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Abstract 
Bacteriophage (phage) and their host bacteria coevolve with each other over time. Quorum sensing (QS) systems play an 
important role in the interaction between bacteria and phage. In this review paper, we summarized the function of QS systems 
in bacterial biofilm formation, phage adsorption, lysis-lysogeny conversion of phage, coevolution of bacteria and phage, 
and information exchanges in phage, which may provide reference to future research on alternative control strategies for 
antibiotic-resistant and biofilm-forming pathogens by phage.
 
Key points  
• Quorum sensing (QS) systems influence bacteria-phage interaction.
• QS systems cause phage adsorption and evolution and lysis-lysogeny conversion.
• QS systems participate in biofilm formation and co-evolution with phage of bacteria.
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Introduction

In nature, information exchange occurs within and between 
species of microorganisms to gain benefits or avoid harm for 
different microorganisms. The quorum sensing (QS) systems 
are widely present in microorganisms and play a key role in 
exchanging microbial information (Haque et al. 2019). As 
a communication mechanism between microorganisms, the 
QS system was first defined by Fuqua et al. in 1994 (Fuqua 
et al. 1994). QS can assess the number and density of indi-
viduals in a population, allowing specific gene expression 

to be induced only when a critical threshold concentration 
is reached, which initiates microbial-specific swarm behav-
iors and promotes mutual communication between microbial 
individuals to adapt to the environment (Abisado et al. 2018; 
Erez et al. 2017; Kü et al. 2000). QS systems regulate physi-
ological processes, including biofilm formation, virulence 
factor expression, and metabolism, which are beneficial to 
bacterial survival and adaptation (Ha et al. 2018; Shepherd 
et al. 2019; Wang et al. 2019). Studies have observed that 
QS systems regulate the physiological processes of bacteria 
and play an important role in the interaction between bacte-
ria and their predator (phage) (Justin et al. 2018; Rossmann 
et al. 2015).

Phage is a virus that can specifically infect bacteria. It 
attaches itself to a susceptible bacterium and injects its 
nucleic acid into the host cell. As a result, new phages 
assemble and burst out of the bacterium in the cell lysis 
process (Kutter and Sulakvelidze 2005). Due to the emer-
gence of multidrug-resistant bacteria, phage has attracted 
increasing interest as an antibacterial agent. Phage coevolves 
with its host bacteria over time when it is applied for ther-
apy. Thus, it is important to know the interaction mecha-
nisms between phage and its host bacteria. As important 
systems for microorganisms, QS systems are involved in the 
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interaction between phage and bacteria (Moreau et al. 2017; 
Qin et al. 2017; Saucedo-Mora et al. 2017). The extent of 
bacterial elimination by phage can be regulated by QS sys-
tems, a new antibacterial strategy (Broniewski et al. 2021; 
Laganenka et al. 2019; Qin et al. 2017; Silpe and Bassler 
2019). There are many hypotheses about the mechanisms of 
bacterial QS systems involved in phage resistance, includ-
ing complex signal transduction pathways, which need to 
be illustrated. It has been reported that Escherichia coli can 
resist phage infection through QS systems (Choi et al. 2012; 
Hoyland-Kroghsbo et al. 2013; Kobayashi 2007). Bacteria 
are likely to resist phage infection by QS systems (Hoyland-
Kroghsbo et al. 2013). In QS systems, bacteria are depend-
ent on signal molecules and receptor proteins (Even-Tov 
et al. 2016). In this review paper, we described the interac-
tion between phage and bacteria in terms of biofilm, adsorp-
tion, fusion lysis switch, and eco-evolutionary mechanisms 
to provide a useful reference for readers.

Roles of biofilms in bacteria‑phage 
interaction

Biofilm is a substance formed by bacteria on a solid surface 
under natural conditions, which is beneficial to the survival 
of bacteria (Llama Palacios et al. 2020; Sadiq et al. 2020). 
Bacterial biofilms can increase bacterial resistance to the 
external physical and chemical environments, making bac-
teria difficult to be killed by antibiotics or conventional dis-
infectants (Hall-Stoodley et al. 2004; Kaplan 2011; Saitou 
et al. 2009). QS system is one of the regulatory pathways 
of bacterial biofilm formation. It regulates the synthetic 
genes of flagella, exopolysaccharide, adhesin, and other 
substances through signal molecules, such as autoinducer-1 
(AI-1), autoinducer-2 (AI-2), and N-acyl homoserine lactone 
(AHL), thereby affecting the formation of bacterial biofilms 

(Gu et al. 2020; Yang et al. 2013). When bacteria are sub-
jected to external environmental pressures (e.g., phage), 
their QS systems promote the formation of biofilms to resist 
these pressures (Tufenkji et al. 2013).

