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Abstract 
Biofilm formation on abiotic surfaces has become a major public health concern because of the serious problems they 
can cause in various fields. Biofilm cells are extremely resistant to stressful conditions, because of their complex struc-
ture impedes antimicrobial penetration to deep-seated cells. The increased resistance of biofilm to currently applied con-
trol strategies underscores the urgent need for new alternative and/or supplemental eradication approaches. The combina-
tion of two or more methods, known as Hurdle technology, offers an excellent option for the highly effective control of 
biofilms. In this perspective, the use of functional enzymes combined with biosourced antimicrobial such as essential 
oil (EO) is a promising alternative anti-biofilm approach. However, these natural antibiofilm agents can be damaged by 
severe environmental conditions and lose their activity. The microencapsulation of enzymes and EOs is a promising new 
technology for enhancing their stability and improving their biological activity. This review article highlights the prob-
lems related to biofilm in various fields, and the use of encapsulated enzymes with essential oils as antibiofilm agents. 

Key points  
• Problems associated with biofilms in the food and medical sectors and their subsequent risks on health and food quality.
• Hurdle technology using enzymes and essential oils is a promising strategy for an efficient biofilms control.
• The microencapsulation of enzymes and essential oils ensures their stability and improves their biological activities.
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Introduction

Pathogenic bacterial contaminations of abiotic surfaces in 
food and medical sectors represent a serious public health 
problem, as they can lead to severe human infections world-
wide (Abdallah et al. 2014; Khelissa et al. 2017). Foodborne 
infections generally occur after consumption of food and 
drink contaminated with pathogens. These contaminations 

can occur during any step of food processing, through food 
handlers and contaminated food contact surfaces and equip-
ment (Verraes et al. 2013). According to the annual report 
of the Centers for Disease Control and Prevention (CDC), 
841 foodborne disease outbreaks were reported in the USA 
in 2017, resulting in 14,481 illnesses, 827 hospitalizations, 
20 deaths, and 14 food product recalls (CDC 2019). The 
World Health Organization (WHO) reported that an esti-
mated 600 million people – nearly one in ten people world-
wide – become ill from consuming contaminated food and 
420,000 die each year of which 30% occur among children 
under 5 years old. In addition, 110 billion US$ are lost annu-
ally in medical expenses and productivity due to unsafe 
food in low- and middle-income countries (WHO 2020). 
In 2019, 1,783 foodborne illnesses were reported in France, 
affecting 15,641 people, of which 609 (4%) were hospi-
talized (hospitalization or emergency room visit) and 12 
(0.08%) died (SPF 2021). Healthcare-associated infections 
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(HCAIs) are the most common adverse event in the health-
care field worldwide. These infections can occur in all types 
of healthcare settings through healthcare personnel’s hands 
and contaminated devices and surfaces (catheters, surgi-
cal instruments, endoscopes, respiratory systems, needles, 
etc.) (Weber et al. 2013; Ssekitoleko et al. 2020). Accord-
ing to the US Centers for Disease Control and Prevention, 
almost 1.7 million hospitalized patients contract HCAIs each 
year while treated for other health problems, and more than 
98,000 patients (one in 17) die from them (Klevens et al. 
2007). In 2017, the National Point Prevalence Survey (PPS) 
on HCAI in France showed that one in twenty patients hos-
pitalized in a healthcare facility were infected. The four main 
sites of HCAI, accounting for 71.5% of documented infec-
tious sites – urinary tract infections (28.5%), surgical site 
infections (15.9%), pneumonia (15.6%), and bloodstream 
infections (11.4%) – were identical in 2012 and 2017 (SPF 
2019).

In natural and artificial environments, bacteria tend to 
live attached to the abiotic surfaces and to develop a com-
plex structure called biofilm. It has been found that approxi-
mately 40–80% of the bacterial cells on earth are able to 
form biofilms (Flemming and Wuertz 2019). Biofilms, 
unlike planktonic cells, are a self-protected grown clus-
ter of bacteria. They are defined as a structured microbial 
community, adhering to a surface, to interfaces and to each 
other, and embedded in a self-produced polymer matrix 
that offers a highly protective environment against biocide 
attack (Donlan and Costerton 2002; Karygianni et al. 2020). 
The formation of biofilms poses serious problems in many 
fields due to the potential increased resistance to chemical 
biocides, antibiotics, and UV radiation; increased secretion 
of secondary metabolic products; and high gene exchange 
rates (de Carvalho 2017; Xu et al. 2017; Gebreyohannes 
et al. 2019; Rodrigues and Černáková 2020). Several studies 
have shown that industrial ecosystems are favorable areas 
for bacterial growth and biofilm formation (Coughlan et al. 
2016). In a hospital environment, biofilms have been found 
to survive and persist on many medical device surfaces 
and on the tissue of patients, resulting in several persistent 
infections (Dongari-Bagtzoglou 2008; Percival et al. 2015). 
Thus, the control of biofilms remains the most important 
task for many industries to reduce the microbiological risk 
associated with its persistence in these areas. Several strate-
gies have recently been proposed to combat biofilms, which 
include chemical removal such as detergents, biocides, and 
surfactants; and mechanical removal such as thawing, freez-
ing, sonication, and scraping (de Carvalho 2007; Zea et al. 
2020). However, complete removal of biofilm by the sin-
gle use of these methods has been shown to be difficult to 
achieve due to the high protection of biofilm cells by EPS 
that act as an initial protective barrier to the biofilm cells and 
make biofilm 10–1,000 times more resistant to antimicrobial 

agents than the planktonic cells (Singh et al. 2017; Tan et al. 
2018). In addition, although the sanitation is one of the most 
widely used and essential techniques to control biofilm in 
the industries, it is important to note that the application of 
these sanitizers for many decades could be a major cause of 
the emergence of antibiotic resistance in bacteria and their 
spread to pathogens, which has led to the search for new 
natural antimicrobial agents to overcome these issues (Bay-
oumi et al. 2012; al Kassaa et al. 2021).

The combined use of two or more hurdle methods to con-
trol biofilm (Hurdle technology) is a potentially effective 
strategy for an efficient biofilm cell removal from abiotic 
surfaces, as they would attack microorganisms in different 
ways (Khan et al. 2017). The synergistic effect of reducing 
bacterial contamination from abiotic surfaces using Hurdle 
technology has been successfully demonstrated in numerous 
studies (Lequette et al. 2010; Pechaud et al. 2012; Ban and 
Kang 2016; Lim et al. 2017, 2019; Jung et al. 2018; Hus-
sain et al. 2019). In this way, the combination of enzymes 
with bio-based antimicrobials will be a promising method 
for controlling biofilm in such a way that the enzymes would 
destabilize and destroy the biofilm matrix, so that bacteria 
protected by the matrix would be eliminated more effectively 
by the antimicrobials. It’s now established that enzymes con-
trol and eliminate biofilms owing to their ability to degrade 
major components of the biofilm matrix, promote cell lysis, 
induce biofilm disruption, and disrupt cell-to-cell signals 
that govern biofilm maintenance and formation (Mohamed 
et al. 2018). Essential oils (EOs), which are aromatic oily liq-
uids derived from plant materials are known as natural and 
safe bio-based biocides for synthetic drugs and antiseptics 
and have been widely tested in vitro against a broad range 
of pathogenic bacteria (Oulkheir et al. 2017). In addition 
to their antibacterial activity, numerous studies have dem-
onstrated their anti-biofilm activity by removing and pre-
venting biofilm formation (Vázquez-Sánchez et al. 2015; Oh 
et al. 2017; Engel et al. 2017; Mohamed et al. 2018). The use 
of EOs and their application have to face many challenges 
such as their volatility, stability issues, and their poor water 
solubility which may decrease their activity. It is therefore 
necessary to find out a new strategy, such as encapsulating 
these molecules in different material supports, to effectively 
improve their activity. Microencapsulation of EOs is a good 
tool to increase their stability, decrease their water immis-
cibility, control their release, and limit the physicochemical 
interactions between these molecules and the biofilm matrix 
components. These interactions are often associated with a 
decrease in the efficacy of the antibacterial molecules (Cui 
et al. 2016a; El Asbahani et al. 2015; Engel et al. 2017).

