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Abstract 
Oleaginous yeasts have received significant attention due to their substantial lipid storage capability. The accumulated lipids 
can be utilized directly or processed into various bioproducts and biofuels. Lipomyces starkeyi is an oleaginous yeast capable 
of using multiple plant-based sugars, such as glucose, xylose, and cellobiose. It is, however, a relatively unexplored yeast 
due to limited knowledge about its physiology. In this study, we have evaluated the growth of L. starkeyi on different sugars 
and performed transcriptomic and metabolomic analyses to understand the underlying mechanisms of sugar metabolism. 
Principal component analysis showed clear differences resulting from growth on different sugars. We have further reported 
various metabolic pathways activated during growth on these sugars. We also observed non-specific regulation in L. starkeyi 
and have updated the gene annotations for the NRRL Y-11557 strain. This analysis provides a foundation for understanding 
the metabolism of these plant-based sugars and potentially valuable information to guide the metabolic engineering of L. 
starkeyi to produce bioproducts and biofuels.

Key points
• L. starkeyi metabolism reprograms for consumption of different plant-based sugars.
• Non-specific regulation was observed during growth on cellobiose.
• L. starkeyi secretes β-glucosidases for extracellular hydrolysis of cellobiose.
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Introduction

Oleaginous yeasts have been studied extensively due to their 
substantial lipid storage capability (Ageitos et al. 2011; Shi 
and Zhao 2017). The accumulated lipids provide alternatives 
to plant oils for biodiesel production (Spagnuolo et al. 2019). 
Lipomyces starkeyi is a promising oleaginous yeast, which 
was isolated from soil by Starkey (1946) and later described 
by Lodder and Kreger-Van Rij (1952). It can grow on 
various plant-based sugars and is an excellent lipid producer 
(McNeil and Stuart 2018a). Because of its ability to grow 
on a wide variety of sugars, many enzymes like dextranases, 
amylase, levoglucosan kinase, and other hydrolases have 
been studied and characterized from L. starkeyi (Bao et al. 
2019; Kang et al. 2004, 2009; Nishimura et al. 2006; Rother 
et al. 2018; Ryu et al. 2000).
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Nutrient limitation in L. starkeyi has been reported as a 
mechanism to induce lipid production (Calvey et al. 2016; 
Juanssilfero et al. 2018). Recent work has also explored the 
pathways involved in lipid metabolism (Kamineni and Shaw 
2020; Takaku et al. 2020a). In addition to lipids, L. starkeyi 
has been engineered for fatty alcohol production (McNeil 
and Stuart 2018b; Wang et al. 2016). Lipid production in L 
starkeyi has been optimized using two-stage fermentation for 
industrial use (Lin et al. 2011; Zhang et al. 2021, 2022). In 
addition to accumulating large amounts of lipids, L. starkeyi 
can naturally utilize the sugars present in lignocellulosic 
hydrolysates and is tolerant to the inhibitors present in these 
hydrolysates (Monteiro de Oliveira et al. 2021; Pomraning 
et al. 2019). However, there is a considerable lack in our 
understanding of L. starkeyi, primarily due to insufficient 
knowledge of its physiology and the lack of efficient genetic 
tools.

The genome sequence of L. starkeyi NRRL Y-11557 was 
reported in 2016, along with 15 other biotechnologically 
relevant yeasts (Riley et al. 2016). Since then, a few studies 
have used the gene models of L. starkeyi NRRL Y-11557 
in different bioinformatics analyses. Theoretical lipid 
yields on various sugars were reported using a small-scale 
metabolic model of L. starkeyi NRRL Y-11557 (Zhou et al. 
2021). A recent study reported the transcriptional changes 
in L. starkeyi NRRL Y-11558 resulting from growth on 
hydrolysate (Pomraning et  al. 2019). In addition, two 
studies have used bioinformatics analysis to identify and 
characterize the sugar transporters present in L. starkeyi: 
LST1_120451 as a cellobiose transporter (de Ruijter et al. 
2020) and LST1_205437 as a co-transporter for glucose 
and xylose (Kuanyshev et  al. 2021). Another study 
constructed the regulatory network of triacylglycerol 
(TAG) biosynthesis in L. starkeyi using metabolic profiling 
under nitrogen limiting conditions (Aburatani et al. 2020). 
Multiple transformation protocols have been established for 
the genetic engineering of L. starkeyi (Calvey et al. 2014; 
Dai et al. 2017; Lin et al. 2017; Takaku et al. 2020b), and 
heterologous gene expression has been realized (Oguro 
et al. 2017; Wang et al. 2016), enabling L. starkeyi to serve 
as a promising oleaginous yeast for chemical and fuel 
production.

