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Abstract 
Fipronil is a broad-spectrum phenyl-pyrazole insecticide that is widely used in agriculture. However, in the environment, its 
residues are toxic to aquatic animals, crustaceans, bees, termites, rabbits, lizards, and humans, and it has been classified as a 
C carcinogen. Due to its residual environmental hazards, various effective approaches, such as adsorption, ozone oxidation, 
catalyst coupling, inorganic plasma degradation, and microbial degradation, have been developed. Biodegradation is deemed 
to be the most effective and environmentally friendly method, and several pure cultures of bacteria and fungi capable of 
degrading fipronil have been isolated and identified, including Streptomyces rochei, Paracoccus sp., Bacillus firmus, Bacillus 
thuringiensis, Bacillus spp., Stenotrophomonas acidaminiphila, and Aspergillus glaucus. The metabolic reactions of fipronil 
degradation appear to be the same in different bacteria and are mainly oxidation, reduction, photolysis, and hydrolysis. 
However, the enzymes and genes responsible for the degradation are somewhat different. The ligninolytic enzyme MnP, the 
cytochrome P450 enzyme, and esterase play key roles in different strains of bacteria and fungal. Many unanswered questions 
exist regarding the environmental fate and degradation mechanisms of this pesticide. The genes and enzymes responsible 
for biodegradation remain largely unexplained, and biomolecular techniques need to be applied in order to gain a comprehensive 
understanding of these issues. In this review, we summarize the literature on the degradation of fipronil, focusing on biodegradation 
pathways and identifying the main knowledge gaps that currently exist in order to inform future research.

Key points 
• Biodegradation is a powerful tool for the removal of fipronil.
• Oxidation, reduction, photolysis, and hydrolysis play key roles in the degradation of fipronil.
• Possible biochemical pathways of fipronil in the environment are described.
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Introduction

Fipronil[5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]4-
[(trifluoromethyl)sulfinylidene]-1H-pyrazole-3-carbonitrile] 
is a phenyl pyrazole insecticide that was first successfully 

synthesized by Bayer Crop Science in 1987 (Tingle et al. 2003; 
Bhatt et al. 2021a). It is one of the most persistent lipophilic and 
toxic insecticides after dieldrin, lindane, and DDT, with a broad 
spectrum and low application rate (Mohapatra et al. 2010).

Fipronil is slightly soluble in water and more soluble in 
lipids, oils, proteins, and lipophilic organic solvents. It can 
remain stable for about 1 year at room temperature but is 
readily decomposed in the presence of metal ions or under 
alkaline conditions (Stevens et al. 1998; Bonmatin et al. 
2014). Fipronil is denser than water and more difficult to 
volatilize, and it can be degraded by photolysis (Bonmatin 
et al. 2014; Simon-Delso et al. 2015). The physicochemical 
properties of fipronil are summarized in Table 1.

Unlike the classic insecticides, such as organophosphates, 
carbamates (both cholinesterase inhibitors), and pyrethroids 
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(sodium channel activators) (Aajoud et al. 2003), fipronil 
acts on the neurotransmitter γ-amino butyric acid (GABA) 
receptor (Tian et al. 2019). It disrupts the normal neuronal 
inward flow by interfering with the passage of chloride ions 
through the γ-aminobutyric acid channel (Jiang et al. 2020). 
Fipronil is widely used in agriculture to control rice borer 
and longitudinal leaf roller, and it is excellent at low field 
application rates for insects resistant to other insecticides, 
such as pyrethroids, organophosphates, and carbamates. In 
addition, it is also frequently used as a sanitary insecticide in 
cities because of its pesticidal spectrum (Simon-Delso et al. 
2015; Qian et al. 2020). The combination of neonicotinoids 
and fipronil reportedly comprised 30% of the worldwide mar-
ket for insecticides in recent years, while the use of fipronil 
is increasing (Casida and Durkin 2013; Pang et al. 2020).

However, a large amount of residual fipronil in the envi-
ronment has raised public concern. Fipronil-contaminated 
eggs were found in Europe with residual concentrations up 
to 1.1 mg/kg and an average concentration of 0.065 mg/kg 
(Anagnostopoulos et al. 2020). Residual fipronil has been 
reported to have a significant negative impact on the envi-
ronment and humans (Fig. 1). For example, mammals eat 
food that absorbs fipronil (Gunasekara et al. 2007; Gibbons 
et al. 2016; Cheng et al. 2020). Fipronil and its metabo-
lites can cause significant contamination of the field around 
application sites (Al-Badran et al. 2019). It typically has 
adverse physiological effects that threaten the survival of a 
wide range of non-target invertebrates in terrestrial, aquatic, 
marine, and benthic environments (Pisa et al. 2015; Mulvey 
and Cresswell 2020). Moreover, fipronil has been classified 
as a possible human carcinogen, because it can be harmful to 
the liver, thyroid, and kidneys of mammals (Shi et al. 2020b; 
Bhatt et al. 2021a). Furthermore, some of its metabolites, 
such as fipronil sulfone and fipronil sulfide, can also cause 

a significant contamination of the fields and streams around 
application sites (Ghaffar et al. 2018; Carrao et al. 2019). 
Acceptable operator exposure levels for workers have been 
determined to be approximately 26 μg·kg−1·day−1. The inha-
lation of volatile or atmospheric particle-bound fipronil is 
the most likely route of human exposure (Lewis et al. 2016).

