (Vincent et al. 2018). Furthermore, propionic 
acid (enteral) could slow colonic movement by CO-acti-
vating free fatty acid receptors 2 and 3 (FFA2 and FFA3) 
through PYY and enteric nervous system pathways, respec-
tively (Tough et al. 2018). Lactobacillus and Bifidobacte-
rium in the intestine were proved to produce γ-aminobutyric 
acid (GABA), which was a derivative of SCFAs (Cui et al. 
2020). GABA receptors were also expressed in intestinal 
neurons and could modulate the gastrointestinal motility, 
which was reviewed by Auteri et al. (Auteri et al. 2015). 
These evidences suggest that gastrointestinal hormones and 
enteric nerves are the pathways of SCFAs regulating intes-
tinal motility.

The gas yielded by intestinal flora also had an important 
impact on intestinal motility. It was believed that methano-
gens could slow down intestinal movement and cause con-
stipation (Sahakian et al. 2010). Clinical evidence showed 
that a significant increase in the abundance of methanogens 
was observed in constipation patients (Ojetti et al. 2017; 
Ghoshal et al. 2018). Additionally, in patients with irritable 
bowel syndrome dominated by constipation, antibiotic treat-
ment could reduce methanogenic bacteria in the intestinal 
microflora, which led to the improvement of pathological 
symptoms (Low et al. 2010). Methanobrevibacter smithii 
is the most common methanogenic bacterium in human 
intestine (Dridi et al. 2009). A clinical study indicated that 
Methanobrevibacter smithii was overgrown in the intestines 
of patients with constipation and accompanied by elevated 
levels of methane (Takakura et al. 2022). Furthermore, 
symbiotic microorganisms could produce NO with nitrate 
or nitrite in intestinal lumen as substrate (Koch et al. 2017). 
NO was proved to be an inhibitory neurotransmitter, which 
was essential for the relaxation of gastrointestinal smooth 
muscle and intestinal motility (Groneberg et al. 2016).

Toll-like receptors (TLRs), a kind of pattern recogni-
tion receptors, which can recognize intestinal bacteria to 
initiate intracellular signaling affecting the gastrointesti-
nal motility. For instance, TLR2 and TLR4 were located 
on the membrane of intestinal nerve cells, muscle and glial 
cells to regulate movement. TLR4 could recognize bacterial 
lipopolysaccharide (LPS), while TLR2 could recognize lipo-
peptides and peptidoglycans (Akira et al. 2006). In addition, 
bacterial microbubbles could stimulate TLR2 (Al-Nedawi 
et al. 2015). Reduced fecal production and longer defecation 
time were found in mice with TLR4 deficiency or impaired 
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LPS response, which confirmed that bacterial components 
could affect the intestinal motility (Anitha et al. 2012; Caputi 
et al. 2017). Recently, Yarandi et al. indicated that intestinal 
bacteria maintained the gastrointestinal motility via TLR2-
induced intestinal neurogenesis in mice (Yarandi et al. 2020). 
Their results illustrated that the number of colonic myenteric 
neurons were markedly increased after the administration of 
TLR2 agonists. Emerging evidence suggested that resident 
intestinal flora was essential for regulating intestinal neurons 
and intestinal endocrine cell populations, as well as neuro-
genic colonic activity. The gut resident microbe Bacteroides 
thetaiotaomicron could normalize the changes in the expres-
sion of nitric oxide synthase and choline acetyltransferase in 
the myenteric plexus of germ-free mice (Aktar et al. 2020).

In conclusion, intestinal microbial signals can transmit 
information to the host to affect the gastrointestinal motil-
ity. These signals may be microbial metabolites or cellu-
lar constituents. Therefore, the microbial signal disorder 
caused by the imbalance of intestinal flora in the process 
of constipation is an important factor for the slowdown of 
the gastrointestinal transport. Although the dynamic balance 
of intestinal microflora is important for the healthy colonic 
transport, there is no clearly defined microflora for the opti-
mal colonic transport. So, it is necessary to further explore 
the microflora under the optimal colonic transport.