In this regard, this review will focus on the various fac-
tors that influence the adhesion of bacteria and the forma-
tion of biofilms on abiotic surfaces, as well as the biofilm 
resistance towards disinfectants. Moreover, the problems 
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associated with biofilms in food and medical sectors, and 
the different strategies for biofilm prevention and eradication 
will be highlighted, in addition to the effectiveness of hurdle 
technology in removing biofilms using different bio-based 
molecules. Finally, the place of the microencapsulation as a 
tool for the formulation of bio-based biocides to fight biofilm 
will be discussed.

What is a bacterial biofilm and how is it 
formed?

Biofilms are generally defined as microbial populations that 
are irreversibly associated (cannot be removed by mild rins-
ing) with a surface and wrapped in a self-produced EPS 
matrix (Donlan 2002; Hall-Stoodley and Stoodley 2009). 
Microorganisms structured within biofilm differ from their 
planktonic counterparts by the transcribed genes. Bacteria 
are able to form biofilms when the growth conditions are 
suitable on different abiotic surfaces encountered in health-
care, food industries, industrial or potable water systems, 
and natural aquatic systems (Abdallah et al. 2014).

Biofilm formation steps

The process of biofilm formation is complex and several 
factors may be involved. Bacterial cell adhesion and biofilm 
formation are significantly linked to the substratum proper-
ties such as hydrophobicity, electric charge, and rugosity. 
In addition, cell surface and the presence of pili, flagella, 
glycocalyx, or fimbriae are important for cell adhesion and 
biofilm formation (Donlan 2001; Roy et al. 2017; Hage et al. 
2021). A bacterial biofilm can be structured in four com-
mon stages (Fig. 1). In the first stage, the bacterial cells 
bind to a biotic or abiotic surface (1); then the cells cluster 

multiply and form microcolonies (2) followed by the forma-
tion mature biofilm (3). The last stage is the detachment and 
dispersion of bacterial cells in the surrounding environment 
(4) (Abdallah et al. 2014; Khelissa et al. 2017).

The initial stage is governed by the reversible interac-
tions mediated by the non-specific Lifshitz-van der Waals, 
Lewis acid–base, and electrostatic forces (Kaplan 2010) and 
requires the presence of specific adhesins located on the 
host (e.g., fimbriae, flagella) (1) (Rosan and Lamont 2000; 
Abdallah et al. 2014). In the second step, the adherent bac-
teria synthesize exopolysaccharide proteins and other com-
ponents of the polymer matrix that maintain the bacterial 
cells together in a mass and tightly fix the bacterial mass to 
the surface and contribute to the irreversible adhesion (2). 
In the third stage, the biofilm becomes mature and able to 
express different genes and contributes to the antimicrobial 
resistance of the biofilm (3) (Kaplan 2010; Mah and O’Toole 
2001; Chakraborty and Kumar 2019). The final biofilm for-
mation step is the dislocation of cells from the biofilm and 
their dispersion in the environment (4). Cell detachment can 
be triggered by a variety of factors such as mechanical dis-
turbances, polymer matrix enzymatic degradation, surfactant 
production, and exopolysaccharide release (Kaplan 2010). 
These cells have the ability to adhere to new surfaces and 
re-form a biofilm and may contribute to biological disper-
sion, bacterial survival, and disease transmission that are 
known as biofilm lifecycle. As at other stages of biofilm 
development, bacteria respond to multiple environmental 
signals (e.g., nutrient concentrations), signal transduction 
pathways, effectors, and bacterial cell density, a phenom-
enon better known as quorum sensing (QS) (Karatan and 
Watnick 2009; Liu et al. 2019). QS is the regulation of gene 
expression in the response of cell density by the liberation 
of chemical signal molecules called autoinducers (acylated 
homoserine lactones as autoinducers of Gram-negative 

Fig. 1  Different stages of bio-
film formation
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bacteria and oligo-peptides as autoinducers of Gram-positive 
bacteria) that allows the differentiation of bacterial biofilm. 
When these molecules attain a minimal threshold stimu-
latory concentration, the activation or repression of new 
genes occurs (Zhao et al. 2020). Thus, QS allows bacteria 
to display many responses that benefit the population, such 
as enhanced accessibility to nutrients and more favorable 
environment and promotes action against competing bacteria 
and environmental stresses (Zhao et al. 2020).

Extracellular polymeric substance, composition, 
and functions

A biofilm is composed of attached microbial cells encased 
within a matrix of EPS. EPS was initially designated as 
“extracellular polysaccharides,” but it has been renamed 
as “extracellular polymeric substance” because it can also 
contain many other substances (Flemming and Wingender 
2010). EPS may represent 50 to 90% of the total organic 
carbon of biofilms (Evans 2014). The composition of the 
matrix varies according to the bacterial species, strains, and 
growing conditions; it is highly hydrated (can contain up 
to 97% water) and is mainly composed of proteins, poly-
saccharides, and extracellular DNA (eDNA) (Fulaz et al. 
2019). Biofilm matrix can also contain surfactants, lipids, 
glycolipids, extracellular enzymes, and cations (Karatan and 
Watnick 2009; Flemming and Wingender 2010; Karygianni 
et al. 2020). Most of the today knowledge has been generated 
by using model organisms forming biofilms, in particular 
Staphylococcus aureus, Escherichia coli, Bacillus subtilis, 
Pseudomonas aeruginosa, Candida albicans, Streptococ-
cus mutans, and Vibrio cholerae (Fig. 2). Several advanced 
reviews have detailed the functional role and composition 
of EPS in various matrices formed by these organisms as 
biofilms of a single species (Zarnowski et al. 2014; Peter-
son et al. 2015; Hobley et al. 2015; Flemming et al. 2016; 
Dragoš and Kovács 2017; Bowen et al. 2018).

EPS, which has been termed as the “dark matter of bio-
films,” may provide a potential number of challenges and 
play a very crucial role in adhesion, aggregation, cohesion, 
structural integrity, and protective barrier of biofilm (Fulaz 
et al. 2019). The EPS matrix provides key architectural and 
protective support for microbial communities in the biofilm, 
blocking access of xenobiotic and antimicrobials to biofilm 
cells and providing protection against environmental stresses 
such as pH change, UV radiation, desiccation, and osmotic 
shock (Al Kassaa et al. 2019; Karygianni et al. 2020).