In the natural environment, fipronil is degraded by vari-
ous pathways: principally oxidation, photolysis, hydrolysis, 
reduction, and microbial degradation. Four types of degrada-
tion products are formed: fipronil-sulfide, fipronil-desulfu-
ryl, fipronil-sulfone, and fipronil-amide (Gunasekara et al. 
2007; Weston and Lydy 2014; Han et al. 2020). Fipronil sul-
fone and fipronil sulfide were previously declared to be more 
poisonous than their parent compounds (Weston and Lydy 
2014). Due to the low efficiency of natural degradation and 
the toxicity and persistence of fipronil, human intervention 
is essential (Ying and Kookana 2001; Bhatt et al. 2021a). 
To mitigate the health and environmental risks associated 
with fipronil, the development of effective and eco-friendly 
remediation strategies is necessary. Numerous abiotic and 
biotic methods have been proposed to address fipronil resi-
dues in the natural environment, such as chemical oxidation 
and activated carbon adsorption, plant adsorption, catalyst 
induction, and plasma technology (Tan et al. 2008; Qian 
et al. 2020; Prada-Vasquez et al. 2021). However, these 
approaches are often inefficient and expensive. In addition, 
traditional treatment processes (e.g., ozonation) cannot eas-
ily and effectively degrade fipronil due to the presence of 
halogen, aromatic, and heterocyclic structures in fipronil 
(Anandan and Wu 2015; Ahmad et al. 2019).

At the point of fipronil degradation, the advantages of 
biodegradation are clear, such as its low cost, minimal 
environmental damage, and in situ remediation and the fact 
that it does no harm to the ecosystem. To date, a variety of 

Table 1  Physicochemical 
properties of fipronil (all 
parameters are at 25 °C unless 
specified)

Physicochemical property Medium Value

Chemical Abstract Service registry number (CAS#) 120,068–37-3
Molecular weight (g/mol) 473.2
Color/state of matter White solid
Melting point (°C) 200–201
Density (g/mL 20 °C) 1.48–1.63
Vapor pressure (mPa; calculated) 3.7 ×  10−4

Henry’s constant  (m3· atm/mol; experimental) 6.60 ×  10−6

Henry’s constant  (m3 · atm/mol; calculated) 8.50 ×  10−10

Octanol–water partition coefficient (log Kow) 3.50
Organic carbon normalized partition coefficient (averaged Koc) 825
Aqueous photolysis (d; pH = 5) 0.33
Solubility Water (mg/L; pH = 5) 1.90

Water (mg/L; pH = 9) 2.40
Hexane (mg/L) 28.0
Toluene (mg/L) 3000
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potential microorganisms for fipronil biodegradation have 
been reported (Uniyal et al. 2016; Gajendiran and Abraham 
2017). However, a review of the degradation mechanisms 
and pathways of fipronil is lacking. In this paper, we summa-
rize the abiotic and biotic degradation pathways of fipronil, 
biodegradation mechanisms, and the microbial bioremedia-
tion potential in fipronil-contaminated environments.

Abiotic degradation of fipronil

The main abiotic transformations of fipronil occur due to 
photolytic hydrolysis and chemical redox reactions, which 
form four main products: sulfonyl-fipronil, amide-fipronil, 
sulfide-fipronil, and desulfinyl-fipronil (Fig. 2) (Bobe et al. 
1998; Mukherjee 2006; Masutti and Mermut 2007b; McMa-
hen et al. 2016).

Mulrooney (2002) reported that fipronil has a half-life 
(t1/2) of 34 days on soil exposed to light, with a slow deg-
radation rate. A study by Zhou et al. (2004) showed that 

fipronil residues in soil were below the detection limit after 
47 days of pesticide spraying at levels of 24 and 48 g a.i./ha. 
The t1/2 of fipronil in the soil was calculated to be 7.3 days. 
The t1/2 of fipronil residues found in rice soil were 9.50 days 
and 10.31 days for dose applications of 7.5 and 15.0 kg/
acre, respectively, and it was degraded in the soil according 
to biphasic first-order kinetics. Ying and Kookana (2002) 
showed that the total time fraction half-lives of field soil 
treated with fipronil at high (0.15 g/m2) and low (0.075 g/
m2) concentrations were 178 days and 198 days, respec-
tively. They studied the degradation of fipronil and its three 
metabolites in the field soil and found that the desulfinyl 
derivatives were absent, as the desulfinyl derivatives were 
degraded more rapidly in soil, with a t1/2 of 41–55 days. 
Fenet et al. (2001) reported that under tropical field con-
ditions, a slightly faster dissipation of sulfides than other 
metabolites, such as fipronil sulfone and desulfuryl alcohol, 
was observed. Saini et al. (2014) studied the degradation 
of fipronil in field soil and found the metabolites, sulfone, 
desulfinyl, and sulfide in the soil. The mean residues of 

Fig. 1  The fate and occurrence of fipronil in the environment
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fipronil, sulfone, sulfide, and desulfuryl reached 0.001 mg/
kg on days 90, 15, and 60 after treatment. A t1/2 of 8.14 days 
and 13.05 days was observed for fipronil at application rates 
of 50 mg/kg and 100 mg/kg, respectively.

In tropical soil with a sand content of 80% in Niger, an 
aqueous solution of fipronil was exposed to natural daylight 
conditions at pH 5.5, and its half-life was calculated to be 
4.1 h and 20 min, which is consistent with a rapid first-order 
degradation kinetic pattern. Similar results (7.92 h) were 
obtained for experiments in similar conditions but in dif-
ferent types of soil (Gunasekara et al. 2007). In addition, it 
was reported that 1%  H2O2 can accelerate the degradation 
of fipronil by a factor of three. Similar studies also con-
firmed that the presence of  H2O2 accelerated the formation 
of fipronil-desulfinyl: the t1/2 of fipronil in  H2O2 was reduced 
to 0.87–4.51 h (Hainzl et al. 1998; Caboni et al. 2003; Cry-
der et al. 2021). We hypothesize that the acceleration of 
fipronil degradation is due to the generation of hydroxyl 
radicals in  H2O2 by light exposure. The fipronil–desulfinyl 
complex is reported as the major photo-degradation product 
of fipronil, with a t1/2 of 41–55 days, which is the longest 
of the four degradation products. Therefore, it is considered 
as the major persistent residue on applied crops (Ying and 
Kookana 2002; Goff et al. 2017).