In this work, we have systematically evaluated the 
growth of L. starkeyi NRRL Y-11557 on the plant-based 
sugars: glucose, xylose, and cellobiose. We performed 
transcriptomic and metabolomic analyses to better 
understand the underlying mechanisms of sugar uptake 
by this yeast. This work reports the different pathways 
activated during growth on these sugars based on the 
genome-wide gene expression differences. In addition, it 
also refines the gene annotation information of L. starkeyi 
NRRL Y-11557.

Materials and methods

Strains, media, and culture conditions

L. starkeyi NRRL Y-11557 (DSM 70,295; sourced from 
DSMZ—German Collection of Microorganisms and Cell 
Cultures, Braunschweig, Germany) was grown on YPD 
medium (10 g/L yeast extract, 20 g/L peptone, and 20 g/L 
glucose) at 30 °C for routine culture. YPX medium (10 g/L 
yeast extract, 20 g/L peptone, and 20 g/L xylose), YPC 
medium (10 g/L yeast extract, 20 g/L peptone, and 20 g/L 
cellobiose), and YPD medium were used for transcrip-
tomic and metabolomic analysis.

HPLC analysis of extracellular metabolites

Yeast growth (OD600) was measured using a spectro-
photometer (Biomate 5, Thermo Fischer, Waltham, MA, 
USA). Extracellular metabolites such as glucose, xylose, 
cellobiose, glycerol, acetate, and ethanol were measured 
by HPLC (Agilent Technologies 1200 Series, Santa Clara, 
CA, USA) with a RezexTMROA-Organic Acid H + (8%) 
column (Phenomenex Inc., Torrance, CA, USA) and a 
refractive index detector (RID). The column was eluted 
with 0.005 N  H2SO4 at a 0.6 mL/min flow rate at 50 °C.

RNA sequencing analysis

A single colony from a YPD agar plate was inoculated 
into YPD liquid medium to obtain L. starkeyi seed 
cultures. Seed cultures were then used to inoculate 50 mL 
YPD, YPX, and YPC medium in 250 mL baffled shake 
flasks, with a starting OD600 of 1. The cells were then 
grown at 250 rpm, 30 °C. The growth was monitored by 
measuring OD600 and sugar concentration. The samples 
for transcriptomics analysis were withdrawn at 30 h for 
YPD, YPX, and 52 h for YPC, as shown in Fig. 1. The 
samples were collected and washed using cold  ddH2O. 
Total RNA was extracted using RNeasy Mini Kit (Qiagen, 
Hilden, Germany) and then treated with DNA-free DNase 
using the TURBO DNA-free kit (Ambion, Austin, TX, 
USA) to remove genomic DNA. The quality of RNA was 
confirmed by agarose gel electrophoresis and bioanalyser, 
DNA gel and Nanodrop. The stranded RNAseq libraries 
were prepared with Illumina’s TruSeq Stranded RNA 
Sample Prep kit. The libraries were pooled in equimolar 
concentration and sequenced for 101 cycles from each 
single end of the fragments on a HiSeq2500 (Illumina, 
San Diego, CA, USA). Fastq files were generated and 
demultiplexed with the bcl2fastq v1.8.4 Conversion 
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Software (Illumina, San Diego, CA, USA). Raw 
sequencing reads are available at NCBI (BioProject ID: 
PRJNA808049).

RNA sequencing resulted in 9 samples with 13–19 mil-
lion reads. The sequencing analysis was conducted using 
an in-house pipeline, as previously described (Chong et al. 
2019; Jagtap et al. 2021). Adaptor sequences and low-qual-
ity reads were trimmed and analyzed using Trimmomatic 
(Bolger et al. 2014) and FastQC (Andrews et al. 2012). 
Reads were mapped to the L. starkeyi NRRL Y-11557 
reference genome (NCBI GenBank assembly accession: 
GCA_001661325.1) (Riley et al. 2016) with STAR ver-
sion 2.5.3a (Dobin et al. 2013). Read counts were cal-
culated using featureCounts from the Subread package, 
version 1.5.2 (Liao et al. 2014). Differential expression 
analysis was performed on the reads counts in R v4.0.5 (R 
Core Team, 2021) using edgeR v3.32.1 and limma v3.46.0 
(Ritchie et al. 2015; Robinson et al. 2010). Graphical rep-
resentation of expression data was constructed using R 
packages: PCAtools v2.2.0 (Blighe and Lun 2021), gplots 
v3.1.1 (Warnes et al. 2011), and Glimma v2.0.0 (Su et al. 
2017). Functional annotation of L. starkeyi was obtained 
from DOE Joint Genome Institute website Mycocosm 
(Grigoriev et al. 2014). Data analysis scripts, along with 
the results, can be downloaded from the following link: 
https:// github. com/ raogr oupui uc/ lipo1 1557_ growth.