The long-term bacteria-phage interaction has developed 
a variety of survival methods in the formation and lysis of 
biofilms (Oliveira et al. 2018; Sharma et al. 2018; Zhang 
et al. 2018). Phage can break down biofilms through depoly-
merases to achieve the purpose of sterilization of pathogenic 
bacteria (Knirel et al. 2020). The use of phages to destroy 
biofilms is one of the main directions for the study of kill-
ing bacteria. The mechanisms of bacteria-phage counterbal-
ance mediated by QS in the state of biofilms are summarized 
in Fig. 1. After being infected by the phage, bacterial use 
the QS systems to enhance their ability and form biofilms 
(Molin et al. 2013), which constitute a physical barrier 
against the phage (Melo et al. 2020). However, phages use 
some strategies to act on biofilms to invade host bacteria 
(Ruoting et al. 2014; Silva et al. 2010).

Regulation of biofilm formation by bacteria 
through QS systems to resist phage

As phage attacks bacteria frequently, various strategies are 
developed by bacteria against phage infection, such as bio-
film formation (Van Ooij 2009). Due to the tight binding 
between individual cells, some phage receptors are hidden, 
resulting in a decrease in phage adsorption rate (Rickard 
et al. 2003). The biofilm structure can prevent phages from 
entering the bacterial population (Jakob et al. 2019). This 
structure is composed of extracellular polymeric substances 
(EPS), which is also an important basis for maintaining the 
stability of the biofilm structure (Vermeulen et al. 2019). 
EPS is mainly composed of polysaccharides, proteins, 
nucleic acids, lipids, and environmental DNA (eDNA) (Fed-
erico et al. 2018). Proteins, such as Curli protein, can form 

Fig. 1.  Interactions between 
bacterial biofilm and phage. 
A Bacterial biofilm formation 
induced by signal molecules of 
QS systems lead to resistance to 
phage. B The phage or related 
substance produced by phage 
hinders the formation of bacte-
rial biofilm
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amyloid fibers to promote extracellular matrix formation 
and dense cell accumulation (Jakob et al. 2019). Proteolytic 
enzymes and endonucleases can lead to the inactivation of 
phages (Azeredo and Sutherland 2008). Phage infection 
causes a significant upregulation of expression levels of QS 
genes in E. coli and Pseudomonas aeruginosa (4.1–24.9-
fold), resulting in enhanced biofilm formation (Zhang et al. 
2020). When the Vibrio anguillarum PF430-3 is in a low 
cell density state (mutant ΔvanT), the phage receptor OmpK 
is highly expressed, making cells highly sensitive to phage 
KVP40, while mutant ΔvanT resists phage infection by 
enhancing biofilm formation (Demeng et al. 2015). When V. 
anguillarum 90-11-287 is in a low cell density state (mutant 
ΔvanT), the biofilm formation is increased, and H20-like 
phages can promote the biofilm formation of its host bac-
teria (Tan et al. 2020). When V. anguillarum is exposed to 
high cell density (mutant ΔvanO), it reduces the induction 
of prophages, leading to increased proteolytic activity and 
suppressed biofilm formation (Tan et al. 2020). These results 
suggest that the bacterial QS systems mediate the maturation 
of biofilms against phage infection.

Destruction of bacterial biofilms by phage

Phage is an important antibacterial agent related to clini-
cal medicine, food safety, and environmental purification 
(Cristinaneguţ et al. 2016; Haddad et al. 2018; Harper 
2018; Shlezinger et al. 2016). In some cases, phages can 
increase the biofilm formation of bacteria. Phages can 
also effectively destroy biofilms than antibiotics. The 
derivates of phage can hinder bacterial biofilm forma-
tion through various components, such as polysaccharide 
depolymerase enzymes (sialidase, acetylglycanase, xylo-
side, etc.) (Hughes et al. 1998; Pires et al. 2016; Solo-
vieva et al. 2018).