The photo-degradation of fipronil was found to 
be negatively correlated with adsorption. Repeated 

photo-degradation experiments with fipronil in soil showed 
that the photo-degradation rate was slower in soil than in 
aqueous solution due to the lack of a light source in the 
environment (Shuai et al. 2012; Wang et al. 2016; Shi et al. 
2020b). It was also found that the degradation rate of fipronil 
was closely related to the nature of the soil and urban pesti-
cide application methods and correlated with the Freundlich 
adsorption coefficient (Raveton et al. 2006; Ramasubrama-
nian and Paramasivam 2017). These factors can significantly 
affect the degradation rate of fipronil in soil. Qu et al. (2016) 
studied the degradation of fipronil in aquatic systems and 
found that the light-dependent hydrolysis of the parent com-
pound from the sulfur and nitrile side chains bound to the 
heterocyclic ring over a 3-month period yielded two different 
degradation products: fipronil sulfide and fipronil amide. In 
the absence of oxygen in water, fipronil degraded slowly, 
with an average t1/2 of 123 days, which is much longer com-
pared to the half-life of fipronil in an aerobic soil system 
(Aajoud et al. 2003).

The effect of different pH on the non-photo-degrada-
tion of fipronil in water at 22 °C was also investigated, 
and it was found that fipronil was stable in acidic (pH 
5.5) and neutral (pH 7.0) solutions. Under all the pH con-
ditions, about 80% of fipronil was still detectable after 
about 100 days. However, the degradation of fipronil under 
alkaline conditions (pH 9–12) increased as the pH was 

Fig. 2  The degradation products 
of fipronil (A) under environ-
mental conditions, (B) amide-
fipronil, (C) desulfinyl-fipronil, 
(D) sulfide-fipronil, and (E) 
sulfonyl-fipronil (Gunasekara 
et al. 2007)
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increased, with subsequent pseudo-first-order degradation 
kinetics (Lao 2021; Wan et al. 2021). At pH 12, fipronil 
degraded about 300 times faster in water than at pH 9. 
Changes in temperature also affect the degradation of 
fipronil in water, and the increase of temperature increases 
its hydrolysis rate. It has been found that the t1/2 of fipronil 
decreases from 114 to 18 h when the temperature is raised 
from 22 to 45 °C, respectively (Ngim and Crosby 2001). 
Generally speaking, hydrolysis should not be the main 
degradation pathway for fipronil, as it is steady under a 
typical environmental pH (Shi et al. 2020a).

In recent years, several physical and chemical methods 
have been developed to address the problem of fipronil 
residues in the environment, such as activated carbon 
adsorption and chemical oxidation techniques (Ikehata and 
El-Din 2005; Luo et al. 2014). Ngim et al. (2000) found 
that fipronil in aqueous solution was mainly degraded 
by a photo-degradation pathway to generate desulfur-
ized compounds, which were further degraded to other 
compounds by processes such as photosensitive dichlo-
rination, trifluoromethyl substituted chlorine, and pyrazole 
ring cleavage. In addition, the methanol did not affect the 
photolytic product formation. However, due to the com-
plex structure of fipronil, with halogen, aromatic, and het-
erocyclic rings, treatment using conventional processes is 
usually costly and ineffective (Zhang et al. 2019). With a 
multiphase catalyst coupled with ozone, 89% of fipronil 
could be degraded in 40 min (Anandan and Wu 2015). 
Gomes et al. (2017) used titanium dioxide  (TiO2) to induce 
a multiphase photocatalytic degradation of alachlor, with 
a degradation efficiency of 90.9%. However, the use of 
a catalyst has the potential for secondary contamination. 
After the treatment has been completed, it is essential that 
the catalyst is filtered, which complicates the steps and 
also increases the cost.

The applications of different catalyst-free plasma-based 
technologies (including high-voltage arc discharge plasma, 
pulsed corona discharge plasma, and dielectric barrier 
discharge (DBD) plasma) for pesticide degradation have 
appeared in numerous reports (Yin et al. 2006; Wang et al. 
2010a, b). Among them, medium-blocking discharge plasma 
degradation is considered the most promising chemical deg-
radation method for research and application. It can generate 
strong oxidants that are very beneficial for compound degra-
dation, such as hydroxyl radicals and ozone (Hu et al. 2013; 
Li et al. 2013). Plasma degradation can take a long time to 
achieve the desired degradation rate. Additionally, the use 
of a plasma treatment requires a very extraordinary degree 
of precision in the equipment unit. The microwave-induced 
plasma degradation of fipronil systems in aqueous solu-
tions consists mainly of oxidation, reduction, nitro reduc-
tion, dehydration, and thiourea generation to urea (Qian 
et al. 2020). However, this process is very complex and can 

only occur in liquid media, making it difficult to achieve the 
desired degradation effect.

Microbial degradation of fipronil

Determining the mechanisms and pathways of fipronil deg-
radation is a difficult task, because biodegradation and abi-
otic degradation reactions can occur simultaneously. The 
combination of basic biotic and abiotic reaction mechanisms 
(oxidation, reduction, photolysis, and hydrolysis) may yield 
a very complex network of transformation products (Fig. 3).

The biodegradation pathway of fipronil is mainly 
achieved through the action of microorganisms. For pesti-
cide residues in soil and water, microbial degradation is the 
most effective degradation method, and the factors affecting 
the degradation are the physicochemical properties of the 
pesticides, soil conditions, environmental conditions, and 
diversity of soil microorganisms (Cycoń et al. 2017; Arora 
et al. 2018; Zhan et al. 2018; Birolli et al. 2019; Huang et al. 
2020; Bhatt et al. 2021b). Microbial degradation can be used 
to remediate organic compound contamination in soil and 
water, which is a clean, efficient, and eco-friendly method 
and does not cause secondary pollution, unlike physico-
chemical methods (Chen et al. 2014; Mishra et al. 2020; 
Bhatt et al. 2020).