Pairwise enrichment analysis was performed using 
GSEA (Subramanian et al. 2005). Briefly, the KEGG and 
GO annotation files downloaded from JGI Mycocosm 
(Grigoriev et al. 2014) were reformatted to the GSEA 
guidelines using Python. All parameters were set to 
default in GSEA, except “Permutation Type” was set to 
“gene_set.” Enrichment analysis was performed separately 
for different annotation classes (GO: biological process, 
molecular function, and cellular component and KEGG: 
pathways and pathway class) and visualized using 
Cytoscape v3.8.2 (Shannon et  al. 2003). DeepLoc-1.0 

was used to predict the subcellular localization of 
proteins, reported in Supplementary Dataset S1 (Almagro 
Armenteros et al. 2017).

Metabolomics analysis

Yeast cells grown in YPD, YPX, and YPC were collected 
during exponential phase and vacuum filtered using Vac-Man 
Laboratory Vacuum Manifold (Promega, Madison, WI, USA) 
assembled with a nylon membrane filter (pore size, 0.45 μm; 
diameter, 13 mm; Whatman, Piscataway, NJ, USA) and a 
filter holder (Millipore, Billerica, MA, USA). The filtered 
cell culture was washed with 2.5 mL of prechilled distilled 
water. The entire process of fast filtration was completed 
within 1 min as previously described (Jagtap et al. 2021; Yun 
et al. 2018). The filter membrane containing the washed cells 
was quickly mixed with 1 mL prechilled acetonitrile–water 
mixture (1:1, v/v) and 100 µL of glass beads. The mixture 
was vortexed for 3 min to disrupt cell membranes, allowing 
extraction of intracellular metabolites. The extraction 
mixture was then centrifuged at 16,100 × g for 3 min at 4 °C, 
and 0.8 mL of the supernatant containing the intracellular 
metabolites was dried in a speed vacuum concentrator for 6 h.

Before GC/MS analysis, the samples were derivatized 
by methoxyamination and trimethylsilylation, as previously 
described (Jagtap et al. 2019; Liu et al. 2021). For GC/MS, 
the derivatized metabolite samples were applied to an Agilent 
7890A GC/5975C MSD system (Agilent Technologies, 
Santa Clara, CA, USA) equipped with an RTX-5Sil MS 
capillary column (30 m × 0.25 mm, 0.25 µm film thickness: 
Restek, Bellefonte, PA, USA) and an additional 10-m-long 
integrated guard column. One microliter of the derivatized 
sample was injected into the GC inlet in splitless mode. The 
oven temperature was initially set to 150 °C for 1 min, after 
which the temperature was increased to 330 °C at 20 °C/min, 
where it was held for 5 min. The mass spectra were recorded 
in a scan range 85–500 m/z at an electron impact of 70 eV, 

Fig. 1  Growth profiles of L. starkeyi NRRL Y-11557. Growth on 
20 g/L of glucose (a), xylose (b), and cellobiose (c) in rich medium. 
Sugar concentration is denoted using the blue squares and plotted on 

the left y-axis. Optical density  (OD600) is denoted using the red cir-
cles and plotted on the right y-axis
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and the temperatures of the ion source and transfer line were 
230 and 280 °C, respectively.

The raw data obtained from the GC–MS analysis were 
processed using an automated mass spectral deconvolution 
and identification system (AMDIS) software for peak detec-
tion and deconvolution of mass spectra. The processed data 
were uploaded to SpectConnect (http:// spect conne ct. mit. 
edu) for peak alignment and generation of the data matrix 
with the Golm Metabolome Database mass spectral refer-
ence library (Kopka et al. 2005). The normalized abundance 
values for each metabolite were obtained by dividing peak 
intensity with dry cell weight. For statistical analysis, such 
as principal component analysis (PCA) and clustering analy-
sis (represented as a heatmap), Statistica (version 7.1; Stat-
Soft, Tulsa, OK, USA), MetaboAnalyst, and MultiExperi-
ment Viewer software were used (Chong et al. 2019; Howe 
et al. 2011). In addition, GraphPad Prism 6 (GraphPad, San 
Diego, CA, USA) was used for plotting bar graphs.