Secretion

Intestinal secretion includes water, ions, and mucin, which 
play an important role in the smooth operation of feces in 
the intestinal lumen. Gut flora are also able to influence 
intestinal secretion through their metabolites. BAs not 
only affect intestinal motility and also stimulate the secre-
tion in the colon (Keely et al. 2022). It was reported that 
BAs could promote chloride secretion and inhibit sodium 
absorption in colonic epithelial cells by regulating colonic 
ion pump, exchanger, and transporter to induce lumen fluid 
accumulation (Keely and Walters 2016). Brianna et  al. 
found that tryptamine caused the change of short-circuit 
current by using Ussing chamber with the proximal mouse 
colon, which confirmed that tryptamine could affect the ion 
secretion of colonic epithelial cells (Williams et al. 2014). 
Additionally, tryptamine was found to act on 5-HTR4 to 
increase cyclic adenosine monophosphate (cAMP) to stimu-
late colonic anion and fluid secretion (Bhattarai et al. 2018). 
Several studies showed that intestinal hormone secretion was 
also affected by intestinal flora. Zhuang et al. reported that 
SCFAs produced by intestinal flora could stimulate the secre-
tion of intestinal peptide YY in constipated rats (Zhuang 
et al. 2019). Wichmann et al. found that germ-free mice did 
not produce SCFA, resulting in a significant increase in the 
level of plasma glucagon like peptide-1 (GLP-1), which 
could inhibit intestinal peristalsis (Wichmann et al. 2013). 

Through fecal microbiota transplantation (FMT) in patients 
with irritable bowel syndrome (IBS), it was found that FMT 
changed the density of enteroendocrine cells in intestine in 
patients with IBS (Mazzawi et al. 2021). Enteroendocrine 
cells, as the largest hormone secreting population in the gut, 
expressed a diverse array of G protein coupled receptors 
as well as Toll- like receptors (Yu et al. 2020). Therefore, 
enteroendocrine cells might be the direct or indirect target 
of the gut microbiota influencing gut hormone secretion.

Mucin in the gut is mainly secreted by intestinal gob-
let cells, which is the main component of intestinal mucus 
layer. The intestinal mucus layer can provide the habitat for 
intestinal flora and lubricate the contents. A large number 
of studies verified that intestinal symbiotic bacteria played 
an important role in promoting intestinal mucus secretion 
(Hayes et al. 2018; Sicard et al. 2017; Bergstrom et al. 2020). 
For example, compared with normal mice, the number of 
intestinal goblet cells in sterile mice were reduced and the 
maturation of mucus system was slow (Johansson et al. 
2015). Intestinal meprin β enzymes could cleave mucin to 
release mucus, but the cleavage process required the induc-
tion of intestinal flora (Schütte et al. 2014). In the intestine, 
some commensal bacteria such as Bacteroides thetaiotaomi-
cron and Faecalibacterium prausnitzii could increase the 
differentiation of goblet cell and the expression of mucus 
related genes (Wrzosek et al. 2013). In fact, the outer mucous 
layer of the colon was inhabited by symbiotic bacteria that 
could degrade mucin to obtain energy, such as Bacteroides 
acidifaciens (in mice), Bacteroides fragilis, Bifidobacte-
riaceae, Lactobacillus spp., and Akkermansia muciniphila 
(in mice and humans) (Donaldson et al. 2016). The degra-
dation of glycoprotein of outer mucous layer by symbiotic 
bacteria can promote the natural replacement of intestinal 
mucus. Although these phenomena show that intestinal flora 
can affect the secretion of intestinal mucus, a large number 
of studies are still needed to clarify its mechanism.

Regulation of dysregulated intestinal flora 
in patients with constipation

The microenvironment of the intestinal lumen is created 
by intestinal flora and intestinal cells, so the intestine also 
affects the microflora. Increasing evidence showed that 
intestinal innate immunity could shape the microbiota 
(Kurilshikov et al. 2017). A recent study indicated that 
there was an inflammatory response and flora imbalance in 
constipated mice, and the transplantation of the dysfunc-
tional flora into the intestines of healthy mice could also 
induce the intestinal inflammation (Lin et al. 2021). Pre-
viously, colonic histopathological studies proved that there 
was the microscopic inflammation in the colonic tissue of 
patients with constipated irritable bowel syndrome, which 
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was mainly characterized by the increase of mast cells, 
intraepithelial lymphocytes, and CD3+ T cells in the colonic 
mucosa (Barbara et al. 2004; Chadwick et al. 2002). Intesti-
nal cells could express pattern recognition receptors (PRRs), 
which were used to sense microbial associated molecular 
patterns (MAMPs), and then promote immune response to 
resist pathogens (Potrykus et al. 2021). PRRs are divided 
into five families: Toll-like receptors (TLRs), C-type lec-
tin-like receptors (CLRs), nucleotide binding oligomeriza-
tion domain (NOD)-like receptors (NLRs), retinoic acid-
induced gene-I (RIG-I)-like receptors (RLR), and recently 
identified absent in melanoma (AIM)-like receptors (ALR) 
(Agier et al. 2018; Kurilshikov et al. 2017). After PRRs 
sense microbial antigens, they could regulate the function 
of other intestinal cells against pathogens through activat-
ing intestinal immunity, and restore the intestinal ecological 
balance (Bonder et al. 2016; Hoving et al. 2014; Xiao et al. 
2019). Therefore, in constipation, the host may activate the 
immune response through these PRRs to restore the balance 
of intestinal microbiota.