The polysaccharides play a fundamental role in the 
biofilm formation and antibiotic tolerance and as a viru-
lence factor in opportunistic pathogens. Examples of the 
most common polysaccharides are alginate, cellulose, 
polysaccharide synthesis locus (PSL), and pellicle (PEL) 

polysaccharides Pel, Psl, and the staphylococcal polysac-
charide intercellular adhesin (PIA) (Fulaz et  al. 2019; 
Bundalovic-Torma et al. 2020). The proteins play also an 
essential role in biofilm adhesion and cohesion and, in some 
cases, are found in higher proportions than polysaccharides 
(Karygianni et al. 2020). The common proteins presented 
in the biofilm matrix are amyloid fibers (Fulaz et al. 2019). 
Furthermore, previous studies have shown that eDNA plays 
a significant role in the structural stability, formation, and 
integrity of the bacterial biofilms (Devaraj et al. 2019) 
(Table 1).

Biofilm architecture

Although some structural properties of biofilm can gen-
erally be regarded as universal, it has been reported that 
each biofilm community is unique (Tolker-Nielsen and 
Molin 2000). The morphology of biofilm can be rough 
smooth and flat or filamentous; furthermore, the biofilm 
can change on its degree of porosity, with mushroom-
like macrocolonies surrounded by voids filled with water 
(Flemming and Wingender 2010). The concept of this 
diversity of structure is descriptive not only for mixed 
crop biofilms (environmental biofilms) but also for pure 
crop biofilms common to medical devices and those 
associated with infectious diseases (Donlan 2002). Sev-
eral parameters can explain this heterogeneity, including 
the surface properties (e.g., hydrophobicity, roughness, 
electrochemical properties), hydrodynamic forces (e.g., 
mass transfer, shear forces, frictional drag, form drag), 
the presence of nutrients or inhibitors (e.g., concentra-
tion, antimicrobial properties, mass transfer properties, 
reactivity), and the consortia and ecological diversity of 
the biofilm (e.g., cell signal, presence of morphotypes, 
motility, food chains, trophic structure) (Stoodley et al. 
1997). In addition, the structured communities of bio-
film depend highly on the quantity, characteristic, and the 
three-dimensional structure (the dense areas, pores, and 
channels) of the EPS (Sutherland 2001).

Factors influencing bacterial cells adhesion

The attachment of a cell to a substrate is called adhesion, 
and the attachment of one cell to another is called cohesion 
(Garrett et al. 2008). For the first steps of adhesion, the 
interactions between the conditional layer and the substrate 
strongly influence the growth of cellular communities; this 
layer can be composed of many organic or inorganic parti-
cles and modifies the substrates which facilitate the acces-
sibility to bacteria. The biofilm adheres in a reversible or 
irreversible manner. Factors such as available energy, sur-
face functionality, bacterial orientation, temperature, and 

2314 Applied Microbiology and Biotechnology (2022) 106:2311–2335



1 3

pressure conditions have a significant effect on the initial 
adhesion of bacterial cells. Then if the repellent forces are 
higher than the attraction forces, the bacteria detach from 
the surface; this is more apt to occur before a substrate is 
conditioned (Garrett et al. 2008). If the physical appendages 
of bacteria (flagella, fimbriae, and pili) overcome the repel-
lent physical forces of the electric double layer, a number of 
reversibly adsorbed cells remain immobilized and become 
irreversibly adsorbed (Weger et al. 1987). Some research 
has shown that microbial adhesion is highly dependent on 
the hydrophobic-hydrophilic and topography properties of 
interacting surfaces (Liu et al. 2004; Hage et al. 2021).

Factors of biofilm resistance

There are different factors related to the physiological and 
structural characteristics of a biofilm that influence its resist-
ance to disinfectants. Biofilm can be protected against anti-
microbials by the limitation of diffusion or reaction of dis-
infectants; thus, due to the presence of EPS and a multiple 
layer of cells that can form a complex and dense structure, 
biocides have a difficult entering and achieving the inner 
layers, which affects their effectiveness (Bridier et al. 2011). 
The organic matter present in the matrix such as proteins, 
nucleic acids, or carbohydrates can deeply interfere with 

Fig. 2  Composition of extracellular polymeric substances (EPS) in 
the biofilms of some model organisms, epsA-epsO operon-encoded 
exopolysaccharide, poly-γ-glutamate (γ-PGA), polysaccharide inter-
cellular adhesin (PIA), poly-β(1–6)-N-acetylglucosamine (PNAG), 
Vibrio cholerae Vibrio polysaccharide (VPS), biofilm surface layer 
protein (BslA), translocation-dependent antimicrobial spore compo-
nent (TasA)/TasA anchoring and assembly protein (TapA), fibronec-
tin-binding proteins (FnBPs), staphylococcal protein A (SpA), 
Staphylococcus aureus surface protein G (SasG), biofilm-associated 
protein (BAP) extracellular, phenol-soluble modulins (PSMs), glu-
cosyltransferases (Gtf), fructosyltransferases (Ftf), glucan binding 

proteins (GbpA, GbpB, GbpC), type IV pilins (T4P), lectins (LecA/
LecB), biofilm-associated protein (Bap1), rugosity and biofilm modu-
lators (RbmA/RbmC), mannose-sensitive hemagglutinin (MSHA) 
pili, agglutinin-like sequence protein (Als), hyphal wall proteins 
(Hwp) cell wall, heat-shock proteins (Hsp70). Further details on EPS 
components, including those from other microbes (such as Escheri-
chia coli), are available from the following references (Mann and 
Wozniak 2012; Vlamakis et al. 2013; Zarnowski et al. 2014; Teschler 
et al. 2015; Hobley et al. 2015; Ibáñez de Aldecoa et al. 2017; Dragoš 
and Kovács 2017; Cochet and Peri 2017; Bowen et al. 2018; Nett and 
Andes 2020)
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the efficiency of disinfectants (Banach et al. 2015). The 
phenotypic adaptation of biofilm cells to nonlethal doses of 
disinfectants can also lead to biofilm resistance toward bio-
cides. In addition, due to the limited penetration of antimi-
crobials and the low levels of exposition of the biofilm deep 
layers to the antimicrobial agent, the biofilm can develop 
adaptive responses to sublethal concentrations of the dis-
infectant (Bridier et al. 2011). Moreover, the physiologi-
cal adaptations of biofilm cells, such as the expression of 
specific genes according to the environmental conditions of 
biofilms, allow the increase of the biofilm resistance. Many 
studies confirmed this adaptation by the comparison of gene 
expression profiles, and proteomic analyses of planktonic 
and biofilm states in different species (Sauer 2003; White-
ley et al. 2001; Abdallah et al. 2014), such as the expres-
sion of specific genes encoding for changes in membrane 
composition (Wolska et al. 2016), efflux pump (Soto 2013), 
and enzyme production. It has been reported that in Pseu-
domonas aeruginosa biofilms, quorum sensing is involved in 
the expression of catalase and superoxide dismutase genes. 
These enzymes are involved in protection against oxidative 
stress (Ahmed et al. 2019). Biofilm can also develop resist-
ance by mutations and gene transfers (plasmids, transposons, 
or integrons) that provide cell-specific characteristic such as 
metabolic capabilities, virulence expression, and antimicro-
bial resistance (Bridier et al. 2011). Moreover, multispecies 
biofilms can protect against antimicrobials when present in 
complex communities, where interactions between species 
can lead to the formation of a large complex matrix, protec-
tion of members of bacterial communities, and expanded 
gene pool with more efficient passive resistance, quorum 
sensing systems, DNA sharing, metabolic cooperation, and 
many other synergies (Elias and Banin 2012; Wolcott et al. 
2013). For instance, in vitro studies conducted on polymi-
crobial biofilms including Staphylococcus epidermidis and 
Candida albicans showed an altered susceptibility of each 
species to antimicrobial drugs due to their mutual interac-
tions: the EPS of Staphylococcus epidermidis inhibited the 
penetration of fluconazole, while Candida albicans appeared 
to protect Staphylococcus epidermidis from vancomycin 
(Adam et al. 2002).