Results

Growth and utilization of different substrates

The hydrolysis of lignocellulosic biomass releases monosac-
charide and disaccharide sugars, principally in the form of 
glucose, xylose, and cellobiose (Xu and Li 2017). L. star-
keyi is an oleaginous yeast capable of utilizing these lig-
nocellulosic sugars. In this work, we test the growth of L. 
starkeyi NRRL Y-11557 on glucose, xylose, and cellobiose. 
L. starkeyi was grown on yeast extract and peptone (YP) 
medium containing one of the following sugars: glucose 
(YPD), xylose (YPX), and cellobiose (YPC). Growth in 
YP medium leads to higher growth and cell mass. It also, 
however, adds addition proteins and complex sugars to the 
media. The results presented here represent co-utilization of 
proteins from YP media and the supplemented sugars (Nan-
cib et al. 1991). Figure 1 shows the growth and substrate 
utilization of L. starkeyi on the different sugars. Growth on 
the three sugars led to similar final cell densities. However, 
we observed differences in sugar utilization. The cells ulti-
mately utilized 20 g/L glucose and xylose in 48 h, whereas 
consumption of 20 g/L cellobiose was slower and took 84 h 
of growth. L. starkeyi consumed glucose marginally faster 
than xylose, which is evident from the time point for 50% 
sugar utilization. The cells consumed 10 g/L of glucose, 
xylose, and cellobiose in 28 h, 32 h, and 56 h, respectively.

Identification of genes associated with substrate 
utilization

We used whole-genome RNA sequencing to analyze the 
growth of L. starkeyi on the three sugars. RNA was extracted 

approximately at the time point for 50% sugar utilization, 
with 3 biological replicates for each condition (30 h for 
glucose and xylose, and 52 h for cellobiose). We chose the 
mid-point of sugar utilization in each case to capture the 
gene expression profiles for sugar uptake and metabolism. 
The sequencing resulted in an average of 16.3 million reads 
across 9 samples. More than 85% of reads were mapped to 
a unique location in the reference genome (NCBI GenBank 
assembly accession: GCA_001661325.1) (Supplementary 
Fig. S1) (Riley et al. 2016). The different clusters on the 
principal component analysis (PCA) plot show the distinct 
gene expression profiles of the three sugars (Fig. 2a). PC1 
axis, representing 70% variation, highlights the difference 
between growth on glucose and cellobiose, whereas PC2 
axis, which represents 22% variation, distinguished the 
growth on xylose from the other two sugars.

We chose glucose as a control to compare the differences 
in gene expression profiles of different sugars for further 
analysis. During the growth on cellobiose compared to glu-
cose, expression of 851 genes was significantly increased, 
and expression of another 374 genes was significantly 
decreased (Supplementary Fig. S2a). During growth on 
xylose compared to glucose, expression of 392 genes was 
significantly increased and 120 genes was significantly 
decreased (Supplementary Fig. S2b). Fold change > 2 and 
adjusted p value < 0.05 were considered significant for com-
parative gene expression analysis. These numbers are in line 
with the clustering trend on the PCA plot. A complete list 
of differential gene expression of all genes in L. starkeyi is 
provided in Supplementary Dataset S1.

To further investigate the differences in global gene 
expression profiles of these sugars, we performed gene set 
enrichment analysis (GSEA) using KEGG annotations. 
Differential gene expression during growth on cellobiose is 
limited to sugar uptake and metabolism, like starch metabo-
lism, pentose and glucuronate interconversion pathway, and 
galactose metabolism (Fig. 2b). On the other hand, growth 
on xylose resulted in broader changes in the central carbon 
metabolism, as noted in Fig. 2c. We note that while cellobi-
ose has a more extensive set of differentially expressed genes 
than xylose (Supplementary Fig. S2), the list of enriched 
pathways is smaller than xylose (Fig. 2b, c). This is poten-
tially because we have limited information about the gene 
annotation of those gene sets. Genes with limited annota-
tion information but significant differential expression are 
listed in the “Other genes of interest” sheet in Supplemen-
tary Dataset S1.