In the colon, the mucus layer, an important physical bar-
rier, is further divided into two layers: an internal firm layer 
for isolating microorganisms and an external loose layer that 
provides the habitat for microorganisms (Zhao and May-
nard 2022; Li et al. 2015; Lin et al. 2021). Intestinal mucus 
is mainly composed of mucin. A report suggested that the 
deletion of mucin 2 (MUC2) gene in mice could alter the 
intestinal microbiota (Wu et al. 2018). The levels of Desul-
fovibrio, Escherichia, Akkermansia, Turicibacter, Erysipel-
otrichaceae, and Ruminococcaceae increased and contents 
of Lactobacilli and Lachnospiraceae decreased in MUC2 
deficient mice. Mucin were often modified by complex poly-
saccharides, and some bacterial species used glycosidases to 
degrade mucin to obtain polysaccharides as a carbon source 
(Crouch et al. 2020). It was found that O-glycans on MUC2 
from the proximal colon regulate the structure and function 
of the microflora (Bergstrom et al. 2020). When constipation 
occurs, dry and hard feces stay in the colon for a long time, 
which is easy to take away the external loose mucus layer, 
creating the opportunity for bacteria to invade the internal 
mucus layer and cause inflammation. Excitingly, it was 
reported that the mediators produced by the immune sys-
tem could drive the proliferation of goblet cells and increase 
mucus secretion (Khan and Collins 2004; Oeser et al. 2015). 
The increase of mucus secretion of goblet cells could help to 
wash away the bacteria in the inner mucus layer (Birchen-
ough et al. 2016). However, the replenishment rate of mucus 
is slower than the consumption rate and the constipation can-
not be relieved, which is regarded as the host-autonomous 
regulation of dysbiosis in constipation.

On the other hand, there are a lot of antibacterial sub-
stances (such as immunoglobulin A (IgA) and antimicrobial 
peptides) in the mucus layer inside the intestine, which play 

an important role on maintaining the balance of intestinal 
flora. IgA produced by intestinal lamina propria plasma cells 
can maintain the intestinal homeostasis through binding and 
interacting with mucin and intestinal bacteria in the outer 
mucus layer (Rogier et al. 2014). IgA not only help the host 
to remove pathogens but also anchor symbiotic bacteria in 
mucus. It has proved that symbiotic Bacteroides fragilis 
can specifically recognize IgA to promote mucosal coloni-
zation (Donaldson et al. 2018). Inatomi et al. found that the 
concentration of IgA was notably increased in the feces of 
constipated rats after the treatment with probiotics (Inatomi 
and Honma 2021). IgA was proved to enhance the adhesion 
of Escherichia coli, Bifidobacterium lactis, and Lactobacil-
lus rhamnosus to epithelial cells, revealing that microbes 
could also benefit from IgA to establish mucosal microbial 
communities (Bollinger et al. 2003; Mathias et al. 2010). 
Furthermore, antimicrobial peptides produced by Paneth 
cells also play an important role on improving the intestinal 
dysbiosis (Suchodolski and Jergens 2016). It was found that 
intestinal symbiotic bacteria had stronger antimicrobial pep-
tide resistance compare with pathogens, which was also the 
key for antimicrobial peptides to maintain the homeostasis 
of host intestinal flora (Cullen et al. 2015). Antimicrobial 
peptides and IgA in mucus layer are very important to main-
tain the balance of intestinal microflora, and their expression 
is regulated by intestinal immune system. Therefore, in the 
process of constipation, low-grade intestinal inflammation 
is a means for the host to perceive and maintain intestinal 
eubiosis (Fig. 2).