Microbiological hazard associated with bacterial 
biofilms

Bacteria are capable of colonizing and forming biofilms on 
almost any type of surface, including synthetic and natural 
surfaces (Hall-Stoodley et al. 2004; Sweet et al. 2011). Bac-
terial structured biofilms improve the ability of bacteria to 
survive under stress and cause serious problems in many 
sectors such as industries, water systems, medical facili-
ties, and public health (Khelissa et al. 2017; Jamal et al. 
2018; Di Pippo et al. 2018; Avila-Novoa et al. 2018). The 

detrimental effects of biofilms on the human society are 
therefore multiple.

The high capacity of bacteria to adhere and form bio-
films on abiotic surfaces is a main concern for industries 
that provide a suitable environment for their formation 
(Donlan 2002; Simões et al. 2010; Flemming et al. 2013). 
Biofilms provoke biofouling of the industrial equipment 
such as cooling towers and heat exchangers. The biofoul-
ing is defined operationally as the development of biofilm 
that exceeds a defined threshold of interference (Murthy 
and Venkatesan 2009). This problem leads to energy loss, 
effective heat transfer, increased fluid friction resistance, 
and accelerated corrosion, as well as reduced the quality of 
product and many process additives and chemicals (Xiong 
and Liu 2010).

For example, the formation of biofilm in water distribu-
tion systems leads to reduced water quality and increased 
health risks (Dewanti and Wong 1995; Rao et al. 1998; 
Barak 2006). In the paper industry, biofilms cause the 
breakdown of chemicals such as calcium carbonate sludge 
and starch that are added to pulp sludge in the wet-end 
processing (Barak 2006).

In addition, the presence of biofilms is widespread 
in the food industry. They can be present on all kinds of 
surfaces such as plastics, glass, metal, wood, and food 
products (Chmielewski and Frank 2003). Microbial cell 
adherence to food contact surfaces is a serious concern 
for the food service and food processing industries, as 
adhesion can lead to cell survival and biofilm growth, 
allowing cross- and post-processing contamination. This 
reduces the shelf life of food products and constitutes the 
major factor of foodborne diseases (Shi and Zhu 2009; 
Bridier et al. 2015). In general, abiotic surfaces in contact 
with product may be cleaned many times per day, whereas 
environmental surfaces like walls may be cleaned weekly. 
This provides a longer time for adherent cells to grow 
on environmental supports. Thus, the extensive coloni-
zation of surfaces and the formation of mature biofilm 
may occur on these environmental surfaces. However, 
most of food product contact surfaces can hold only the 
adherent bacteria cells and young biofilm (Gibson et al. 
1999). These adherent cells and biofilms not only pose 
a hygiene hazard in the food industry but also contrib-
ute to the economical costs due to technological failures, 
impedance of heat transfer, mechanical blockage, and 
metal surfaces corrosion (Houdt and Michiels 2010; Téllez 
2010). Thereby, the need for efficient cleaning techniques 
is necessary to prevent the hazardous and expensive dam-
age that bacterial biofilms can cause (Chmielewski and 
Frank 2003). Although many species of bacteria are able 
to form biofilms in the food industry, among the major 
genera of foodborne bacteria that are biofilm producers 
are Pseudomonas, Listeria, Enterobacter, Flavobacterium, 
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Alcaligenes, Staphylococcus, and Bacillus (Téllez 2010). 
Most importantly, Pseudomonas contributes to the for-
mation of polymicrobial biofilms with other foodborne 
pathogens providing them shelter for persistence (Bai 
et al. 2021).

In healthcare environments, biofilms can be found on sev-
eral biomedical device surfaces (e.g., pacemakers, catheters, 
prosthetic heart valves, contact lenses, breast implants, and 
cerebrospinal fluid shunts) and on patient’s tissues (dead 
tissues, e.g., bone sequestration and living tissues, e.g., 
tooth surfaces, lung tissue) (Hall-Stoodley et al. 2004; Wu 
et al. 2015; Alav et al. 2018). Several Gram-negative and 
Gram-positive bacteria can form biofilms on the biomedical 
devices, but the most commonly found are Pseudomonas 
aeruginosa, Staphylococcus epidermidis, Staphylococcus 
aureus, and Enterococcus faecalis. It has been reported 
that approximately two-thirds of infections related to medi-
cal devices are attributed to staphylococcal species (Hall-
Stoodley et al. 2004; Shokouhfard et al. 2015; Pakharukova 
et al. 2018; Khatoon et al. 2018). Pseudomonas aeruginosa 
can also form biofilms on the interior surfaces in hospital 
water distribution systems (Loveday et al. 2014). In addition, 
infections caused by enterococci have become of particular 
concern in recent years because of their ability to develop 
resistance against a wide range of antimicrobial drugs used 
in medical practice. They are also involved in serious life-
threatening infections in patients suffering from cancers or 
chronic diseases (Boccella et al. 2021). Furthermore, the 
emergence of polymicrobial infections has serious implica-
tions for patient care because of the difficulties associated 
with selecting the most appropriate antimicrobial therapy, 
particularly when multidrug-resistant pathogens are impli-
cated (Francolini and Donelli 2010). Bacteria forming bio-
films can cause several life-threatening human diseases and 
infections such as otitis media, infective endocarditis, osteo-
myelitis, periodontitis, cystic fibrosis, and chronic wounds 
(Southey-Pillig et al. 2005; Akyıldız et al. 2013; Masters 
et al. 2019). It has been reported that biofilm is involved for 
more than 65% of all microbial infections and has a high 
resistance to antimicrobials and host defense system com-
ponents (Jamal et al. 2018; Ciofu and Tolker-Nielsen 2019). 
Hence, biofilms have a considerable impact on the human 
healthcare.

Biofilm control

The controlling of biofilm accumulation remains the most 
arduous task for the many industries for which it is very 
important that both the inactivation and removal of biofilms 
from surfaces have to be realized (Simões et al. 2003; Dzia-
nach et al. 2019).

As discussed previously, bacteria structured in biofilms 
are more resistant, than planktonic cells, to physical and 

chemical methods used in cleaning and disinfection of abi-
otic surfaces (Martin and Feng 2009). Several methods and 
strategies can be used to control biofilm such as chemical 
treatment, mechanical removal, quorum sensing inhibi-
tion, nanotechnological method, enzymatic dispersion, bio-
surfactants, and biosourced compounds such as essential 
oils derived from plants, bacteriocins, and bacteriophages 
(Fig. 3).