The microbial degradation of fipronil in soil was first 
investigated by Zhu et al. in 2004. It was found that fipronil 
could be degraded by microorganisms in non-sterile clay 
loam soil to form the metabolite, fipronil-sulfide. In non-
sterile clay loam soil, the half-lives were 9.72 and 8.78 days 
at 25℃ and 35℃, respectively. In sterile soil, the half-lives 
at the same temperatures were 33.51 and 32.07 days, respec-
tively, indicating that the degradation of fipronil is affected 
by soil microorganisms. A microbial viability test also dem-
onstrated the presence of living microorganisms in the non-
sterile clay loam soil during the test (Zhu et al. 2004). This 
study concluded that fipronil does not threaten the survival 
of microorganisms after they have adapted to the soil envi-
ronment in the presence of fipronil.

Tan et al. (2008) studied the microbial degradation of 
fipronil in three different rice soils under aerobic and flooded 
(anaerobic) conditions. The dissipation of fipronil in active 
soil under these two types of conditions was determined 
using high performance liquid chromatography (HPLC) in 
accordance with primary degradation kinetics. Their t1/2 val-
ues were calculated to be 21–34 days in aerobic degradation 
experiments and 8–19 days in flooded incubation conditions. 
The main products of fipronil degradation were identified 
as sulfone and sulfide derivatives formed by oxidation and 
reduction, respectively. Under anoxic conditions, fipronil 
was degraded more rapidly than under aerobic conditions, 
and the main metabolite was determined to be fipronil 
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sulfide. In sterile soil experiments, little transformation of 
fipronil was observed, suggesting that fipronil was degraded 
due to microbial-mediated action in the rice soil (Zhou et al. 
2004). These results can be used to better assess the environ-
mental and ecological risks of chiral pesticides. However, 
the abovementioned study only demonstrated the presence 
of microorganisms that can degrade fipronil in soil, and no 
corresponding degrading strains were isolated.

In a subsequent study, several fipronil degrading strains 
were isolated and characterized (Table 2). Kumar et al. 
(2012) isolated two bacterial cultures identified as Paracoc-
cus sp. and Gamma proteobacteria from cotton field soil that 
could degrade fipronil. The fipronil degradation potential of 
these two bacterial strains was evaluated in three different 
soils (loamy sand, sandy loam, and clay loam). It was found 
that fipronil was detectable in the three soils treated with 
20 μg/kg fipronil after 30 days. When the same treated soils 
were amended with Paracoccus sp., fipronil was found to 
be undetectable after only 10 days. The same fortified soils 
were amended with Gamma Proteobacteria, and the fipronil 

was completely degraded in 20 days. The same results 
were obtained after increasing the concentration of fipronil 
to 80 μg/kg. Paracoccus sp. were found to be superior to 
Gamma Proteobacteria in terms of fipronil degradation in 
soil. However, the mean recovery and degradation rate of 
fipronil in this study were less than satisfactory, and further 
exploration is needed to achieve precise bioremediation, 
especially given that a limited or no range of uncertainty 
and variability of the microbial functions has been reported.

In another study, Bacillus thuringiensis was isolated and 
enriched in a culture from soil samples collected from differ-
ent sugarcane farms of the Gurdaspur district, and the per-
sistence of the fipronil in soil fortified with B. thuringiensis 
was found to be very low, compared to untreated soil (Man-
dal et al. 2013). The half-lives of fipronil in clay loam soils 
with 0.50 mg/kg of fipronil were 4.07, 4.70, 4.85, 5.10, and 
5.90 days, respectively, while in the soil of the control exper-
iment, the value was 100.33 days, and the most detected 
metabolites were sulfide, followed by sulfone and amide. 
No desulfurized phenol metabolites were detected in any of 

Fig. 3  Degradation network of fipronil in the environment

7700 Applied Microbiology and Biotechnology (2021) 105:7695–7708



1 3

Ta
bl

e 
2 

 M
ic

ro
bi

al
 d

eg
ra

da
tio

n 
of

 fi
pr

on
il

N
o

M
ic

ro
or

ga
ni

sm
s

Ty
pe

D
et

ec
te

d 
m

et
ab

ol
ite

s
C

om
m

en
ts

Is
ol

at
io

n 
so

ur
ce

Re
fe

re
nc

es

1
Pa

ra
co

cc
us

 sp
.

B
ac

te
riu

m
N

o 
da

ta
Th

e 
m

ea
n 

re
co

ve
rie

s o
f fi

pr
on

il 
in

 d
iff

er
en

t t
yp

es
 o

f s
oi

l w
er

e 
fo

un
d 

to
 b

e 
m

or
e 

th
an

 8
5%

C
la

y 
lo

am
, s

an
dy

 lo
am

 a
nd

 
lo

am
y 

sa
nd

K
um

ar
 e

t a
l. 

(2
01

2)

2
G

am
m

a 
Pr

ot
eo

ba
ct

er
ia

B
ac

te
riu

m
N

o 
da

ta
Th

e 
m

ea
n 

pe
r c

en
t r

ec
ov

er
y 

of
 

fip
ro

ni
l a

nd
 it

s m
et

ab
ol

ite
s, 

vi
z.

 
su

lfo
ne

, s
ul

fid
e,

 a
m

id
e,

 a
nd

 
de

su
lfi

ny
l f

ro
m

 th
e 

fo
rti

fie
d 

sa
m

pl
es

, w
er

e 
fo

un
d 

to
 b

e 
m

or
e 

th
an

 8
5%

C
la

y 
lo

am
, s

an
dy

 lo
am

 a
nd

 
lo

am
y 

sa
nd

M
an

da
l e

t a
l. 