Constipation therapy and research strategy 
based on intestinal flora

In recent years, some new constipation therapies, such as 
prebiotics, synbiotics, inhibitors of ileal bile acid transport-
ers, antibiotic treatment for patients with methanogenesis, 
and 5-HT4 receptor agonists, have been clinically avail-
able (Choi and Chang 2015; Ford et al. 2014; Prichard and 
Bharucha 2018; Triantafyllou et al. 2014). Notably, micro-
bial related agents could not only improve pathological 
symptoms of constipation but also regulate the host immune 
system (Yeşilyurt et al. 2021). For example, probiotics, espe-
cially Lactobacillus and Bifidobacterium, could stimulate 
immune cells (such as Th1, Th2, Th17, T regulatory cells, 
and B cells) and increase the production of SIgA and anti-
microbial substances, which resisted pathogens and toxins 
in the intestine and maintained the integrity of the intesti-
nal barrier (Dargahi et al. 2019; Shi et al. 2017). Neverthe-
less, studies indicated that probiotics might be a potential 
risk for the treatment of constipation. Especially in elderly 
constipated patients with impaired intestinal mucosal bar-
rier or immunosuppressive state, probiotic therapy carried 
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risks such as microbial translocation, opportunistic pathogen 
infection, D-lactic acidosis, and loss of bioactivity of antimi-
crobial or antifungal agents (Camilleri 2019; Rao et al. 2018; 
Suez et al. 2019). Fortunately, evidence indicated that the 
use of inactivated probiotics or probiotic metabolites could 
eliminate the risk of probiotic treatment of constipation (De 
Marco et al. 2018; Żółkiewicz et al. 2020). Because they are 
not living microorganisms, bacterial translocation and detri-
mental metabolic activities do not occur (Sotoudegan et al. 

2019; Rossi et al. 2022). Additionally, based on the effect 
of gut microbiota on gut function, fecal microbiota trans-
plantation (FMT) therapy for constipation has also received 
widespread attention (Liu et al. 2021). Researchers have 
carried out some clinical trials on FMT for the treatment of 
constipation, which obtained certain clinical effects (Johnsen 
et al. 2018; Zhang et al. 2021a, b; Kuai et al. 2021). How-
ever, the microbial species of FMT are very complex, including 
bacteria, fungi, viruses, and other components, and it is difficult 

Fig. 2   Host supervision and regulation of gut microbiota in constipa-
tion. Constipation is caused by many factors, such as diet, drugs, lack 
of exercise, and genetic factors. Constipation is accompanied by the 
imbalance of intestinal flora and the consumption of intestinal mucus. 
The mucus layer in the intestine is divided into outer loose layer and 
inner solid layer. The outer loose layer provides the habitat for symbi-
otic bacteria. Constipation leads to the depletion of outer loose layer 
in the intestine, which can cause the run off of symbiotic bacteria 
and the invasion of pathogens and symbiotic bacteria into inner solid 

layer. The inner solid layer contains a large number of antibacterial 
substances (such as IgA and antibacterial peptides), and the entry 
of bacteria and their antigens into this layer will induce the immune 
response. The intestinal tract can recognize the pathogens and sym-
bionts invading the internal solid layer through pattern recognition 
receptors to trigger the immune response, so as to regulate the syn-
thesis of mucin, IgA, and antimicrobial peptides to resist invasion and 
regulate the imbalance of intestinal flora in the state of constipation
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to determine its risk source, which hinders its clinical applica-
tion (Blaser 2019). Therefore, a large number of studies are still 
needed to prove the safety of FMT to promote the promotion of 
FMT in the clinical treatment of constipation.