The mechanisms of phage destroying the bacterial bio-
films can be divided into five categories: (1) the lytic enzymes 
produced by the phage-associated genes can decompose the 
extracellular polysaccharide (e.g., peptidoglycan) of biofilms, 
and the deficiency of these components block the network 
connection of biofilms, resulting in the removal of biofilms 
(Chhibber et al. 2015; Gutiérrez et al. 2015; Kwiatek et al. 
2016; Pires et al. 2016); (2) the lytic enzymes on the phage 
tail are usually hidden, and these enzymes are exposed when 
the tail comes into contact with bacteria. The enzymes on 
the tail of the phage can help the phage lyse the bacterial 
cell wall. Tail lyase enzymes can degrade the extracellular 
polymers of biofilms (Cornelissen et al. 2012; Hansen et al. 
2019; Jianlong et al. 2013); (3) after entering the host, the 
phage trigger the host to express enzymes, which can degrade 
biofilms through the interaction mechanisms (Bartell and Orr 
1969; Hanlon et al. 2001); (4) the phage can enter the biofilms 
through the hydrophobic channel of biofilms, thereby lysing 
the bacteria from the membrane (Briandet et al. 2008); (5) by 
releasing host QS inhibitors (e.g., lactonases), phage hampers 
the communication among bacteria individuals, facilitating 
the attacking ability of phage against bacteria (Kaistha and 
Umrao 2016; Lan et al. 2013; Pei and Lamas-Samanamud 
2014). Studies of biofilm disruption by QS-related mecha-
nisms by bacteriophage are listed in Table 1.

Exploration of enhanced ability of phage to destroy 
biofilms

Phage is a virus that can infect bacteria. They coevolve with 
each other over time and keep in dynamic balance (an arm race) 
(Sutton and Hill 2019). In many cases, phages do not eliminate 
host bacteria thoroughly. After treatment with phage P100 for 
8 h, the biofilm is depolymerized. However, the planktonic 

Table 1  Studies on the removal of bacterial biofilm by phage through quorum sensing systems

Name of bacteria(species) Name of phage Quorum sensing factors References

ATCC 15692 (P. aeruginosa) vB_Pae_QDWS las (Xuan et al. 2022)
ATCC 27853 (P. aeruginosa) vB_PaeM_USP_1, vB_PaeM_USP_2, vB_PaeM_

USP_3, vB_PaeM_USP_18 and vB_PaeM_
USP_2

lasI、pslA、lasB and phzH (Oliveira et al. 2021)

C6706 (V. cholerae) VP882 vqmR (Duddy et al. 2021)
ATCC 15692
(E. coli),
ATCC 10798
(P. aeruginosa)

Phage PEB1 and PEB2 sdiA, luxS, lasI and lasR (Zhang et al. 2020)

90-11-287
(V. anguillarum)

ϕH20-like phage vanT (Tan et al. 2020)

CC274
(P. aeruginosa)

PHAGE_ Pseudo_ phi297_ NC_ 016762-like 
phage

bci (Ambroa et al. 2020)

BL21(E. coli) , TG1(lacI::kan)
(P. aeruginosa)

Engineered T7 phage AHL (Pei and Lamas-
Samanamud 2014)
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Table 2  Studies on the removal of bacterial biofilm by phage combined with antibacterial agent

Phage Antibacterial agents Evaluation of effects Source of references

T4 Cefotaxime After adding phage titers of  104 PFU/
mL and  107 PFU/mL, the minimum 
biofilm eradication concentration of 
cefotaxime to E. coli ATCC 11303 
was reduced from 256 μg/mL to 128 
μg/mL and 32 μg/mL

(Ryan et al. 2012)

Phage isolated from Alexandria Uni-
versity Hospital

Amikacin Compared with phage or antibiotics, 
the amikacin-phage combination can 
significantly eradicate P. aeruginosa 
biofilm

(Nouraldin et al. 2016)

SAP-26 Rifampicin When combined with rifampicin, it 
can eliminate 65% of the biofilm of 
S. aureus