(2
01

3)

3
Ba

ci
llu

s t
hu

ri
ng

ie
ns

is
B

ac
te

riu
m

Su
lfi

de
, s

ul
fo

ne
, a

nd
 a

m
id

e
Th

e 
m

ea
n 

pe
r c

en
t r

ec
ov

er
y 

of
 

fip
ro

ni
l a

nd
 it

s m
et

ab
ol

ite
s, 

vi
z.

 
su

lfo
ne

, s
ul

fid
e,

 a
m

id
e,

 a
nd

 
de

su
lfi

ny
l f

ro
m

 th
e 

fo
rti

fie
d 

sa
m

pl
es

, w
er

e 
fo

un
d 

to
 b

e 
m

or
e 

th
an

 8
5%

So
il 

sa
m

pl
es

 c
ol

le
ct

ed
 fr

om
 d

if-
fe

re
nt

 su
ga

rc
an

e 
gr

ow
in

g 
fie

ld
s

M
an

da
l e

t a
l. 

(2
01

3)

4
Ba

ci
llu

s fi
rm

us
B

ac
te

riu
m

Fi
pr

on
il 

su
lfi

de
, fi

pr
on

il 
su

lfo
ne

, 
an

d 
fip

ro
ni

l a
m

id
e

Re
si

du
es

 w
er

e 
no

t d
et

ec
te

d 
af

te
r 

35
, 3

5,
 3

5,
 4

2,
 a

nd
 4

9 
d 

in
 so

il 
sa

m
pl

es
 a

fte
r f

or
tifi

ca
tio

n 
w

ith
 

fip
ro

ni
l 0

.5
0,

 0
.7

5,
 1

.0
0,

 1
.2

5,
 

an
d 

1.
50

 m
g/

kg

So
il 

sa
m

pl
es

 c
ol

le
ct

ed
 fr

om
 su

ga
r 

fie
ld

s
M

an
da

l e
t a

l. 
(2

01
4)

5
St

en
ot

ro
ph

om
on

as
 a

ci
da

m
in

-
ip

hi
la

B
ac

te
riu

m
Fi

pr
on

il 
su

lfo
ne

, s
ul

fid
e,

 a
nd

 
am

id
e

Th
e 

ba
ct

er
ia

l s
tra

in
 w

as
 a

bl
e 

to
 

m
et

ab
ol

iz
e 

25
 m

g/
L 

fip
ro

ni
l 

w
ith

 8
6.

14
%

 d
eg

ra
da

tio
n 

in
 

D
or

n’
s b

ro
th

 m
ed

iu
m

 u
nd

er
 

op
tim

um
 c

on
di

tio
ns

So
il 

of
 Z

ea
 m

ay
s

U
ni

ya
l e

t a
l. 

(2
01

6)

6
Tr

am
et

es
 v

er
si

co
lo

r
Fu

ng
us

H
yd

ro
xy

la
te

d 
fip

ro
ni

l s
ul

fo
ne

, 
gl

yc
os

yl
at

ed
 fi

pr
on

il 
su

lfo
ne

, 
an

d 
tw

o 
co

m
po

un
ds

 w
ith

 u
nr

e-
so

lv
ed

 st
ru

ct
ur

es

Fi
pr

on
il 

is
 ra

pi
dl

y 
m

et
ab

ol
iz

ed
 b

y 
Tr

am
et

es
 v

er
si

co
lo

r t
o 

fip
ro

ni
l 

su
lfo

ne
 a

nd
 m

ul
tip

le
 p

re
vi

ou
sly

 
un

kn
ow

n 
fip

ro
ni

l t
ra

ns
fo

rm
a-

tio
n 

pr
od

uc
ts

, l
ow

er
in

g 
fip

ro
ni

l 
co

nc
en

tra
tio

n 
by

 9
6.

5%

A
m

er
ic

an
 T

yp
e 

C
ul

tu
re

 C
ol

le
c-

tio
n

W
ol

fa
nd

 e
t a

l. 
(2

01
6)

7
As

pe
rg

ill
us

 g
la

uc
us

 st
ra

in
 A

JA
G

1
Fu

ng
us

B
is

[2
-C

hl
or

o-
4-

et
ho

xy
ph

en
yl

]
su

lfo
ne

,su
lfu

ric
ac

id
-5

,8
,1

1-
he

pt
ad

ec
at

rie
ny

l m
et

hy
l e

ste
r, 

D
-a

sy
ca

rp
id

an
-1

-m
et

ha
no

l, 
an

d 
is

om
en

th
on

e

St
ra

in
 A

JA
G

1 
co

ul
d 

de
gr

ad
e 

90
0 

m
g/

L 
of

 fi
pr

on
il 

effi
ci

en
tly

 
in

 b
ot

h 
aq

ue
ou

s m
ed

iu
m

 a
nd

 
so

il

So
il 

sa
m

pl
e 

w
as

 o
bt

ai
ne

d 
fro

m
 

Ab
el

m
os

ch
us

 e
sc

ul
en

tu
s fi

el
d

G
aj

en
di

ra
n 

an
d 

A
br

ah
am

 (2
01

7)

8
Bu

rk
ho

ld
er

ia
 th

ai
la

nd
en

si
s

B
ac

te
riu

m
Fi

pr
on

il 
su

lfi
de

 a
nd

 fi
pr

on
il 

su
lfo

ne
Th

e 
m

et
ho

d 
pr

es
en

te
d 

lin
ea

rit
y 

of
 0

.9
9,

 p
re

ci
si

on
 b

et
w

ee
n 

1.
5 

an
d 

10
.9

%
, w

hi
le

 th
e 

re
co

ve
ry

 
ra

ng
ed

 fr
om

 7
8 

to
 9

8%

Fe
rti

liz
ed

 so
il

C
ap

pe
lin

i e
t a

l. 
(2

01
8)