It is necessary to first understand the difference between 
disinfectants and sanitizers used in the industry. Disinfection 
means irreversibly destroying or inactivating specific infec-
tious fungi and bacteria, but not necessarily spores, on hard 
surfaces. However, sanitizing means reducing microorgan-
isms to levels considered safe for humans (Allan Pfuntner 
2012).

Several chemical disinfectants can be used to treat bio-
films such as NaOCl, peracetic acid, NaOH, and  H2O2. The 
efficiency of these disinfectants is related to their oxidation 
of cellular structures (Rosenberg et al. 2008; Bayoumi et al. 
2012; Nam et al. 2014; Bang et al. 2014; Ban and Kang 2016; 
Møretrø et al. 2017; Yang et al. 2017; Alvarez-Ordóñez et al. 
2019). However, previous studies have indicated that most 
of these disinfectants have little or no significant effect on 
the removal of established biofilms (Walker et al. 2007). It 
has been reported that disinfection with chlorine and chlo-
rine dioxide can decrease the concentration of planktonic 
cells, but has no effect on biofilm biomass (Berry et al. 2006). 
Other studies show that treatment with sodium hypochlo-
rite, the main commercial disinfectant does not significantly 
reduce the biomass of biofilms formed by Escherichia coli 
on the stainless steel surface (Lim et al. 2019). Chlorine is 
known as the most widespread artificial chemical disinfectant 
used because of its broad antimicrobial spectrum, easiness of 
application, and cost-effectiveness. Nevertheless, it is rapidly 
inactivated by organic matter. Moreover, chlorine activity is 
pH dependent and exhibits corrosion even to stainless steel 
and may combine with organic compounds to form toxic by-
products (Chmielewski and Frank 2003; Guzel-Seydim et al. 
2004; Houdt and Michiels 2010). In addition, it is impor-
tant to note that the use of these sanitizers for decades could 
be one of the main causes of the development of antibiotic 
resistance in bacteria and their spread to pathogens (Capita 
and Alonso-Calleja 2013). These issues combined with the 
growing consumer concerns about their own health and envi-
ronmental consciousness are leading to setup new alternative 
strategies to control biofilm such as the use of biosourced 
active molecules such as biosourced enzymes and essential 
oils (Knowles et al. 2005; Desai et al. 2012).

Enzymatic disruption

The use of enzymes is an effective tool for eradicating bio-
film owing to its ability to degrade the physical integrity 
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of the EPS by binding and breaking down the components 
of the EPS into smaller units that can be transferred across 
cell membranes and then metabolized, thus destroying the 
multi-structural biofilm (Xavier et al. 2005; Mohamed et al. 
2018). By a pre-treatment using enzymes, the biocides 
can be substituted or their concentration can be consider-
ably reduced since the enzymatic effect on the EPS matrix 
promotes the access of the chemical biocides to the cells 
(Meireles et al. 2016). A wide range of enzyme applica-
tions have been described (Table 2) with the aim of reducing 
microbiological biofilm risk and replacing hazardous and 
ineffective chemical biocides, as well as providing an alter-
native green solution against biofilm formation due to their 
high biodegradability and low toxicity (Cortés et al. 2011; 
Srey et al. 2013). These characteristics make enzymes as a 
high-performance tool for controlling biofilm; thus, they are 
commonly used in detergents used in many industries (Tor-
res et al. 2011; Huang et al. 2014).

Nevertheless, the enzyme effectiveness in eradicating and 
destroying biofilm is highly dependent on the composition 
of the matrix (Walker et al. 2007). Due to the heterogeneous 
composition of this matrix, different types of enzymes can 
be used to destroy biofilms. These enzymes can be applied 
individually or in combination with a complementary treat-
ment (Meireles et al. 2016). There are currently four types 
of enzymes of potential interest in biofilm removal: polysac-
charide degrading enzymes, proteolytic enzymes, anti-QS, 
and oxidizing enzymes that belong to three main classes, 
hydrolase, lyases, and oxydoreductases (Boels 2011; Thal-
linger et al. 2013; Huang et al. 2014; Coughlan et al. 2016; 
Meireles et al. 2016).

Essential oils (EOs) as antibiofilm compounds

Essential oils (EOs) are volatile and aromatic liquids derived 
from plants. These compounds can be composed of complex 

Fig. 3  Different methods for biofilm control, quorum sensing (QS), 
and reactive oxygen species (ROS) (de Carvalho 2007; García-
Almendárez et al. 2008; Winkelströter et al. 2011, 2015; Torres et al. 
2011; Bayoumi et  al. 2012; Beyth et  al. 2015; Silva 2015; Nobrega 

et al. 2015; Chopra et al. 2015; Scholtz et al. 2015; Coughlan et al. 
2016; Gutiérrez et al. 2016; Coronel-León et al. 2016; Campana et al. 
2017; Nica et al. 2017; Castellano et al. 2017)
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mixtures and of low-weight molecules, whose typical main 
components are dependent on the plant source (Engel et al. 
2017). The biological activities of EOs and their components 
are largely recognized, including antimicrobial activities 
against bacteria, yeasts, and molds (Burt 2004; Reyes-Jurado 
et al. 2015; Calo et al. 2015).

EOs or their purified antimicrobial components are natu-
ral alternative biocides that have recently attracted attention 
as potential cleaners for the following reasons. (i) Many 
studies suggest that the chemical antimicrobial agents, cur-
rently used, trigger the development of antimicrobial resist-
ance in the target microorganisms (Boakye et al. 2019). 
However, the development of bacterial resistance to EOs 
is limited because each EO is composed of a mixture of 

various active antimicrobial agents (Wińska et al. 2019). (ii) 
The vapors emitted by EOs are highly bactericidal that can 
offer an additional advantage for the disinfection of hard-to-
reach areas that need to be cleaned (López et al. 2005, 2007). 
(iii) Due to the ongoing trend towards green technology and 
changing consumer attitudes, there is a commercial advan-
tage in antimicrobial agents that can be classified as “green,” 
such as EOs of plant origin (Soni et al. 2013).

The antimicrobial activity of EOs is caused mainly by 
their hydrophobic characteristic, which helps them to dis-
perse into bacterial cell membrane lipids, causing disrup-
tion of the structure and increasing its permeability. This 
can lead to leakage of ions and other cell molecules and 
then lead to cell death (Rao et al. 2019). In general, EOs are 

Table 2  Examples of application of enzymes as anti-biofilm, their classification, and targets

Types of enzyme Enzymes applied Target biofilm Results References

Proteolytic enzymes Savinase Pseudomonas fluorescens  > 75% biofilm removal (Molobela et al. 2010)
Endolysin (LysH5) Staphylococcus aureus 1–3 log biofilm removal (Gutiérrez et al. 2014)
Bromelain Klebsiella pneumonia 74.6% biofilm removal (Mohamed et al. 2018)
Savinase, everlase
Esperase
Mixed protease

Pseudomonas fluorescens  > 80% biofilm removal
74% biofilm removal
75% biofilm removal

(Molobela et al. 2010)

Savinase Pseudoalteromonas Total biofilm removal (Leroy et al. 2008)
Protease P4
Protease P2
Papain P1
Papain P3

Seven types of biofilm
Three types of biofilm
Eight types of biofilm
Nine types of biofilm

 > 70% biofilm removal (Lequette et al. 2010)

Proteinase K
Trypsin

Staphylococcus lentus
Staphylococcus cohnii
Staphylococcus saprophyticus

Strongly removing of biofilm (Fagerlund et al. 2016)