(Rahman et al. 2011)

Sb-1 Daptomycin The combined action of Sb-1 and 
antibiotics can eradicate the biofilm 
of rifampicin-resistant bacteria

(Wang et al. 2020b)

Phage (Xccφ1)-hydroxyapatite 
complex

Long Fatty Acids The long-chain fatty acid combined 
with phage (Xccφ1)-hydroxyapatite 
complex has an effective ability to 
remove mature biofilms

(Papaianni et al. 2020)

vB_EcoM-WL-3 (ɸWL-3) Ciprofloxacin, fosfomycin, gen-
tamicin, meropenem or ceftriaxone

The co-administration of ɸWL-3 and 
antibiotics improves the antibiotic 
efficacy of E. coli strains against 
ciprofloxacin/ceftriaxone, especially 
after staggered contact, reducing 
the minimum biofilm bactericidal 
concentration (MBBC) values up to 
512 times

(Wang et al. 2020a)

EC3a Honey The use of phage and honey is a bet-
ter way to break through a single 
biofilm of E. coli. Honey can destroy 
the bacterial cell membrane and pen-
etrate the biofilm matrix, promoting 
and enhancing phage infection

(Ana et al. 2018)

EFDG1 EFLK1 Cocktail #1 (1:1) kills E. faeca-
lis V583 as efficiently as phage 
EFDG1. It is better than other 
cocktails in removing the E. faecalis 
V583 biofilm

(Leron et al. 2018)

38 39、41, CEV2, AR1, 42, ECA1 and 
ECB7

The number of bacteria has dropped 
dramatically and cannot be detected

(Viazis et al. 2011a; 
Viazis et al. 2011b)

LiMN4L LiMN4p and LiMN17 After 75 min of mixing, the number 
of bacteria dropped dramatically and 
could not be detected

(Arachchi et al. 2013)

KPO1K2 Xylitol Compared with phage or xylitol, 
the combination of bacteriophage 
KP01K2 and xylitol eliminated 
the K. pneumoniae biofilm and 
reduced the number of P. aeruginosa 
biofilms by 4 orders of magnitude. 
Also, the combined use of phage 
KP01K2, Pa29, and xylitol can 
reduce the underlying P. aeruginosa 
biofilm by 6 orders of magnitude

(Kaur et al. 2015)

Phage isolated from sewage samples 
from a sewage treatment plant in 
Colombia

Chlorine The combination of phage and 
chlorine can control or destroy the 
bacterial biofilm on the surface of 
the object

(Yanyan et al. 2012)
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bacteria still exist after 48 h (Montaez-Izquierdo et al. 2012). 
Combined with an antibacterial agent, the phage can enhance 
the ability to inhibit or destroy bacterial biofilms (Table 2), sug-
gesting that an appropriate antibacterial agent can be used as an 
adjuvant to maximize the bactericidal effect of phage.

Some gene products of phage and genetically engineered 
phage-related research have also entered the field of vision 
(Love et al. 2018; Shen et al. 2018). Compared with phage, 
the addition of phage-related gene products, for example, 
lysins, can improve the efficiency of sterilization while 
avoiding the spread of toxic genes and reducing the occur-
rence of bacterial resistance. Because of the presence of the 
bacterial biofilm decomposition genes in natural phage, the 
killing efficiency of phage against bacteria can be enhanced 
(Lu and Collins 2007; Pei and Lamas-Samanamud 2014). 
We summarized some related studies in this review paper. 
The expression of depolymerase can significantly increase 
phage activity (Pelkonen et al. 1992). Enzymatic phage 
can reduce the number of bacterial biofilm cells by about 
4.5 orders of magnitude (removal rate = 99.997%) (Lu and 
Collins 2007). The extracellular polysaccharide depolymer-
ase encoded by phage KP01K2 can hydrolyze the surface 
of Klebsiella pneumoniae biofilm, helping phage Pa29 to 
lyse the underlying P. aeruginosa biofilm (Chhibber et al. 
2015). The biofilm count was significantly reduced when 
methicillin-resistant Staphylococcus aureus biofilm was 
treated with minocycline (4 μg / mL) for 3 h and subse-
quently with phage hemolysin MR-10 (Chopra et al. 2015). 
The Live/Dead  BaclightTM staining showed an increase in 
the number of dead cells after treatment with minocycline 
and hemolysin MR-10 (Chopra et al. 2015), which proved 
that the combination of minocycline and phage hemoly-
sin MR-10 could effectively remove the biofilm formed by 
methicillin-resistant S. aureus. Phage LysGH15 (50 μg/
mL) effectively prevented S. aureus, S. epidermidis, and 
S. haemolyticus from forming biofilms and destroyed bio-
films formed at 24 h and 72 h (Zhang et al. 2018). These 
results suggest that the development of gene products can 
effectively improve or replace the ability of natural phages 
to kill bacteria in a biofilm state. Most studies are focused 
on the ability of phage and their derivative to remove bio-
films, but there are a few studies on the interaction between 
bacteria-QS systems, which need to be further studied.