7701Applied Microbiology and Biotechnology (2021) 105:7695–7708



1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

N
o

M
ic

ro
or

ga
ni

sm
s

Ty
pe

D
et

ec
te

d 
m

et
ab

ol
ite

s
C

om
m

en
ts

Is
ol

at
io

n 
so

ur
ce

Re
fe

re
nc

es

9
St

re
pt

om
yc

es
 ro

ch
ei

 st
ra

in
 

A
JA

G
7

B
ac

te
riu

m
B

en
za

ld
eh

yd
e,

 (p
he

ny
lm

et
hy

le
ne

) 
hy

dr
az

on
e 

an
d 

1,
2-

be
nz

en
ed

i-
ca

rb
ox

yl
ic

 a
ci

d,
 m

on
o(

2-
et

hy
l-

he
xy

l) 
es

te
r

St
ra

in
 A

JA
G

7 
w

as
 a

bl
e 

to
 

de
gr

ad
e 

50
0 

m
g/

L 
co

nc
en

tra
-

tio
n 

of
 fi

pr
on

il 
in

 th
e 

liq
ui

d 
m

ed
iu

m
 a

nd
 in

 so
il 

af
te

r 6
d 

an
d 

7d
 o

f i
nc

ub
at

io
n,

 re
sp

ec
tiv

el
y

Fi
pr

on
il 

co
nt

am
in

at
ed

 tu
rm

er
ic

 
fie

ld
A

br
ah

am
 a

nd
 G

aj
en

di
ra

n 
(2

01
9)

10
St

ap
hy

lo
co

cc
us

 a
rle

tta
e

B
ac

te
riu

m
N

o 
da

ta
Pa

ire
d 

sa
m

pl
e 

T-
te

st 
an

d 
de

gr
ad

a-
tio

n 
ki

ne
tic

 st
ud

y 
re

co
rd

ed
 th

at
 

th
e 

ba
ct

er
ia

l s
tra

in
 S

. a
rle

tta
e 

w
as

 m
or

e 
effi

ci
en

t (
81

.9
4%

) 
in

 fi
pr

on
il 

de
gr

ad
at

io
n 

th
an

 B
. 

th
ur

in
gi

en
si

s (
65

.9
8%

)

Fi
pr

on
il 

co
nt

am
in

at
ed

 so
ils

 in
 th

e 
ca

rd
am

om
 p

la
nt

at
io

ns
A

t e
t a

l. 
(2

01
9)

11
Ba

ci
llu

s s
p.

 F
A

3
B

ac
te

riu
m

B
en

za
ld

eh
yd

e 
(p

he
ny

l m
et

hy
l-

en
e)

 h
yd

ra
zi

ne
 a

nd
 1

,2
 b

en
ze

ne
 

di
ca

rb
ox

yl
ic

 a
ci

d

St
ra

in
 F

A
3 

effi
ci

en
tly

 m
et

ab
o-

liz
ed

 fi
pr

on
il 

in
 m

in
er

al
 sa

lt 
m

ed
iu

m
 (M

SM
) a

nd
 d

eg
ra

da
-

tio
n 

w
as

 7
6.

0%
 in

 1
5 

da
ys

C
on

ta
m

in
at

ed
 a

gr
ic

ul
tu

ra
l fi

el
d

B
ha

tt 
et

 a
l. 

(2
02

1b
)

12
Ba

ci
llu

s s
p.

 F
A

4
B

ac
te

riu
m

N
-P

he
ny

lm
et

ha
cr

yl
am

id
e,

 
N

-M
et

hy
l b

is
 (t

rifl
uo

ro
m

et
hy

l 
su

lfi
n)

 a
m

id
e,

 H
ex

ad
ec

an
e-

1-
su

lfo
ni

c 
ac

id
, 4

-h
yd

ro
xy

-, 
de

lta
-s

ul
to

ne

Th
e 

de
gr

ad
at

io
n 

of
 fi

pr
on

il 
in

 so
il 

w
as

 3
5%

, 5
2%

, a
nd

 7
7%

 a
fte

r 5
, 

10
, a

nd
 1

5 
da

ys
 o

f i
nc

ub
at

io
n

C
on

ta
m

in
at

ed
 a

gr
ic

ul
tu

ra
l fi

el
d

B
ha

tt 
et

 a
l. 

(2
02

1a
)

7702 Applied Microbiology and Biotechnology (2021) 105:7695–7708



1 3

the samples (Mandal et al. 2013). Subsequently, this team 
also isolated another strain of Bacillus firmus that was also 
capable of degrading fipronil in soil. However, its required 
degradation time was dose-dependent (Mandal et al. 2014).

The degradation efficiency of fipronil can be affected by 
many factors, such as the temperature, pH, humidity, appli-
cation method, soil composition, and biodiversity. In order to 
achieve effective bioremediation with an enhanced degrada-
tion efficiency, the optimization of the process appears to be 
crucial (Zhu et al. 2004; Prakasham et al. 2005; Masutti and 
Mermut 2007a; Paliwal et al. 2016). However, none of the 
previous studies have optimized the environmental factors 
affecting the rate of microbial degradation of fipronil. Uniyal 
et al. (2016) isolated the fipronil-degrading strain, S1 (Steno-
trophomonas acidaminiphila), from inter-rhizosphere soil of 
maize and used the response surface methodology (RSM), 
based on the Box-Behnken design, to determine the optimal 
environmental conditions for the growth and degradation of 
this bacterium. The growth curve of strain S1 showed that it 
grew rapidly within 8 days of incubation. At the same time, 
the fipronil concentration also decreased rapidly. The strain 
degraded 86.14% of a fipronil concentration of 25 mg/L in a 
Dorn broth medium over about 14 days at pH 7.5, 35 °C, and 
0.175 g/L inoculum. The metabolites were detected using 

gas chromatography analysis, and the results showed that the 
fipronil was degraded by oxidation, reduction, and hydroly-
sis reactions, producing sulfone, sulfide, and amide in the 
presence of S1, which is also a different metabolic pathway 
from the previous one (Fig. 4).