Dispersin B Staphylococcus epidermidis
Staphylococcus aureus

Strongly removing of biofilm (Fagerlund et al. 2016)

Trypsin Pseudomonas aeruginosa Strongly destroying biofilm (Banar et al. 2016)
Proteinase K Escherichia coli 91.1–99.5%

biofilm inhibition
(Lim et al. 2019)

Polysaccharide-
degrading enzyme

α-Amylase Staphylococcus aureus 79% biofilm removal (Craigen et al. 2011)
Dispersin B Staphylococcus epidermidis 40% biofilm removal (Brindle et al. 2011)
Fungamyl
Amyloglucosidase
Mixed amylases

Pseudomonas fluorescens  > 80% biofilm removal
 > 50% biofilm removal
 > 70% biofilm removal

(Molobela et al. 2010)

Amylase S1
Polysaccharidase mix A

Six types of biofilms
Three types of biofilms

Biofilm removal (Lequette et al. 2010)

α-mannosidase,
β-mannosidase

Pseudomonas aeruginosa Strongly destroying biofilm (Banar et al., 2016)

Pectin esterase Pseudomonas fluorescens Three quarters of the biofilm 
cells

(Orgaz et al. 2007)

Cellulase Escherichia coli 65.5–98.5%
biofilm inhibition

(Lim et al. 2019)

Oxidative enzymes DNase Listeria monocytogenes 50% biofilm removal (Nguyen and Burrows 2014)
DNase I Gram-negative and Gram-posi-

tive biofilm
Biofilm removal (Tasia et al. 2020)

Anti-QS enzymes Lactonase Pseudomonas aeruginosa  > 70% biofilm removal (Kiran et al. 2011)
acylase Pseudomonas aeruginosa 60% biofilm inhibition (Grover et al. 2016)
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slightly more effective against Gram-positive bacteria than 
Gram-negative ones (Ratledge and Wilkinson 1988; David-
son and Naidu 2000; Canillac and Mourey 2001; Cimanga 
et al. 2002; Delaquis et al. 2002). Gram-negative bacteria 
can be expected to be less sensitive to the action of EOs 
since they possess a lipopolysaccharide-coated outer mem-
brane that surrounds the cell wall and limits the diffusion 
of hydrophobic compounds (Ratledge and Wilkinson 1988; 
Burt 2004). Nevertheless, not all research on antimicrobial 
activity of EOs has shown that Gram-positive bacteria are 
more susceptible (Wilkinson et al. 2003). Furthermore, the 
antimicrobial activity of EOs is linked to their interactions, 
chemical composition, and the volatile molecules propor-
tions (Dhifi et al. 2016).

EOs extracted from different plants can be used for their 
antibacterial effect such as monoterpenoids (such as bor-
neol, camphor, carvacrol, eucalyptol, limonene, pinene, thu-
jone), sesquiterpenoids (such as caryophyllene, humulene), 
and flavonoids (such as cinnamaldehyde and other phenolic 
acids) (Campana et al. 2017). In general, EOs with a high 
level of phenolic compounds, such as eugenol, carvacrol, 
and thymol, have significant antibacterial activities. These 
components are primarily responsible for disruption of the 
cytoplasmic membrane, electron flow, active transport, 
proton motive force, and coagulation of the cell contents 
(Dhifi et al. 2016). Numerous studies prove the antimicro-
bial activity of EOs against one or more microorganisms 
(Sivropoulou et al. 1996; Lambert and Johnston 2001; Ooi 
et al. 2006; Rota et al. 2008; Xu et al. 2008). Moreover, EOs 
have been shown to be highly effective against the most seri-
ous foodborne pathogens such as Listeria monocytogenes, 
Escherichia coli O157:H7, and Salmonella spp. (Braga et al. 
2006). In addition, several studies (Table 3) demonstrate that 
essential oils have a significant antimicrobial activity against 
biofilm and biofilm formation (Soni et al. 2013; Neyret et al. 
2014; Amaral et al. 2015).

Hurdle technology as an efficient strategy to control 
biofilms

Due to the complexity of biofilms, a single use of a disin-
fectant may be insufficient to remove the entire undesirable 
biofilm. Hurdle technology involves the combined intelli-
gent use of hurdles such as physical–chemical, chemical-
chemical, or biological–chemical disinfection methods to 
achieve effective control of undesirable monomicrobial and 
polymicrobial biofilms by striking different targets within 
bacterial cells at the same time (Fig. 4) (Yuan et al. 2021). 
The synergistic effect of hurdle technology in reducing bio-
film contamination has been proven by numerous studies 
(Ban and Kang 2016; Jung et al. 2018; KIM et al. 2019; 
Lim et al. 2019; Hussain et al. 2019; Venkatesh et al. 2009; 
Francolini and Donelli 2010).

In healthcare and food ecosystems, disinfection must be 
carried out economically and safely, by reducing the fre-
quency of disinfection, and in the shortest timeframe pos-
sible, with the lowest use of chemicals, labor costs, and 
energy, producing the least amount of waste and without 
damaging the equipment. Thus, Hurdle technology could 
be more effective in controlling biofilms compared to the 
single use of disinfectants. Potential solutions for combined 
disinfection procedures must therefore be carefully selected 
to achieve an effective disinfection effect.

Previous studies have shown that the combined use of 
physical and chemical disinfection strategies is very effi-
cient against biofilms (Vankerckhoven et al. 2011; Kim 
et al. 2016; Jung et al. 2018). Indeed, the combined treat-
ment of biofilms with ultraviolet irradiation (234 mJ/cm2) 
and hydrogen peroxide (5 ppm) proved to be 10 times more 
effective than treatment with hydrogen peroxide alone, 
which could lead to a more eco-friendly treatment (Vanker-
ckhoven et al. 2011). In addition, treatment with biocide 
solutions that contain more than one bioactive agent was 
also found to be effective in removing biofilms from indus-
trial surfaces (Ortega Morente et al. 2013). It has been also 
reported that the combination of different disinfectant com-
pounds can facilitate their diffusion into the biofilm matrix 
and improve their oxidative activity, resulting in high bac-
tericidal activity even at low concentrations (Ríos-Castillo 
et al. 2017). Dhowlaghar et al. (2018) demonstrated that 
the use of a mixture of hydrogen peroxide and quaternary 
ammonium disinfectants or hydrogen peroxide, octanoic 
acid, and peracetic acid was able to completely remove Lis-
teria monocytogenes biofilm from stainless steel surface, 
whereas treatment with a single active component in the 
disinfection procedure could not eliminate biofilm cells 
completely. In addition, the combined use of EDTA, etha-
nol, N-acetylcysteine, and recombinant human talactoferrin 
with amphotericin B, fluconazole, nafcillin, and vancomycin 
has been successfully applied as catheter lock solutions to 
rescue colonized catheters. It was found that these combina-
tions were effective in inhibiting both monomicrobial and 
polymicrobial biofilms of Staphylococcus epidermidis and 
Candida albicans (Venkatesh et al. 2009).

The use of enzymes for the removal of biofilms in the 
industrial settings generally misses biocidal activity, mak-
ing them unsuitable for bactericidal applications. To solve 
this problem, a combined use of enzymatic and antibacterial 
control approaches is desirable, as the action of the enzyme 
would contribute positively to the antibacterial activity of 
the disinfectant (Table 4). This strategy has the potential 
advantage of avoiding the overuse of toxic antimicrobial 
agents.