Comparative analysis of growth on cellobiose

We first explored cellobiose metabolism in L. starkeyi 
by comparing the gene expression on YP medium con-
taining cellobiose (YPC) versus YP medium containing 
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glucose (YPD). Figure 3a highlights the cellobiose uptake 
pathways. Cellobiose can be transported into and utilized 
by the cell in two ways. The first is the import of cel-
lobiose with the aid of a cellobiose transporter and fur-
ther hydrolysis of intracellular cellobiose into glucose by 
β-glucosidase. A recent study identified LST1_120451 as 
a cellobiose transporter (CDT1) (de Ruijter et al. 2020). 
Expression of the CDT1 gene was increased 11-fold during 
growth on cellobiose versus glucose. L. starkeyi has multi-
ple copies of genes encoding for β-glucosidase (BGL1-6), 
with the increased expression of five BGLs during growth 
on cellobiose as compared to glucose. Expression of glu-
cokinase (GLK1), the enzyme that facilities the phospho-
rylation of glucose, was increased 2.3-fold. We also used 
DeepLoc (Almagro Armenteros et al. 2017), a localiza-
tion prediction tool for eukaryotic genes, to predict the 

localization of BGL1-6. We note that BGL1 and BLG3 are 
extracellular, BGL5 and BGL6 are peroxisomal, whereas 
BGL2 and BGL4 are cytosolic. The increased expression 
of BGL3 was the highest amongst the six BGLs (1252-
fold), which alludes to the second mechanism of cello-
biose utilization. Cellobiose is hydrolyzed into glucose 
extracellularly, aided by secreted β-glucosidases, and the 
resultant glucose is transported into the cell using glucose 
transporters. Multiple membrane-localized genes, anno-
tated as predicated transporters belonging to the major 
facilitator superfamily, exhibited increased expression on 
cellobiose. However, we lack experimental validation for 
these predicted transporters. We previously tested a few 
predicted transporters for glucose uptake and found that 
LST1_205437 facilitates both glucose and xylose uptake 
(Kuanyshev et  al. 2021). Details on gene annotation, 

Fig. 2  Overview of the transcriptomics analysis. a Principal compo-
nent analysis plot generated from gene expression profiles of L. star-
keyi grown on glucose, xylose, and cellobiose. RNAseq data were 
collected in triplicates for each condition. KEGG pathway enrichment 
analysis for growth on cellobiose vs. glucose (b) and xylose vs. glu-
cose (c). The vertical axis represents the pathway category, and the 

horizontal axis represents the pathway’s enrichment score [− log(p 
value)]. Significantly enriched KEGG pathways (p < 0.05 and 
FDR < 0.25) are plotted. The data were analyzed using the GSEA tool 
and plotted in Origin (OriginLab Corporation, Northampton, MA, 
USA)
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differential gene expression, and gene localization are 
provided in Supplementary Dataset S1.

We also observed non-specific regulation in L. starkeyi 
during growth on cellobiose. This is likely due to the cells 
utilizing sugars present in the yeast extract. The effect of 
yeast extract on gene expression may be most noticeable 
on cellobiose because it is a less preferred carbon source 
than the sugar monomers. Preferential sugar uptake has also 
been reported in the yeast Spathaspora passalidarum during 
fermentation of hydrolysate containing glucose, xylose, and 
cellobiose (Long et al. 2012). Expression of hydrolase genes, 
involved in the breakdown of other oligosaccharides, was 
also increased (Fig. 3a). Nine α-glucosidase genes (MAL), 
which are involved in the breakdown of maltose, and three 
α-amylase genes (AMY), which are responsible for the break-
down of maltodextrin, and five β-fructofuranosidase genes 
(SUC) exhibited increased expression. Significant increases 
in expression were observed for the genes belonging to the 
starch and sucrose metabolism pathway of the KEGG path-
way database (Fig. 3c) (Kanehisa and Goto 2000).

We next focused on the genes involved in central carbon 
metabolism (Fig. 4). Cellobiose breaks down into glucose 

and enters glycolysis. Genes in glycolysis did not exhibit 
significant differences in expression, except for enolase 
(ENO1), whose expression decreased 2.2-fold, and fruc-
tose bisphosphatase (FBP1), whose expression increased 
2.4-fold. We also noticed decreased expression of both the 
pyruvate decarboxylases (PDC1: 2.6-fold, PDC2: 3.4-fold) 
and a 4.9-fold increase in expression of pyruvate carboxy-
lase (PYC2). However, the small change in the expression 
of these genes indicates the absence of any global shifts in 
regulation induced from growth on cellobiose. One inter-
esting result was the increased expression of multiple alde-
hyde dehydrogenases (ALD1: 20-fold, ALD4: threefold, and 
ALD5: tenfold). We also observed decreased expression of 
acetate kinase (ackA) and acetyl-CoA synthetase (ACS1). It 
is plausible that L. starkeyi accumulates a smaller pool of 