Gajendiran and Abraham (2017) isolated fipronil-degrad-
ing strains, AJAG1 and AJAG7, from contaminated soil. 
Among them, AJAG1 was identified as Aspergillus griseus, 
which is reported as the first fipronil-degrading fungus. It 
was able to efficiently degrade fipronil at 900 mg/L, both 
in aqueous medium and in soil, and it can also degrade the 
metabolite fipronil sulfone. High-performance liquid chro-
matography (HPLC) analysis showed that strain AJAG7 was 
able to degrade fipronil at a concentration of 500 mg/L in 
both liquid medium and soil. After 96 h of incubation, a 
complete degradation of the metabolite fipronil sulfone was 
detected (Abraham and Gajendiran 2019).

In addition, Staphylococcus arlettae (At et al. 2019), Bur-
kholderia thailandensis (Cappelini et al. 2018), Bacillus sp. 
FA3 (Bhatt et al. 2021b), and Bacillus sp. FA4 (Bhatt et al. 
2021a) were found to be effective fipronil-degrading micro-
organisms. In addition to microorganisms, some studies have 
found that earthworms also contribute to the degradation 
and remediation of fipronil in soil (Qin et al. 2015; Wang 

Fig. 4  Degradation pathways 
of fipronil in microorganisms 
(Uniyal et al. 2016; Bhatt et al. 
2021a)
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et al. 2019). However, there are few studies on the molecular 
mechanisms of fipronil degradation. Therefore, in the fol-
lowing, the degradation mechanisms of fipronil are summa-
rized in order to better analyze their bioremediation potential 
in fipronil-contaminated environments.

Molecular mechanisms of fipronil 
biodegradation

The biodegradation of fipronil is associated with functional 
gene-encoding degradation enzymes in the corresponding 
microorganisms (Liu et al. 2017; Yang et al. 2018). During 
fipronil accumulation, microorganisms can use fipronil as 
a carbon and/or nitrogen source for growth, while enzymes 
in their bodies can convert fipronil into their metabolites. 
Previous studies have found that enzyme preparations are 
more effective than direct microbial use (Chen et al. 2011; 
Bhatt et al. 2020; Lin et al. 2020). However, few studies 
have mentioned the fipronil degradation genes and enzymes 
related to microorganisms.

Both bacteria and fungi play an irreplaceable role in the 
remediation of environmental contamination (Chen et al. 
2014; Bhatt et al. 2021c; Zhang et al. 2021). However, for 
some specific compounds, fungi are more suitable (Feng 
et al. 2020; Zhang et al. 2020; Lin et al. 2021). Especially 
in filamentous fungi, pollutants in the environment can be 
assigned and transferred into the mycelium (Chen et al. 
2008). Among them, Aspergillus spp. are frequently reported 
to be tolerant to a wide range of contaminants, and lignino-
lytic enzymes (Lac, MnP, and LiP) are considered a potential 
bio-remediator for various pesticides in soil (Pizzul et al. 
2009). Strain AJAG1 showed activity on both MnP and LiP. 
In the initial stage of fipronil degradation, the enzyme activi-
ties of MnP and LiP were detected to reach a maximum in 
the supernatant, and this value gradually decreased as the 
incubation time increased. The enzyme activity of MnP was 
higher than LiP, indicating that MnP may play a dominant 
role in the degradation of fipronil by strain AJAG1. The 
enzyme activity was higher in the culture supernatant than 
in the cell lysates, which indicates that these enzymes are 
extracellular (Gajendiran and Abraham 2017).

A study conducted by Wolfand et al. (2016) on fipronil 
degradation by White Rot Fungus (WRF) demonstrated that 
fipronil was degraded by the cytochrome P450 enzyme. The 
levels of metabolites produced by Trametes versicolor were 
detected to be significantly lower in the presence of the 
inhibitor of the cytochrome P450 enzyme, 1-aminobenzo-
triazole (Wolfand et al. 2016). WRF can metabolize com-
pounds intracellularly through the cytochrome P450 com-
plex in a manner similar to that of the mammalian liver. 
No pretreatment is required to treat contaminants with 
WRF, as their enzymes are produced under constitutive or 

nutrient-limited conditions (Cerniglia 1997; Pointing and 
Vrijmoed 2000; Pinedo-Rivilla et al. 2009).

The biodegradation of pesticides in soil can be tracked by 
gene expression patterns (Mishra et al. 2020). An increase 
in gene levels during bacterial growth is usually associ-
ated with a higher metabolic rate of degrading a compound 
(Monard et al. 2013). With the biodegradation of fipronil, 
an increase in the level of mRNA encoding the esterase gene 
was detected in fipronil-degrading strains, FA3 and FA4 
(Bhatt et al. 2021d; Bhatt et al. 2021a, b). More in-depth 
studies on the macrogenomic and transcriptomic aspects 
of pesticide-degrading bacteria could provide more com-
prehensive assistance in monitoring pollutants and under-
standing the molecular mechanisms of the remediation of 
environmental pollution.