Bacterial QS systems participate in phage 
adsorption

Adsorption is the first step for phage to infect host bacteria. 
Various surface structures of bacteria are binding sites for 
phage adsorption, including flagella, pili, and other surface 
proteins. QS systems can block the adsorption of phage (Poi-
sot et al. 2012). We have summarized the relevant research 
and presented associated mechanisms in Fig. 2.

QS systems regulate phage adsorption by flagella 
and fimbriae

Phage cannot complete the absorption process in the absence 
of bacterial appendages, such as flagella and fimbriae (Guer-
rero-Ferreira et al. 2011). Concealing the normal morphol-
ogy of bacterial flagella or pili by QS systems can reduce 
the efficiency of phage adsorption (Hoyland-Kroghsbo et al. 
2013; Kobayashi 2007). The QS system of Gram-negative 
bacteria is also known as the LuxI-LuxR type system, which 
mainly uses AHL as a signaling molecule (Sánchez-Sanz 
et al. 2018). E. coli cannot directly synthesize AHL signal-
ing molecules. When exogenous AHL is added, the expres-
sion levels of flagellar-forming genes in E. coli can be inhib-
ited, decreasing the adsorption rate of phage χ by about 3 
times (Hoyland-Kroghsbo et al. 2013). Signaling molecules 
of the QS system in Bacillus subtilis can regulate the gene 
expression of flagellin (Kobayashi 2007), which is important 
for phage adsorption. Also, the regulation of the polar flagel-
lum gene in Burkholderia spp. is mediated by QS systems 
and FlhDC (Kim et al. 2010). However, the removal of polar 
flagellum can promote the adsorption of bacteria by phage 
and enhance the infectivity of phage to V. parahaemolyticus 
(Zhang et al. 2016). These studies suggest that the QS sys-
tems can change the adsorption rate of phages by regulating 
the expression of the polar flagellum genes.

QS systems regulate phage adsorption by bacterial 
surface proteins

Besides flagella and fimbriae, various surface proteins of 
bacteria contribute to phage adsorption (Walderich and 
Höltje 1989). Some surface protein genes are downregulated 

Table 2  (continued)

Phage Antibacterial agents Evaluation of effects Source of references

KP01K2 CoSO4 Compared with the use of divalent 
cobalt ions or phage, the combina-
tion of divalent cobalt ions and K. 
pneumoniae phage KP01K2 can 
significantly reduce the K. pneumo-
niae B5055 biofilm

(Chhibber et al. 2013)
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by QS systems, resulting in the inhibition of phage adsorp-
tion (López-Larrea 2012; Wang et al. 2014). The expression 
of surface protein LamB λ of E. coli can be inhibited with 
the participation of exogenous AHL signaling molecules 
and led to the blocking of phage adsorption (Wang et al. 
2014). In addition, bacteria release a kind of membrane in 
their metabolic activities, called outer membrane vesicles 
(OMVs). Bacterial OMVs play an important role in host 
infection and antibiotic tolerance (Agarwal et al. 2018; Liu 
et al. 2017). The OMVs released by the bacteria can deceive 
the phage onto its surface, protecting the host bacteria and 
blocking the DNA replication of the phage (Manning and 
Kuehn 2011; Reyes-Robles et al. 2018). The formation of 
bacterial OMVs is regulated by QS system signaling mol-
ecules (Lauren et al. 2010). Phage adsorption may be pre-
vented by forming OMVs mediated by the QS systems.