Fig. 3  Substrate utilization in L. starkeyi (a and b). Substrate uptake 
and metabolism for cellobiose (a) and xylose (b). Differential gene 
expression is reported in comparison to glucose. Upregulated genes 
(fold change > 2 and p value < 0.05) are highlighted in red and down-
regulated genes in blue. Heatmap of gene expression data in KEGG 
pathways: starch and sucrose metabolism (c) and pentose and glucu-

ronate metabolism (d). RNAseq data were collected in triplicate for 
each condition. Color key represents the z-score for each gene (nor-
malized for all growth conditions). e Intensity levels of intracellular 
metabolites profiled using GC/MS during growth on different sugars. 
The data represents the average of six independent measurements, 
and bars indicate standard deviation

Fig. 4  Differential gene expression of the central metabolic pathway 
during growth on cellobiose, reported in comparison to glucose. 
Upregulated genes are highlighted in red, and downregulated genes in 
blue. Metabolites with significantly higher abundance are highlighted 
in green, and metabolites in lower abundance in purple. Gene and 
metabolite names and supporting quantitative data are included in 
Supplementary Datasets S1 and S2

◂
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acetyl-CoA during growth on cellobiose compared to glu-
cose. This observation is in line with the decreased concen-
tration of hexadecenoic acid during growth on cellobiose 
(discussed in detail in the last subsection of results).

In the tricarboxylic acid (TCA) cycle, we observed 
increased expression of one of the three citrate synthases 
(CIT3) by 7.9-fold and fumarate reductase (FRD1) by 14.3-
fold. In addition, expression of both genes in the glyoxylate 
bypass, malate synthase (MLS1) and mitochondrial isoci-
trate lyase (ICL1), was increased 3.4-fold and sevenfold, 
respectively. Supplementary Dataset S1 lists the differential 
expression for all genes in central carbon metabolism.

Differential analysis of growth on xylose

We next analyzed xylose metabolism in L. starkeyi. Gene 
expression during growth on YP medium containing xylose 
(YPX) is compared to YPD. Overall, 392 genes were signifi-
cantly upregulated, and 120 genes were significantly down-
regulated during growth on xylose compared to glucose. The 
growth on xylose had a closer gene expression profile to 
glucose, with key differences in carbohydrate metabolism 
(Fig. 2c).

A prominent pathway for xylose utilization in eukary-
otes is the oxidoreductive pathway, also known as the XR-
XDH pathway (Fig. 3b) (Jagtap and Rao 2018a; Lee et al. 
2021). Xylose reductase (XR) reduces intracellular xylose 
to xylitol, which is further oxidized to xylulose by xylitol 
dehydrogenase (XDH) or sorbitol dehydrogenase (SOR1-6). 
The last step of the XR-XDH pathway is the phosphorylation 
of xylulose by xylulokinase (XKS), which enters the pentose 
phosphate pathway. In L. starkeyi, we found that expression 
of all genes in the XR-XDH pathway was increased. For 
instance, we noted significant increases in expression for 
XR and SOR2, which increased 30- and 302-fold, respec-
tively. In addition, expression of XKS was 27-fold increased 
as well. Increased expression was also observed in the genes 
belonging to the pentose and glucuronate interconversion 
pathway of the KEGG pathway database (Kanehisa and 
Goto 2000) (Fig. 3d). Some oleaginous yeasts have an ara-
bitol bypass (Jagtap and Rao 2018b), where the carbon flux 
from xylose is directed through arabinitol dehydrogenase 
(ARD1) and ribulokinase (RK) instead of the one-step XKS. 
Expression of ARD1 and RK was increased 2.4- and 5.4-fold, 
respectively. The extent of upregulation of these pathways in 
L. starkeyi indicates that the one-step XKS phosphorylation 
draws a higher carbon flux than the arabitol bypass.

Xylose uptake pathway converts xylose to xylulose-5P 
and ribulose-5P, which enter the pentose phosphate path-
way (Fig. 5). Few genes in pentose phosphate pathways 
exhibited increased expression in L. starkeyi, which is con-
sistent with the mechanism of xylose metabolism. Most 
notably, expression of transketolase (TKL2), transaldolase 

(TAL1,2), and ribokinase (RBK1) was increased. We also 
observed increased expression of a few genes in upper gly-
colysis, namely, glucose-6-phosphate isomerase (PGI1) and 
fructose bisphosphate (FBP1). Genes involved in glyoxylate 
bypass also exhibited increased expression during growth 
on xylose, which was also the case with cellobiose growth. 
We observed a few more similarities in the gene expression 
on xylose and cellobiose. For instance, expression of both 
fumarate reductase and citrate synthase was increased.