Moreover, some studies have identified some fipronil 
resistance genes and detoxification enzymes in some insects, 
and the elucidation of the resistance mechanism can also be 
applied to the fipronil degradation mechanism. The quan-
titative enzyme profiling of esterase, cytochrome P450, 
and glutathione sulfotransferase (GST) was performed in 
Rhipicephalus microplus (a tick parasite in zoos and wild-
life) to determine the possible correlation between fipronil 
resistance and functional enzymes (Ghosh et al. 2007; Chig-
ure et al. 2018). The results of the enzyme profile analysis 
showed elevated levels of β-esterase, CYP450, and GST. The 
same results appeared in a resistance study against German 
cockroaches (Blattella germanica L.). One strain, GNV-R, 
showed a 36-fold resistance to topically applied fipronil at 
the LD50 level, and the bioassays performed indicated that 
it was in the presence of cytochrome P450 that the detoxi-
fication and resistance developed (Gondhalekar and Scharf 
2012).

When studying the relationship between detoxification 
enzymes and resistance to butenaflutole in locusts, the 
synergistic effects of three synergists, piperonyl butox-
ide, triphenyl phosphate, and diethyl maleate, were found 
to be 4.20-fold, 3.31-fold, and 2.56-fold, respectively, for 
the resistant strain. The synergistic effect of PBO was the 
greatest. The activities of multifunctional oxidase, carboxy-
lesterase, and glutathione sulfotransferase were significantly 
increased compared to the sensitive strain, and these phe-
nomena suggest that P450, CarE, and GST may jointly con-
tribute to the metabolism and detoxification of exogenous 
chemicals such as butenyl fipronil in locusts. Transcriptome 
sequencing revealed 226 detoxification enzyme genes and 
23 up-regulated deacetylase genes. The evolutionary tree 
of related gene families included 59 P450 genes, 52 car-
boxylesterase (CarE) genes, and 25 glutathione transferase 
(GST) genes. The results of reverse transcription-polymerase 
chain reaction (RT-PCR) analysis of overexpressed genes in 
the resistance population combined with the evolutionary 
tree showed that P450 genes belong to 14 families including 
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CYP6, CYP4, CYP18, and CYP302, and all members of 
the P450 family have functional annotations of “secondary 
metabolite biosynthesis, transport, and metabolism” in the 
COG database. Of the 86 CarE genes, 35 sequences belong 
to Clade A, 7 to Clade H, 4 to Clade D, 3 to Clade E, and 3 
to Clade F. These genes play an important role in insecticide 
metabolism, and all CarE genes are annotated in the GO 
database as All CarE genes are annotated in the GO database 
as “hydrolase activity” and “carboxylate hydrolase activity” 
and in the COG database as “lipid transport and metabo-
lism.” Twenty-five GSTs were successfully constructed as 
phylogenetic trees, belonging to six families and microso-
mal, and the above family members were annotated in the 
transcriptome database as genes that metabolize insecticides 
and are candidates for further studies on fipronil resistance 
and metabolism mechanisms (Jin et al. 2020).

However, the opposite occurred in another study. The 
WX-F strain of Laodelphax striatellus (Hemiptera: Delpha-
cidae) was selected from a field collection of 77 genera-
tions of successive fipronil selections. It showed an 86.6-
fold  (LD50 compared to the first generation) resistance to 
fipronil, but the bioassays and analysis of its detoxification 
enzyme activity showed no significant correlation between 
the detoxification enzymes and resistance of the WX-F strain 
to fipronil. An additional molecular analysis suggested that 
the fipronil resistance was probably attributable to the tar-
get site insensitivity. Sequencing of a single cDNA frag-
ment cloned from the Rdl GABA receptor gene revealed an 
80% frequency of A2'N mutations in the WX-F. It carried 
a mutated LsRdl allele that replaced Ala (GCC) with Asn 
(AAC). The high-level frequency of the LsRdl-Asn allele in 
strain WX-F suggests that the A2'N mutation in the GABA 
receptor gene might be related to resistance to fipronil in 
Laodelphax striatellus (Gao et al. 2014).

Future perspectives and conclusions

The increased use of fipronil in agriculture and urban areas 
has led to the release of residual pollutants into the envi-
ronment, particularly as a pesticide in agricultural soil. 
Fipronil moves through the food chain, causing environ-
mental damage and health risks to non-target organisms. 
These contaminated resources require urgent attention, and 
remedial measures need to be developed. Microbial deg-
radation is one of the most effective and environmentally 
friendly methods for fipronil degradation. In recent years, 
a large number of studies have focused on the degradation 
of pesticides by microorganisms and the isolation, charac-
terization, and application of bioremediation strains in soil 
and water environments. However, only a small number of 
bacteria or fungi have been found to metabolize fipronil. The 
degradation pathways and metabolites of some strains have 

been basically elucidated, but some intermediates, related 
degrading enzymes, and functional genes have not yet been 
studied and tested. At present, the CYP6, CYP4, CYP18, 
and CYP302 gene families, identified as cytochrome P450 
enzymes, have been annotated in transcriptome databases 
as detoxification enzyme genes of metabolic insecticide. An 
improved exploration of the microorganisms, enzymes, and 
genes in charge of fipronil biodegradation will bring multi-
ple benefits in terms of environmental remediation. Firstly, 
it will enable more accurate predictions of the fate of fipronil 
and other phenyl pyrazole insecticides in the environment, 
including degradation kinetics, possible degradation prod-
ucts, and the factors that determine them. Secondly, these 
developments will allow us to work on effective microbial or 
enzymatic agents to eliminate fipronil contamination in the 
environment. Finally, if we can take advantage of advanced 
molecular biotechnologies, such as metagenomics, proteom-
ics, and genetic diagnostics, to identify the genes encod-
ing the degradation of fipronil, this will make it possible to 
develop fipronil-specific biosensors, which are of particu-
lar interest with respect to the rapid detection of fipronil 
residues. In addition, fipronil-degrading microflora can be 
studied, rather than a single strain, which is conducive to 
the practical application of biodegradation in the environ-
ment. This provides a general direction for future research 
on fipronil degradation.
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