Many studies demonstrate that the antimicrobial agent 
use after enzymatic treatment can significantly inactivate 
microbial cells in biofilms (Table 4). EOs are biosourced 
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Table 3  Examples of application of essential oil or their components as anti-biofilm, their chemical structure, and targets

Essential oil Chemical 
structure

Targets Biofilm Results References 

Menthol

Klebsiella pneumoniae

75.3-97.5%

biofilm inhibition

(Mohamed 

et al. 2018)

Thymol 85.1-97.8%

biofilm eradication

Peppermint 
EO

69,2 to 98,2 % 

biofilm inhibition

Thyme EO 80,1 to 98,0 %  

biofilm eradication

Carvacrol

Staphylococcus aureus 

1.87-2.04 log CFU/cm
2

biofilm eradication

(Engel et 

al. 2017)

Thymol 1.47-1.76 log CFU/cm
2

biofilm eradication

R. officinalis 
EO

Staphylococcus epidermidis >57% biofilm inhibition 

67% biofilm eradication 

(Jardak et 

al. 2017)

E. globulus 
EO

Staphylococcus aureus

74.74 to 89.15 %

biofilm eradication

Effective biofilm 

inhibition

(Merghni et 

al. 2018)

1,8-cineole 77.46 to 90.81 %

biofilm eradication 

Effective biofilm 

inhibition

M. longifolia
EO

Enterococcus faecalis,
Escherichia coli
Staphylococcus aureus
Pseudomonas aeruginosa
Klebsiella pneumonia 
Candida albicans

Effective anti-biofilm 

activity

(Pazarci et 

al. 2019)

Carvacrol Salmonella typhimurium 5.12 log CFU/cm
2

biofilm eradication

(Trevisan 

et al. 2018)

Carvacrol Staphylococcus aureus 6 log CFU/cm
2

(Nostro et 

biofilm eradication

3 log CFU/cm
2

biofilm inhibition

al. 2009)

Staphylococcus epidermidis 5 log CFU/cm
2

biofilm eradication

2 log CFU/cm
2

biofilm inhibition
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compounds used as alternative natural disinfectants suit-
able for biofilm control. In addition, it has been reported an 
increased activity of these natural antimicrobials to inacti-
vate biofilms when combined with other methods (Table 4). 
Thus, the use of enzymes in combination with an EO as bio-
logical hurdles seems to be a promising strategy to control 
biofilms. The goal of this strategy is that enzymes disrupt 
and destroy the biofilm matrix, so that the biosourced anti-
microbials can hit the target efficiently and easily.

Encapsulation as a tool to improve antibiofilm 
compound activities

Microencapsulation aims in protecting the bioactivity of 
solid, liquid, or gaseous materials by trapping within a sur-
rounding matrix forming particles with a diameter of 1 to 
1000 μm (Fu and Hu 2017). Microparticles can be in the 
form of microspheres or microcapsules. Microspheres are 
matrix systems in which the core is dispersed (heteroge-
neous microsphere) and/or dissolved in a polymer matrix 
(homogenous microsphere) (Silva et al. 2003), while micro-
capsules are particles consisting of an inner core surrounded 
by a material that is significantly different from that of the 
core. Mononuclear and polynuclear microcapsules can be 
classified according to the division of the core or not. How-
ever, the terms microcapsules and microspheres can be used 
synonymously (Singh et al. 2010).

Coating materials for microencapsulation

The coating serves as a protective film for isolating the 
core from inadequate exposure; the core can be released 
in the ideal place or at the ideal time, in various manners 

depending on the characteristics of the coatings material, 
such as physical pressure, friction, diffusion, dissolution of 
the wall, and biodegradation (Suave et al. 2006; Qin 2016). 
The appropriate selection of wall material is extremely criti-
cal as it has a significant impact on the effectiveness and 
stability of the microcapsule. The most appropriate wall 
material should have the same properties: controlled release 
under specific conditions; nonreactive with the core; capac-
ity to hold and stabilize the core inside the capsule; ability 
to protect the core from unfavorable conditions; absence of 
disagreeable taste in case of food application; and economic 
feasibility (Nazzaro et al. 2012; Gharsallaoui et al. 2012). A 
variety of coating materials can be used in microencapsula-
tion such as synthetic polymers such as nonbiodegradable 
polymers (e.g., poly methyl methacrylate (PMMA), acrolein, 
glycidyl methacrylate epoxy polymers) (Kreuter et al. 1983; 
Margel and Wiesel 1984) and biodegradable polymers (e.g., 
lactides, glycolides, and their copolymers) (Wakiyama et al. 
1981); and natural polymers such as proteins (e.g., albumin, 
gelatin, collagen) (Toshio et al. 1981), carbohydrates (e.g., 
agarose, carrageenan, chitosan, starch) (Patel et al. 2011), 
and chemically modified carbohydrates (e.g., poly dextran, 
poly starch) (Jain 2000).

Control of the release of encapsulated molecules

Encapsulation should protect and isolate the core from 
the environment until the desired release at the appropri-
ate time and place (Gouin 2004). Many factors affect the 
rate of releasing including the interactions between wall 
materiel and core, the volatility of core, the ratio of core 
to support material, the size, and viscosity of particle of 
wall material, among others (Roberts and Taylor 2000). 

Fig. 4  Improved biofilm cell 
reduction by hurdle technology: 
a single disinfection strategy 
using a chemical, physical, or 
biological method; b combined 
disinfection strategies using 
chemical-chemical, physical–
chemical, or biological–chemi-
cal methods
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The release of the core is conditioned by several mecha-
nisms involved: degradation (enzymes such as lipases and 
proteases that degrade lipids and proteins, respectively) 
(Rosen 2005), diffusion (chemical properties of core and 
wall material and physical properties of wall determine 
the releasing of core from intact wall) (Choudhury et al. 
2021), use of solvent (contact with solvent that dissolve 
wall material) (Frascareli et al. 2012), pH (solubility of 
membrane wall altered by changes of pH) (Toldrá and 
Reig 2011), pressure (applied pressure to the capsule 
wall cause releasing) (Wong et al. 2009), and tempera-
ture (expanding or collapsing of wall material in a critical 

temperature which name temperature-sensitive release or 
melting of wall material when the temperature increase 
which name fusion-activated release) (Park and Maga 
2006). Moreover, the combination of two or more mecha-
nisms can be used (Desai and Park 2005).