Bacterial QS systems regulate 
the lysis‑lysogeny conversion of phage

Temperate phages are important components of the phage 
family, which can integrate their DNA into the chromosome 
of the host bacteria, and it is passed to the offspring genome 
that usually does not cause bacterial lysis (Laganenka et al. 
2019; Silpe and Bassler 2019). This life cycle is called lysog-
eny. For the lambda-type phage, complex molecular mecha-
nisms control the initial decision between lysis and lysogeny 
upon host infection (Oppenheim et al. 2005). The QS sys-
tems of V. cholerae are well studied (Kai and Bassler 2016). 
The relevant molecular mechanisms of lysis-lysogenic 

conversion of phage controlled by quorum sensing (QS) 
systems are shown in Fig. 3. Some researchers have discov-
ered a QS system loop in V. cholerae, which is composed of 
the cytoplasmic receptor transcription factors (LuxR-solo 
and VQMA) and 3,5-dimethylpyrazin-2-ol (DPO) (Pap-
enfort et al. 2017). The protein VQMA is simultaneously 
encoded by prophage VP882. The phage protein VQMA 
binds to the DPO produced by V. cholerae and leads the 
inactivation of proteins, such as phage vasopressin, resulting 
in lysis conversion of phage. It suggests that phage encode 
QS components, enabling them to integrate host cell density 
information into lysis-lysogen decisions. The activation of 
the QS pathway allows Vibrio phage (VP882) to produce 
an antidepressant called Qtip. Qtip promotes the lysis of 
host cells by interfering with the prophage inhibitory fac-
tor (cIVP882) (Duddy et al. 2021). A recent study showed 
that the QS system of V. anguillarum inhibited the induc-
tion of phage H20 at its high cell density and enhanced the 
ability of biofilm formation in V. anguillarum. The density 
of bacteria determined the phage transition from the lyso-
genic state to lytic state, and the self-inducing signal mol-
ecule (AI-2) played an important role in the process (Tan 
et al. 2020). In addition, the lysis of phage is controlled by 
cell metabolic state mediated by cyclic-3′,5′-AMP (cAMP) 
receptor protein (CRP) (Laganenka et al. 2019). Metabolism 
is an essential part of bacterial survival, and its utilization in 
the amplification of phage increases the viability of phage. 
Researchers have discovered that QS anti-activator protein, 
Aqs1, of Pseudomonas phage DMS3 can inhibit LasR, the 
main regulator of QS (Shah et al. 2021), which help phage 
fight against multiple bacterial defense systems.

Fig. 2  QS systems block phage adsorption. A1: In the absence of sig-
nal molecules, phages bind to the bacterial flagella or fimbriae recep-
tors to adsorb to bacteria. A2: The QS or exogenous signal molecules 
produced by bacteria can conceal the normal morphology of bacterial 
flagella or pili, resulting in reduced phage adsorption efficiency. B1: 

In the absence of signal molecules, phages adsorb to host bacteria by 
binding to their surface protein receptors. B2: The QS or exogenous 
signal molecules produced by bacteria can inhibit the expression of 
some bacterial surface protein to block phage adsorption

2304 Applied Microbiology and Biotechnology (2022) 106:2299–2310
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Bacterial QS systems mediate 
bacteria‑phage ecological evolution

Creatures constantly evolve in survival competition to maintain 
their relative adaptability to predators called the Red Queen 
hypothesis (Mclaughlin and Malik 2017). Although bacte-
ria have multiple mechanisms to resist phage, the number of 
phages is 10 times over bacteria (Li et al. 2018; Paez-Espino 
et al. 2016). The phage-resistant strains can temporarily eva-
sion of phage predation, but the subsequent emergence of the 
phage population, which can infect the phage-resistant bacteria, 
can threaten the life of bacteria (Shabbir et al. 2016). The rapid 
response ability of phage is mainly due to the rapid proliferation 
of phage and the high plasticity of phage genomes. In addition to 
binding to traditional bacterial receptors, phages can choose new 
receptors by modifying their receptor binding proteins (Samson 
et al. 2013). The clustered regularly interspaced short palindro-
mic repeats gene (Cas) was discovered in 1987 and identified in 
2005 as a strategy used by bacterium against the immune system 
of exogenous nucleic acids (Alexander et al. 2005; Ishino et al. 
1987; Rodolphe et al. 2007). When infected by phage, the 5′ end 
of the clustered regularly interspaced short palindromic repeats 
(CRISPR) locus repeat adds a completely homologous sequence 
to the phage. When the phage infects the bacteria again, the bac-
teria become resistant to the phage. According to recent studies, 
population signaling molecules of bacteria can enhance phage 
resistance at high densities by modulating the activity of the 
CRISPR-Cas system (Høyland-Kroghsbo et al. 2016; Patterson 