Measurement of intracellular metabolites

To supplement the RNA sequencing data, we used gas 
chromatography-mass spectrometry (GCMS) and measured 
changes in the concentration of intracellular metabolites. Of 
the 55 metabolites measured, significant differences were 
observed in the concentrations of 37 metabolites during 
growth on glucose, xylose, and cellobiose (Fig. 6). Signifi-
cance was evaluated using two-sample t-tests, and the cut-
off was relative metabolite concentration > 2 and adjusted 
p value < 0.05. Compared to glucose, the concentration of 
9 and 3 metabolites was higher on cellobiose and xylose, 
respectively. Whereas another 16 and 4 metabolites had a 
lower concentration in cellobiose and xylose, respectively, 
the changes in the metabolite concentrations align with those 
of differential gene expression. Metabolite concentrations 
are reported in Supplementary Dataset S2.

During growth on cellobiose, we observed a 345-fold 
increase in the concentration of intracellular cellobiose, 
which is consistent with the upregulation of a cellodextrin 
transporter (CDT1). Again, in alignment with the gene regu-
lation, metabolite concentrations in central carbon metabo-
lism exhibit mixed changes, with valine and allantoin present 
in higher concentrations during growth on cellobiose and 
others like fumarate, malate, and α-ketoglutarate are present 
in lower concentrations. An interesting result is decreased 
concentration of hexadecenoic acid, indicating a potentially 
lower intracellular pool of acetyl-CoA. We previously high-
lighted that the gene expression results also point to reduced 
production of acetyl-CoA. While this study did not focus 
on lipid production in L. starkeyi, it has been previously 
reported that L. starkeyi produces slightly lower lipid titers 
in flask cultures when grown on cellobiose, compared to 
glucose (Gong et al. 2012).

The metabolite concentrations during growth on xylose 
are in line with the gene expression results. Metabolites in 

Fig. 5  Differential gene expression of the central metabolic pathway 
during growth on xylose, reported in comparison to glucose. Upregu-
lated genes are highlighted in red, and downregulated genes in blue. 
Metabolites with significantly higher abundance are highlighted in 
green, and metabolites with lower abundance in purple. Gene and 
metabolite names and supporting quantitative data are included in 
Supplementary Datasets S1 and S2
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the xylose utilization and pentose phosphate pathways are 
in higher concentration (Fig. 6). We notice a 29-fold higher 
concentration of intracellular xylose. Only a few metabolites 
are present in lower concentrations in glycolysis and TCA 
cycle, indicating little difference in the regulation of central 
carbon metabolism between growth on xylose and glucose.

Discussion

L. starkeyi is a promising oleaginous yeast that can utilize 
a variety of plant-based substrates. It can grow on various 
hydrolysates derived from wheat straw and corn stover 
and exhibits tolerance to the aromatic inhibitors present 
in hydrolysates (Brandenburg et al. 2021; Pomraning et al. 
2019). It is also an excellent lipid producer and can store 
triacylglycerides up to 70% of its dry cell weight. While 
various studies have optimized lipid accumulation using 
different hydrolysates, a few focus on governing metabolic 
pathways and physiology.

In this work, we analyze the transcriptome and metab-
olome of L. starkeyi during growth on three plant-based 
sugars in nutrient-rich YP medium: glucose, xylose, and 
cellobiose. Cell culture samples for RNA and metabolite 
extraction were collected at the mid-point of sugar utiliza-
tion (Fig. 1). It has been previously reported that L. star-
keyi does not enter the oleaginous phase in nitrogen-rich 
conditions (Pomraning et al. 2019). We observed significant 
changes in the gene expression and metabolite concentration 
resulting from the utilization of different sugars (Figs. 2 and 
6) and mapped their gene regulation to relevant metabolic 
pathways (Figs. 3, 4, and 5).