In Southeast Asia, plant laxatives or herbs including 
traditional Chinese medicines (TCMs) are usually used to 
relieve constipation. Anthraquinones (such as senna, aloe, 
rhubarb, frangula, and cascara) are the most commonly used 
plant laxatives, which can improve constipation mainly by 
stimulating fluid secretion and intestinal motility, especially 
for the short-term treatment of tension constipation, acute 
constipation, and before lower gastrointestinal endoscopy 
(Cirillo and Capasso 2015; Wang and Yin 2015). Interest-
ingly, TCM formulas are proved to treat diseases (includ-
ing constipation) through restoring the normal composition 
and function of gut microflora in clinical or animal stud-
ies (Tong et al. 2018; Xu et al. 2015). Zengye decoction 
(ZYD) composed of Sophorae Flavescentis Radix, Ophi-
opogonis Radix, and Rehmanniae Radix Praeparata nota-
bly decreased the abundance of harmful microbes (such as 
Desulfovibrio, Prevotella, and Ruminococcus), whereas it 
markedly increased the abundance of Oxalobacter, Clostrid-
ium, and Roseburia in aged rats with constipation (Liu et al. 
2019). Additionally, the latest findings in our lab illustrated 
that rhubarb could markedly improve various pathological 
symptoms in constipated rats by restoring the homeosta-
sis of intestinal flora and ameliorating the disorder of its 
metabolism (Yang et al. 2022). However, TCM formulas 
usually exerted their effects by multitargets and multipath-
ways, while their mechanisms related to gut microflora have 
not been adequately investigated.

During the past two decades, with the implementation of 
the human genome project and the development of a new 
generation of sequencing technology, researches on intesti-
nal microorganisms have received increasing attention and 
achieved fruitful results. In fact, these microbial detection 
technologies tend to reflect differences in composition and 
cannot obtain accurate results of the functional changes of 
gut microflora. However, the combination of multiomics 
and alternative medical technology complement the study 
of intestinal microflora. As an example, intestinal microbiota 
sequencing could identify new functional genes, microbial 
pathways, and dysfunctions of intestinal microbiome and 
determine the interaction and coevolution between micro-
flora and host (Wang and Yin 2015). However, due to differ-
ent primers and GC contents, each gene may not be amplified 
with the same efficiency during the PCR reaction, resulting 
in sequencing bias (Wensel et al. 2022). Furthermore, tax-
onomy accuracy relies on the integrity of the reference data-
base, and the quality and quantity of databases determine 
the accuracy and resolution of taxonomy classifications (Jo 
et al. 2016). Metabolomics provided important help for us 

to understand the metabolic differences of intestinal flora 
in the disease state (including constipation), identify new 
metabolic markers, and uncover the functional changes of 
intestinal flora (Bauermeister et al. 2022). Furthermore, 
environmental transcriptomics and proteomics also provided 
an important supplement from the gene and protein levels for 
the study of intestinal microbial function (Bashiardes et al. 
2016; Verberkmoes et al. 2009). Simultaneously, the newly 
developed intestinal chip and microfluidic technology enable 
us to have a clearer understanding of the interaction between 
intestinal flora and host, because these in vitro techniques 
can help us eliminate some interference factors and can 
more easily achieve variable control (Puschhof et al. 2021). 
Therefore, we can explore the effect of gut microflora on 
composition by regulating intestinal motility and secretion 
function based on integrated technologies and approaches, 
so as to clarify the intestinal flora related pathogenesis of 
constipation and develop new therapeutic drugs.

Conclusion

In the process of constipation, the imbalance of intestinal flora 
has been adequately confirmed. The intestinal flora is in the 
closed environment of the host intestine and is affected by the 
external environment and the host. In terms of external factors, 
constipation inducements such as diet, drugs, living habits, and 
social pressure will trigger the disorder of intestinal flora, while 
the damage of intestinal mucus caused by constipation and the 
disorder of intestinal hormones can also destroy the habitat and 
environment of intestinal symbiotic bacteria. In addition, intes-
tinal flora can affect intestinal motility and secretion. There are 
abundant chemoreceptors in the intestine, which can sense the 
metabolites and cellular components from intestinal bacteria. 
In the state of constipation, the disorder of intestinal flora and 
its metabolism can result in the abnormality of gut motility and 
secretion. At the same time, the host has a regulatory role on 
the intestinal flora by some pattern recognition receptors. When 
the flora is disordered, the host activates the intestinal immune 
system and mucus to resist the pathogen and assist the coloni-
zation of probiotics. Therefore, the study of constipation based 
on intestinal flora can give us a comprehensive understand-
ing of the pathogenesis of constipation and contribute to the 
development of new therapies. However, due to the structural 
complexity and functional diversity of intestinal flora, it is an 
appropriate strategy to uncover the relationship between con-
stipation and intestinal flora through multiomics approaches.
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