Microencapsulation methods

Many encapsulation methods such as spray drying, extru-
sion, and coacervation are currently used for the encap-
sulation of the antimicrobial substances (Fig. 5). The 
choice of the most appropriate method depends on the 

Fig. 5  Examples of different techniques for antimicrobials encapsulation with some advantages and disadvantages (Dolçà et  al. 2015; Bakry 
et al. 2016; Wang et al. 2018; Khairnar et al. 2012; Dajic Stevanovic et al. 2020)
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capsule application, the type of core, the chemical and 
physical characteristics of the core and wall, the parti-
cle size required, the mechanism of release required, the 
scale of production, and the cost (Suave et al. 2006). The 
spray drying technique is the most common encapsula-
tion method that has been used for decades to encapsu-
late mainly flavors, lipids, and pigments (Gharsallaoui 
et  al., 2007). Several applications of spray drying in 
industrial field range from encapsulation of fragrances 
and flavors in food industries to pigments in manufacture 
(Laohasongkram et al. 2011). In addition, this technique 
is widely used for the encapsulation of enzymes and 
antimicrobials substances such as EOs to ensure their 
activities (Schutyser et al. 2012; Dajic Stevanovic et al. 
2020). However, the optimal choice of drying conditions 
and adapted matrix formulations is necessary to avoid 
serious thermal damage leading to a loss of enzymatic 
activity or volatility of the essential oil (Gharsallaoui 
et  al. 2007; Schutyser et  al. 2012). Spray drying is a 
relatively inexpensive and commercially feasible method 
of microencapsulation. Biomolecules used as carriers for 
this technique are starch, maltodextrins, chitosan, and 
gum Arabic (Dajic Stevanovic et al. 2020). Spray drying 
microencapsulation involves 4 steps as shown in Fig. 6: 
(1) preparation of the emulsion, (2) homogenization of 
the emulsion, (3) atomization of the dispersion, and (4) 
dehydration of the atomized particles (Bakry et al. 2016). 
This process consists of forming an emulsion, suspen-
sion, or solution containing the wall material and core; 
then pulverization in a drying chamber in which circu-
lates hot air, upon contact with the hot air, the water 
evaporates immediately, and the core is encapsulated into 
the wall material (Laohasongkram et al. 2011).

Role of microencapsulation in biofilm control

Microencapsulation is widely used in the fields of medicine, 
food, cosmetics, pharmaceuticals, textiles, agriculture, and 
advanced materials, which make this technique widely used 
in the encapsulation of active constituents: enzymes, EOs, 
flavors, colors, sweeteners, microorganisms, etc. (Desai and 
Park 2005; Fu and Hu 2017). One of the recent use of micro-
encapsulation is the control of biofilm on industrial equip-
ment and materials and by the encapsulation of antimicrobial 
substances to ensure their stability and long-term activity, 
as well as to limit their interactions with the biofilm matrix 
components (Khelissa et al. 2021a, b).

As mentioned earlier, the use of enzymes is an impor-
tant tool to remove biofilms through the enzyme ability to 
degrade the EPS and destroy biofilms (Xavier et al. 2005). 
Thus, extensive researches have been conducted to immo-
bilize enzymes in mechanically resistant capsules, in most 
cases in dry microcapsules, in order to protect enzymes 
during storage and to control their release (Mohamad et al. 
2015). Microencapsulation is a promising strategy to prevent 
and stabilize enzymes under severe reaction conditions from 
denaturation by proteolysis and dilution effects, and thus 
maintain high catalytic activity (Chaize et al. 2004; Tetter 
and Hilvert 2017; Zdarta et al. 2018). Orgaz et al. (2007) 
demonstrated that the combination of delayed-release encap-
sulated pronase with cellulase, pectin lyase, or esterase leads 
to three to four decimal reduction in cells and detach up to 
90% of the biofilm of Pseudomonas fluorescens after 2 h at 
25 °C. These data prove that these results are more favorable 
than those obtained with the same application of the equiva-
lent soluble enzyme mixtures. Tan et al. (2020) show that 
the co-immobilization of deoxyribonuclease I (DNase) and 
cellobiose dehydrogenase (CDH) results in a bifunctional 

Fig. 6  Schematic representation 
of the spray drying microencap-
sulation process

2326 Applied Microbiology and Biotechnology (2022) 106:2311–2335



1 3

particle that targets both the microorganisms and the bio-
film matrix. The assessment of the antibiofilm activities of 
these particles has shown a high ability to penetrate through 
the biofilm matrix and interfere with microbial cells, thus 
exhibiting a stronger activity to inhibit biofilm formation as 
well as to disrupt preformed biofilms.

Furthermore, the use of EOs to control biofilm has been 
extensively studied in recent years; a wide variety of EOs 
can be used as antibiofilm compounds. However, EOs are 
not stable and can be degraded in the presence of oxygen, 
light, and temperature. Thus, efforts have been attempted to 
protect them by encapsulation in various colloidal systems 
such as microspheres, microcapsules, liposomes, and nanoe-
mulsions (Sherry et al. 2013). Many studies show that pro-
tecting the EOs with antimicrobial activity in a capsule can 
increase their bioactivity and efficiency to remove biofilm 
from surfaces (Dohare et al. 2014; Duncan et al. 2015; Cui 
et al. 2016a), as well as decreasing volatility and improving 
stability and water solubility (Bilia et al. 2014). For exam-
ple, peppermint oil encapsulated in starch-based emulsions 
showed increased stability and bioavailability characteristics 
and improved activity against Staphylococcus aureus and 
Listeria monocytogenes relative to free EOs (Liang et al. 
2012). The antibacterial activity of EOs after nanoencapsu-
lation has been shown to very often exceed the efficacy of the 
current antibiotic (Zaman et al. 2017). Dohare et al. (2014) 
reported that the encapsulation of Eucalyptus globulus oil 
has increased its antibiofilm activity against Escherichia coli 
biofilm from 62 to 81% compared to the soluble one; thus, 
the use Eucalyptus globulus oil encapsulated into a nano-
particle is important for controlling biofilm associated with 
microbial infections and diseases. Other studies showed that 
the two antimicrobials, carvacrol and eugenol, encapsulated 
in micellar nonionic surfactant solutions, were significantly 
effective against two strains of E. coli O157:H7, reducing 
viable counts by 3.5 to 4.8 log CFU/cm2 within 20 min of 
exposure (Pérez-Conesa et al. 2011). Furthermore, Cui et al. 
(2016a, b) evaluated the anti-biofilm effect of cinnamon oil, 
encapsulated in liposomes, on methicillin-resistant Staphy-
lococcus aureus (MRSA) biofilms. The results showed that 
the use of liposomes improves the stability of cinnamon oil, 
which has an effective antibacterial performance on MRSA 
and its biofilms and prolongs the time of action.

Conclusion

The prevention/eradication of biofilms in the industrial and 
medical sectors is one of their main concerns. This field 
can provide an appropriate environment for the develop-
ment of biofilms that threaten public health and increase 
economic losses. A clear understanding of the mechanisms 
of biofilm formation and resistance to disinfecting agents 

is necessary to provide an effective strategy to prevent 
and destroy biofilms. Biofilm resistance to disinfectants 
appears to be multifactorial and involves several param-
eters. In addition, the side effects caused by these agents 
require the search for alternative natural antimicrobial 
agents to obtain the requested treatment and overcome the 
disadvantage of the conventional antimicrobial used. The 
biofilm matrix is the main physical barrier preventing the 
penetration of biocides into biofilms. Therefore, if one or 
more compounds capable of destroying the structural com-
ponents of the matrix produced by biofilm as well as active 
against the microbial biofilm are found, then the “microbe 
city” (biofilm) would be permanently destroyed and eradi-
cated. However, the activity and stability of the anti-bio-
film agents used may be affected by several parameters. 
On this basis, the encapsulation of these compounds can 
be useful to protect and ensure their stability and activi-
ties against matrix biofilm as well as biofilm-producing 
microorganisms, in order to prevent the formation and/or 
eradicate the establishing biofilms.
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