The bulk of the differential gene expression analysis 
focuses on central carbon metabolism. Of the 8192 genes 
in L. starkeyi, 10% are upregulated and 5% are downregu-
lated during growth on cellobiose compared to glucose. On 
the other hand, growth on xylose resulted in comparatively 
lesser regulation: 5% of genes are upregulated, and another 
1.5% downregulated (Supplementary Fig. S2). However, 
we observed a reverse trend from the enrichment analysis 
(Fig. 2b, c), where more pathways were enriched during 
growth on xylose, despite lesser differential genes, compared 
to cellobiose. We suspect this is because the gene expression 
changes in cellobiose are global. Since the gene annotation 
information is limited, our analysis has elaborated on the 
differences mainly limited to the central carbon metabolism.

We also note that some genes in the L. starkeyi genome 
were incorrectly annotated. For instance, we found 86 
genes annotated incorrectly as L-arabinose isomerase in 
the KEGG annotations. Growth of L. starkeyi on L-ara-
binose was tested (Supplementary Fig. S3). L. starkeyi 
can utilize 5 g/L L-arabinose in 5 days of growth in YP 
media, which is much slower than glucose and xylose 

utilization (20 g/L in 2 days). Using bioinformatics tools 
such as BLAST and DeepLoc, we note that all 86 genes 
are predicted membrane proteins, some bound to the cell 
membrane (Supplementary Dataset S1 Sheet 2). A recent 
study found that the gene LST1_120451, marked as L-ara-
binose isomerase in the annotation, is a functional cellobi-
ose transporter (de Ruijter et al. 2020), and another gene, 
LST1_205437 is a co-transporter for glucose and xylose 
(Kuanyshev et al. 2021). The prediction models have anno-
tated most of these 86 genes as transporter proteins.

In an attempt to improve the gene annotations of the L. 
starkeyi genome, we have manually verified the annota-
tions of 190 genes, belonging to the sugar uptake pathways 
and central carbon metabolism (Supplementary Data-
set S1 Sheet 1 – Key genes). Sheets 2 and 3 have gene 
function and localization information of genes that were 
annotated incorrectly by the annotation pipelines. Differ-
ential expression and expression values for all genes in 
L. starkeyi genes are present in sheet 6 of Supplementary 
Dataset S1. Supplementary Dataset S3 contains a list of 
orthologous genes between S. cerevisiae and L. starkeyi, 
generated using the orthology tool, InParanoid (O'Brien 
et al. 2005).

During growth on cellobiose, we saw upregulation of both 
cytosolic and secreted β-glucosidases, along with upregula-
tion of a cellobiose transporter, CDT1 (Fig. 3a). This is in 
line with cellobiose utilization in other fungi like Neuros-
pora crassa (Ha et al. 2011). We also note non-specific regu-
lation during growth on cellobiose. Genes involved in the 
hydrolysis of other oligosaccharides and polysaccharides, 
like maltose, sucrose, maltodextrin, and β-glucan, are also 
upregulated. Uptake of xylose in L. starkeyi is also in line 
with other xylose assimilating yeasts like Scheffersomyces 
stipitis (Kwak et al. 2019). Xylose is converted to xylulose 
through the oxidoreductase pathway (XR, XDH) and chan-
neled into the pentose phosphate pathway primarily through 
xylulokinase (XKS). All three genes, XR, XDH, and XKS, 
exhibited increased expression during growth on xylose. 
Pentose phosphate pathway and upper glycolysis are also 
partially upregulated. We also observed increased expres-
sion of the genes in the glyoxylate bypass (MLS1 and ICL1), 
phosphoenolpyruvate carboxylase (PCK1), and fructose bis-
phosphate (FBP1) during growth on both xylose and cel-
lobiose, indicating the upregulation of gluconeogenesis in 
these growth conditions. In line with these results, we also 
report the increased expression of genes in the biosynthesis 

Fig. 6  Overview of the metabolomics analysis. Heatmap of intracel-
lular metabolites from xylose and cellobiose uptake pathways (a), 
glycolysis (b), pentose phosphate pathway (c), TCA cycle (d), and 
lipid biosynthesis pathway (e). All experiments were performed with 
six replicates. Color key represents the z-score for each metabolite 
(normalized across all 18 samples)
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of the secondary metabolites like glycogen synthase (GSY1), 
glycogenin glucosyltransferase (GLG1), and myo-inositol 
dehydrogenase (idhA).

These results improve our understanding of glucose, 
xylose, and cellobiose assimilation by L. starkeyi NRRL 
Y-11557 and provide a global overview of gene expression 
during growth on these plant-based sugars. The associ-
ated data sets from the transcriptomics and bioinformatics 
analysis present potentially valuable information to help 
guide the metabolic engineering of L. starkeyi and assist in 
developing regulatory networks and genome-scale models.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00253- 022- 12084-w.
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