et al. 2016). The coevolution mechanism between phage and 
bacteria can be studied by the use of competition experiments, 
experimental evolution, and mathematical modeling experi-
ments, which can help design better plans during phage treat-
ment (Cazares et al. 2020).

Bacteria can better adapt to the new environment by the 
acquisition of horizontal transfer genes mediate by phage 
(Canchaya et al. 2003; Takehiko et al. 2010). Under the 
pressure of antibiotics, the expression levels of virulence 
genes encoded by phage in bacteria were induced by the self-
inducing signal molecule (AI-2) (Rossmann et al. 2015). The 
phage-containing supernatant released by Enterococcus fae-
calis V583ΔABC was used to infect probiotics (E. faecalis) 
by AI-2 stimulation, resulting in a significant increase in the 
pathogenicity of probiotics. It suggests that the application of 
phage in the intestine is not completely beneficial. Therefore, 
to use phage more safely, the mechanisms of the transfer of 
virulence and resistance genes need to be further studied.

QS systems mediate phage‑phage 
information exchange

Previous studies have generally focused on the role of bacte-
rial QS systems in bacteria-phage interactions. So, as a virus 
for phage, is there no mechanism for mutual communication? 
If so, do these inter-phage QS systems also play important 
roles in bacteria-phage interactions? We can confirm that there 

Fig. 3  Lysis-lysogenic conversion of phage controlled by QS systems. 
Cl repressor maintains lysogeny of the phage at low cell density. At 
high cell density, protein VqmA encoded by phage interacts with the 
host-produced QS autoinducer DPO, which activates the expression 

of anti-repressor protein Qtip, which binds to the Cl repressor, caus-
ing the activation of Q anti-terminator protein and resulting in the ini-
tiation of phage lysis pathway

2305Applied Microbiology and Biotechnology (2022) 106:2299–2310
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is information exchange between viruses (including phage) 
(Díaz-Muñoz et al. 2017; Erez et al. 2017). Recent studies 
have shown that phage can encode a unique phage QS-like 
system to determine the timing of the lysis-lysogen switch 
(Doekes et al. 2021; Duddy and Bassler 2021). The proteo-
lytic state of phage of the spBeta group can be determined by 
a small molecule communication system (Erez et al. 2017). 
When infects Bacillus spp., the phage produces a 6aa commu-
nication peptide released into the culture medium (Erez et al. 
2017). The progeny phage determines whether it lyses the host 
based on the concentration of the 6aa communication peptide 
(Erez et al. 2017). This signal exchange between the two gen-
erations of phage prolongs the survival of phage. There are 
limited studies on the role of signal exchange between phages 
in bacteria-phage interaction.

Conclusions and future perspectives

Bacteria-phage interactions have been going on for billions 
of years, and many strategies have been developed (Peng and 
Chen 2020). Phage and bacteria jointly update their genetic 
information through horizontal gene transfer and gene muta-
tion. QS systems are widely present in bacteria or phages and 
play a vital role in bacteria and phage interaction. Bacteria 
can inhibit the infection of phage through QS systems. On the 
contrary, phages can cross the defense line of their hosts by 
regulating the bacterial QS systems. Thus, the mechanisms 
of bacteria-bacteria, bacteria-phage, and phage-phage interac-
tions mediated by QS systems need to be further elucidated, 
which is important for preventing diseases and pollution in the 
fermentation industry. In the laboratory, we generally study the 
interaction mechanisms of bacteria and phage. However, in the 
natural environment, bacteria-phage interactions are involved 
with complex intra- and inter-species information exchanges. 
However, further studies should be focused on this issue.
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